| 1 |
412 |
julius |
//*****************************************************************************
|
| 2 |
|
|
// DISCLAIMER OF LIABILITY
|
| 3 |
|
|
//
|
| 4 |
|
|
// This file contains proprietary and confidential information of
|
| 5 |
|
|
// Xilinx, Inc. ("Xilinx"), that is distributed under a license
|
| 6 |
|
|
// from Xilinx, and may be used, copied and/or disclosed only
|
| 7 |
|
|
// pursuant to the terms of a valid license agreement with Xilinx.
|
| 8 |
|
|
//
|
| 9 |
|
|
// XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION
|
| 10 |
|
|
// ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
|
| 11 |
|
|
// EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT
|
| 12 |
|
|
// LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT,
|
| 13 |
|
|
// MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx
|
| 14 |
|
|
// does not warrant that functions included in the Materials will
|
| 15 |
|
|
// meet the requirements of Licensee, or that the operation of the
|
| 16 |
|
|
// Materials will be uninterrupted or error-free, or that defects
|
| 17 |
|
|
// in the Materials will be corrected. Furthermore, Xilinx does
|
| 18 |
|
|
// not warrant or make any representations regarding use, or the
|
| 19 |
|
|
// results of the use, of the Materials in terms of correctness,
|
| 20 |
|
|
// accuracy, reliability or otherwise.
|
| 21 |
|
|
//
|
| 22 |
|
|
// Xilinx products are not designed or intended to be fail-safe,
|
| 23 |
|
|
// or for use in any application requiring fail-safe performance,
|
| 24 |
|
|
// such as life-support or safety devices or systems, Class III
|
| 25 |
|
|
// medical devices, nuclear facilities, applications related to
|
| 26 |
|
|
// the deployment of airbags, or any other applications that could
|
| 27 |
|
|
// lead to death, personal injury or severe property or
|
| 28 |
|
|
// environmental damage (individually and collectively, "critical
|
| 29 |
|
|
// applications"). Customer assumes the sole risk and liability
|
| 30 |
|
|
// of any use of Xilinx products in critical applications,
|
| 31 |
|
|
// subject only to applicable laws and regulations governing
|
| 32 |
|
|
// limitations on product liability.
|
| 33 |
|
|
//
|
| 34 |
|
|
// Copyright 2006, 2007, 2008 Xilinx, Inc.
|
| 35 |
|
|
// All rights reserved.
|
| 36 |
|
|
//
|
| 37 |
|
|
// This disclaimer and copyright notice must be retained as part
|
| 38 |
|
|
// of this file at all times.
|
| 39 |
|
|
//*****************************************************************************
|
| 40 |
|
|
// ____ ____
|
| 41 |
|
|
// / /\/ /
|
| 42 |
|
|
// /___/ \ / Vendor: Xilinx
|
| 43 |
|
|
// \ \ \/ Version: 3.0
|
| 44 |
|
|
// \ \ Application: MIG
|
| 45 |
|
|
// / / Filename: ddr2_usr_rd.v
|
| 46 |
|
|
// /___/ /\ Date Last Modified: $Date: 2008/12/23 14:26:01 $
|
| 47 |
|
|
// \ \ / \ Date Created: Tue Aug 29 2006
|
| 48 |
|
|
// \___\/\___\
|
| 49 |
|
|
//
|
| 50 |
|
|
//Device: Virtex-5
|
| 51 |
|
|
//Design Name: DDR2
|
| 52 |
|
|
//Purpose:
|
| 53 |
|
|
// The delay between the read data with respect to the command issued is
|
| 54 |
|
|
// calculted in terms of no. of clocks. This data is then stored into the
|
| 55 |
|
|
// FIFOs and then read back and given as the ouput for comparison.
|
| 56 |
|
|
//Reference:
|
| 57 |
|
|
//Revision History:
|
| 58 |
|
|
//*****************************************************************************
|
| 59 |
|
|
|
| 60 |
|
|
`timescale 1ns/1ps
|
| 61 |
|
|
|
| 62 |
|
|
module ddr2_usr_rd #
|
| 63 |
|
|
(
|
| 64 |
|
|
// Following parameters are for 72-bit RDIMM design (for ML561 Reference
|
| 65 |
|
|
// board design). Actual values may be different. Actual parameters values
|
| 66 |
|
|
// are passed from design top module ddr2_mig module. Please refer to
|
| 67 |
|
|
// the ddr2_mig module for actual values.
|
| 68 |
|
|
parameter DQ_PER_DQS = 8,
|
| 69 |
|
|
parameter DQS_WIDTH = 9,
|
| 70 |
|
|
parameter APPDATA_WIDTH = 144,
|
| 71 |
|
|
parameter ECC_WIDTH = 72,
|
| 72 |
|
|
parameter ECC_ENABLE = 0
|
| 73 |
|
|
)
|
| 74 |
|
|
(
|
| 75 |
|
|
input clk0,
|
| 76 |
|
|
input rst0,
|
| 77 |
|
|
input [(DQS_WIDTH*DQ_PER_DQS)-1:0] rd_data_in_rise,
|
| 78 |
|
|
input [(DQS_WIDTH*DQ_PER_DQS)-1:0] rd_data_in_fall,
|
| 79 |
|
|
input [DQS_WIDTH-1:0] ctrl_rden,
|
| 80 |
|
|
input [DQS_WIDTH-1:0] ctrl_rden_sel,
|
| 81 |
|
|
output reg [1:0] rd_ecc_error,
|
| 82 |
|
|
output rd_data_valid,
|
| 83 |
|
|
output reg [(APPDATA_WIDTH/2)-1:0] rd_data_out_rise,
|
| 84 |
|
|
output reg [(APPDATA_WIDTH/2)-1:0] rd_data_out_fall
|
| 85 |
|
|
);
|
| 86 |
|
|
|
| 87 |
|
|
// determine number of FIFO72's to use based on data width
|
| 88 |
|
|
localparam RDF_FIFO_NUM = ((APPDATA_WIDTH/2)+63)/64;
|
| 89 |
|
|
|
| 90 |
|
|
reg [DQS_WIDTH-1:0] ctrl_rden_r;
|
| 91 |
|
|
wire [(DQS_WIDTH*DQ_PER_DQS)-1:0] fall_data;
|
| 92 |
|
|
reg [(DQS_WIDTH*DQ_PER_DQS)-1:0] rd_data_in_fall_r;
|
| 93 |
|
|
reg [(DQS_WIDTH*DQ_PER_DQS)-1:0] rd_data_in_rise_r;
|
| 94 |
|
|
wire rden;
|
| 95 |
|
|
reg [DQS_WIDTH-1:0] rden_sel_r
|
| 96 |
|
|
/* synthesis syn_preserve=1 */;
|
| 97 |
|
|
wire [DQS_WIDTH-1:0] rden_sel_mux;
|
| 98 |
|
|
wire [(DQS_WIDTH*DQ_PER_DQS)-1:0] rise_data;
|
| 99 |
|
|
|
| 100 |
|
|
// ECC specific signals
|
| 101 |
|
|
wire [((RDF_FIFO_NUM -1) *2)+1:0] db_ecc_error;
|
| 102 |
|
|
reg [(DQS_WIDTH*DQ_PER_DQS)-1:0] fall_data_r;
|
| 103 |
|
|
reg fifo_rden_r0;
|
| 104 |
|
|
reg fifo_rden_r1;
|
| 105 |
|
|
reg fifo_rden_r2;
|
| 106 |
|
|
reg fifo_rden_r3;
|
| 107 |
|
|
reg fifo_rden_r4;
|
| 108 |
|
|
reg fifo_rden_r5;
|
| 109 |
|
|
reg fifo_rden_r6;
|
| 110 |
|
|
wire [(APPDATA_WIDTH/2)-1:0] rd_data_out_fall_temp;
|
| 111 |
|
|
wire [(APPDATA_WIDTH/2)-1:0] rd_data_out_rise_temp;
|
| 112 |
|
|
reg rst_r;
|
| 113 |
|
|
reg [(DQS_WIDTH*DQ_PER_DQS)-1:0] rise_data_r;
|
| 114 |
|
|
wire [((RDF_FIFO_NUM -1) *2)+1:0] sb_ecc_error;
|
| 115 |
|
|
|
| 116 |
|
|
|
| 117 |
|
|
//***************************************************************************
|
| 118 |
|
|
|
| 119 |
|
|
always @(posedge clk0) begin
|
| 120 |
|
|
rden_sel_r <= ctrl_rden_sel;
|
| 121 |
|
|
ctrl_rden_r <= ctrl_rden;
|
| 122 |
|
|
rd_data_in_rise_r <= rd_data_in_rise;
|
| 123 |
|
|
rd_data_in_fall_r <= rd_data_in_fall;
|
| 124 |
|
|
end
|
| 125 |
|
|
|
| 126 |
|
|
// Instantiate primitive to allow this flop to be attached to multicycle
|
| 127 |
|
|
// path constraint in UCF. Multicycle path allowed for data from read FIFO.
|
| 128 |
|
|
// This is the same signal as RDEN_SEL_R, but is only used to select data
|
| 129 |
|
|
// (does not affect control signals)
|
| 130 |
|
|
genvar rd_i;
|
| 131 |
|
|
generate
|
| 132 |
|
|
for (rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i+1) begin: gen_rden_sel_mux
|
| 133 |
|
|
FDRSE u_ff_rden_sel_mux
|
| 134 |
|
|
(
|
| 135 |
|
|
.Q (rden_sel_mux[rd_i]),
|
| 136 |
|
|
.C (clk0),
|
| 137 |
|
|
.CE (1'b1),
|
| 138 |
|
|
.D (ctrl_rden_sel[rd_i]),
|
| 139 |
|
|
.R (1'b0),
|
| 140 |
|
|
.S (1'b0)
|
| 141 |
|
|
) /* synthesis syn_preserve=1 */;
|
| 142 |
|
|
end
|
| 143 |
|
|
endgenerate
|
| 144 |
|
|
|
| 145 |
|
|
// determine correct read data valid signal timing
|
| 146 |
|
|
assign rden = (rden_sel_r[0]) ? ctrl_rden[0] : ctrl_rden_r[0];
|
| 147 |
|
|
|
| 148 |
|
|
// assign data based on the skew
|
| 149 |
|
|
genvar data_i;
|
| 150 |
|
|
generate
|
| 151 |
|
|
for(data_i = 0; data_i < DQS_WIDTH; data_i = data_i+1) begin: gen_data
|
| 152 |
|
|
assign rise_data[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1):
|
| 153 |
|
|
(data_i*DQ_PER_DQS)]
|
| 154 |
|
|
= (rden_sel_mux[data_i]) ?
|
| 155 |
|
|
rd_data_in_rise[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1) :
|
| 156 |
|
|
(data_i*DQ_PER_DQS)] :
|
| 157 |
|
|
rd_data_in_rise_r[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1):
|
| 158 |
|
|
(data_i*DQ_PER_DQS)];
|
| 159 |
|
|
assign fall_data[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1):
|
| 160 |
|
|
(data_i*DQ_PER_DQS)]
|
| 161 |
|
|
= (rden_sel_mux[data_i]) ?
|
| 162 |
|
|
rd_data_in_fall[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1):
|
| 163 |
|
|
(data_i*DQ_PER_DQS)] :
|
| 164 |
|
|
rd_data_in_fall_r[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1):
|
| 165 |
|
|
(data_i*DQ_PER_DQS)];
|
| 166 |
|
|
end
|
| 167 |
|
|
endgenerate
|
| 168 |
|
|
|
| 169 |
|
|
// Generate RST for FIFO reset AND for read/write enable:
|
| 170 |
|
|
// ECC FIFO always being read from and written to
|
| 171 |
|
|
always @(posedge clk0)
|
| 172 |
|
|
rst_r <= rst0;
|
| 173 |
|
|
|
| 174 |
|
|
genvar rdf_i;
|
| 175 |
|
|
generate
|
| 176 |
|
|
if (ECC_ENABLE) begin
|
| 177 |
|
|
always @(posedge clk0) begin
|
| 178 |
|
|
rd_ecc_error[0] <= (|sb_ecc_error) & fifo_rden_r5;
|
| 179 |
|
|
rd_ecc_error[1] <= (|db_ecc_error) & fifo_rden_r5;
|
| 180 |
|
|
rd_data_out_rise <= rd_data_out_rise_temp;
|
| 181 |
|
|
rd_data_out_fall <= rd_data_out_fall_temp;
|
| 182 |
|
|
rise_data_r <= rise_data;
|
| 183 |
|
|
fall_data_r <= fall_data;
|
| 184 |
|
|
end
|
| 185 |
|
|
|
| 186 |
|
|
// can use any of the read valids, they're all delayed by same amount
|
| 187 |
|
|
assign rd_data_valid = fifo_rden_r6;
|
| 188 |
|
|
|
| 189 |
|
|
// delay read valid to take into account max delay difference btw
|
| 190 |
|
|
// the read enable coming from the different DQS groups
|
| 191 |
|
|
always @(posedge clk0) begin
|
| 192 |
|
|
if (rst0) begin
|
| 193 |
|
|
fifo_rden_r0 <= 1'b0;
|
| 194 |
|
|
fifo_rden_r1 <= 1'b0;
|
| 195 |
|
|
fifo_rden_r2 <= 1'b0;
|
| 196 |
|
|
fifo_rden_r3 <= 1'b0;
|
| 197 |
|
|
fifo_rden_r4 <= 1'b0;
|
| 198 |
|
|
fifo_rden_r5 <= 1'b0;
|
| 199 |
|
|
fifo_rden_r6 <= 1'b0;
|
| 200 |
|
|
end else begin
|
| 201 |
|
|
fifo_rden_r0 <= rden;
|
| 202 |
|
|
fifo_rden_r1 <= fifo_rden_r0;
|
| 203 |
|
|
fifo_rden_r2 <= fifo_rden_r1;
|
| 204 |
|
|
fifo_rden_r3 <= fifo_rden_r2;
|
| 205 |
|
|
fifo_rden_r4 <= fifo_rden_r3;
|
| 206 |
|
|
fifo_rden_r5 <= fifo_rden_r4;
|
| 207 |
|
|
fifo_rden_r6 <= fifo_rden_r5;
|
| 208 |
|
|
end
|
| 209 |
|
|
end
|
| 210 |
|
|
|
| 211 |
|
|
for (rdf_i = 0; rdf_i < RDF_FIFO_NUM; rdf_i = rdf_i + 1) begin: gen_rdf
|
| 212 |
|
|
|
| 213 |
|
|
FIFO36_72 # // rise fifo
|
| 214 |
|
|
(
|
| 215 |
|
|
.ALMOST_EMPTY_OFFSET (9'h007),
|
| 216 |
|
|
.ALMOST_FULL_OFFSET (9'h00F),
|
| 217 |
|
|
.DO_REG (1), // extra CC output delay
|
| 218 |
|
|
.EN_ECC_WRITE ("FALSE"),
|
| 219 |
|
|
.EN_ECC_READ ("TRUE"),
|
| 220 |
|
|
.EN_SYN ("FALSE"),
|
| 221 |
|
|
.FIRST_WORD_FALL_THROUGH ("FALSE")
|
| 222 |
|
|
)
|
| 223 |
|
|
u_rdf
|
| 224 |
|
|
(
|
| 225 |
|
|
.ALMOSTEMPTY (),
|
| 226 |
|
|
.ALMOSTFULL (),
|
| 227 |
|
|
.DBITERR (db_ecc_error[rdf_i + rdf_i]),
|
| 228 |
|
|
.DO (rd_data_out_rise_temp[(64*(rdf_i+1))-1:
|
| 229 |
|
|
(64 *rdf_i)]),
|
| 230 |
|
|
.DOP (),
|
| 231 |
|
|
.ECCPARITY (),
|
| 232 |
|
|
.EMPTY (),
|
| 233 |
|
|
.FULL (),
|
| 234 |
|
|
.RDCOUNT (),
|
| 235 |
|
|
.RDERR (),
|
| 236 |
|
|
.SBITERR (sb_ecc_error[rdf_i + rdf_i]),
|
| 237 |
|
|
.WRCOUNT (),
|
| 238 |
|
|
.WRERR (),
|
| 239 |
|
|
.DI (rise_data_r[((64*(rdf_i+1)) + (rdf_i*8))-1:
|
| 240 |
|
|
(64 *rdf_i)+(rdf_i*8)]),
|
| 241 |
|
|
.DIP (rise_data_r[(72*(rdf_i+1))-1:
|
| 242 |
|
|
(64*(rdf_i+1))+ (8*rdf_i)]),
|
| 243 |
|
|
.RDCLK (clk0),
|
| 244 |
|
|
.RDEN (~rst_r),
|
| 245 |
|
|
.RST (rst_r),
|
| 246 |
|
|
.WRCLK (clk0),
|
| 247 |
|
|
.WREN (~rst_r)
|
| 248 |
|
|
);
|
| 249 |
|
|
|
| 250 |
|
|
FIFO36_72 # // fall_fifo
|
| 251 |
|
|
(
|
| 252 |
|
|
.ALMOST_EMPTY_OFFSET (9'h007),
|
| 253 |
|
|
.ALMOST_FULL_OFFSET (9'h00F),
|
| 254 |
|
|
.DO_REG (1), // extra CC output delay
|
| 255 |
|
|
.EN_ECC_WRITE ("FALSE"),
|
| 256 |
|
|
.EN_ECC_READ ("TRUE"),
|
| 257 |
|
|
.EN_SYN ("FALSE"),
|
| 258 |
|
|
.FIRST_WORD_FALL_THROUGH ("FALSE")
|
| 259 |
|
|
)
|
| 260 |
|
|
u_rdf1
|
| 261 |
|
|
(
|
| 262 |
|
|
.ALMOSTEMPTY (),
|
| 263 |
|
|
.ALMOSTFULL (),
|
| 264 |
|
|
.DBITERR (db_ecc_error[(rdf_i+1) + rdf_i]),
|
| 265 |
|
|
.DO (rd_data_out_fall_temp[(64*(rdf_i+1))-1:
|
| 266 |
|
|
(64 *rdf_i)]),
|
| 267 |
|
|
.DOP (),
|
| 268 |
|
|
.ECCPARITY (),
|
| 269 |
|
|
.EMPTY (),
|
| 270 |
|
|
.FULL (),
|
| 271 |
|
|
.RDCOUNT (),
|
| 272 |
|
|
.RDERR (),
|
| 273 |
|
|
.SBITERR (sb_ecc_error[(rdf_i+1) + rdf_i]),
|
| 274 |
|
|
.WRCOUNT (),
|
| 275 |
|
|
.WRERR (),
|
| 276 |
|
|
.DI (fall_data_r[((64*(rdf_i+1)) + (rdf_i*8))-1:
|
| 277 |
|
|
(64*rdf_i)+(rdf_i*8)]),
|
| 278 |
|
|
.DIP (fall_data_r[(72*(rdf_i+1))-1:
|
| 279 |
|
|
(64*(rdf_i+1))+ (8*rdf_i)]),
|
| 280 |
|
|
.RDCLK (clk0),
|
| 281 |
|
|
.RDEN (~rst_r),
|
| 282 |
|
|
.RST (rst_r), // or can use rst0
|
| 283 |
|
|
.WRCLK (clk0),
|
| 284 |
|
|
.WREN (~rst_r)
|
| 285 |
|
|
);
|
| 286 |
|
|
end
|
| 287 |
|
|
end // if (ECC_ENABLE)
|
| 288 |
|
|
|
| 289 |
|
|
else begin
|
| 290 |
|
|
assign rd_data_valid = fifo_rden_r0;
|
| 291 |
|
|
always @(posedge clk0) begin
|
| 292 |
|
|
rd_data_out_rise <= rise_data;
|
| 293 |
|
|
rd_data_out_fall <= fall_data;
|
| 294 |
|
|
fifo_rden_r0 <= rden;
|
| 295 |
|
|
end
|
| 296 |
|
|
end
|
| 297 |
|
|
endgenerate
|
| 298 |
|
|
|
| 299 |
|
|
endmodule
|