OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [orpsocv2/] [boards/] [xilinx/] [ml501/] [rtl/] [verilog/] [xilinx_ddr2/] [ddr2_usr_wr.v] - Blame information for rev 446

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 412 julius
//*****************************************************************************
2
// DISCLAIMER OF LIABILITY
3
//
4
// This file contains proprietary and confidential information of
5
// Xilinx, Inc. ("Xilinx"), that is distributed under a license
6
// from Xilinx, and may be used, copied and/or disclosed only
7
// pursuant to the terms of a valid license agreement with Xilinx.
8
//
9
// XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION
10
// ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
11
// EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT
12
// LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT,
13
// MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx
14
// does not warrant that functions included in the Materials will
15
// meet the requirements of Licensee, or that the operation of the
16
// Materials will be uninterrupted or error-free, or that defects
17
// in the Materials will be corrected. Furthermore, Xilinx does
18
// not warrant or make any representations regarding use, or the
19
// results of the use, of the Materials in terms of correctness,
20
// accuracy, reliability or otherwise.
21
//
22
// Xilinx products are not designed or intended to be fail-safe,
23
// or for use in any application requiring fail-safe performance,
24
// such as life-support or safety devices or systems, Class III
25
// medical devices, nuclear facilities, applications related to
26
// the deployment of airbags, or any other applications that could
27
// lead to death, personal injury or severe property or
28
// environmental damage (individually and collectively, "critical
29
// applications"). Customer assumes the sole risk and liability
30
// of any use of Xilinx products in critical applications,
31
// subject only to applicable laws and regulations governing
32
// limitations on product liability.
33
//
34
// Copyright 2006, 2007 Xilinx, Inc.
35
// All rights reserved.
36
//
37
// This disclaimer and copyright notice must be retained as part
38
// of this file at all times.
39
//*****************************************************************************
40
//   ____  ____
41
//  /   /\/   /
42
// /___/  \  /    Vendor: Xilinx
43
// \   \   \/     Version: 3.0
44
//  \   \         Application: MIG
45
//  /   /         Filename: ddr2_usr_wr.v
46
// /___/   /\     Date Last Modified: $Date: 2008/12/23 14:26:01 $
47
// \   \  /  \    Date Created: Mon Aug 28 2006
48
//  \___\/\___\
49
//
50
//Device: Virtex-5
51
//Design Name: DDR/DDR2
52
//Purpose:
53
//   This module instantiates the modules containing internal FIFOs
54
//Reference:
55
//Revision History:
56
//*****************************************************************************
57
 
58
`timescale 1ns/1ps
59
 
60
module ddr2_usr_wr #
61
  (
62
   // Following parameters are for 72-bit RDIMM design (for ML561 Reference 
63
   // board design). Actual values may be different. Actual parameters values 
64
   // are passed from design top module ddr2_mig module. Please refer to
65
   // the ddr2_mig module for actual values.
66
   parameter BANK_WIDTH    = 2,
67
   parameter COL_WIDTH     = 10,
68
   parameter CS_BITS       = 0,
69
   parameter DQ_WIDTH      = 72,
70
   parameter APPDATA_WIDTH = 144,
71
   parameter ECC_ENABLE    = 0,
72
   parameter ROW_WIDTH     = 14
73
   )
74
  (
75
   input                         clk0,
76
    input                        usr_clk, // jb
77
   input                         clk90,
78
   input                         rst0,
79
   // Write data FIFO interface
80
   input                         app_wdf_wren,
81
   input [APPDATA_WIDTH-1:0]     app_wdf_data,
82
   input [(APPDATA_WIDTH/8)-1:0] app_wdf_mask_data,
83
   input                         wdf_rden,
84
   output                        app_wdf_afull,
85
   output [(2*DQ_WIDTH)-1:0]     wdf_data,
86
   output [((2*DQ_WIDTH)/8)-1:0] wdf_mask_data
87
   );
88
 
89
  // determine number of FIFO72's to use based on data width
90
  // round up to next integer value when determining WDF_FIFO_NUM
91
  localparam WDF_FIFO_NUM = (ECC_ENABLE) ? (APPDATA_WIDTH+63)/64 :
92
             ((2*DQ_WIDTH)+63)/64;
93
  // MASK_WIDTH = number of bytes in data bus
94
  localparam MASK_WIDTH = DQ_WIDTH/8;
95
 
96
  wire [WDF_FIFO_NUM-1:0]      i_wdf_afull;
97
  wire [DQ_WIDTH-1:0]          i_wdf_data_fall_in;
98
  wire [DQ_WIDTH-1:0]          i_wdf_data_fall_out;
99
  wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_in;
100
  wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_out;
101
  wire [DQ_WIDTH-1:0]          i_wdf_data_rise_in;
102
  wire [DQ_WIDTH-1:0]          i_wdf_data_rise_out;
103
  wire [MASK_WIDTH-1:0]        i_wdf_mask_data_fall_in;
104
  wire [MASK_WIDTH-1:0]        i_wdf_mask_data_fall_out;
105
  wire [(8*WDF_FIFO_NUM)-1:0]  i_wdf_mask_data_in;
106
  wire [(8*WDF_FIFO_NUM)-1:0]  i_wdf_mask_data_out;
107
  wire [MASK_WIDTH-1:0]        i_wdf_mask_data_rise_in;
108
  wire [MASK_WIDTH-1:0]        i_wdf_mask_data_rise_out;
109
  reg                          rst_r;
110
 
111
  // ECC signals
112
  wire [(2*DQ_WIDTH)-1:0]      i_wdf_data_out_ecc;
113
  wire [((2*DQ_WIDTH)/8)-1:0]  i_wdf_mask_data_out_ecc;
114
  wire [63:0]                  i_wdf_mask_data_out_ecc_wire;
115
  wire [((2*DQ_WIDTH)/8)-1:0]  mask_data_in_ecc;
116
  wire [63:0]                  mask_data_in_ecc_wire;
117
 
118
  //***************************************************************************
119
 
120
  assign app_wdf_afull = i_wdf_afull[0];
121
 
122
  always @(posedge clk0 )
123
      rst_r <= rst0;
124
 
125
  genvar wdf_di_i;
126
  genvar wdf_do_i;
127
  genvar mask_i;
128
  genvar wdf_i;
129
  generate
130
    if(ECC_ENABLE) begin    // ECC code
131
 
132
      assign wdf_data = i_wdf_data_out_ecc;
133
 
134
      // the byte 9 dm is always held to 0
135
      assign wdf_mask_data = i_wdf_mask_data_out_ecc;
136
 
137
 
138
 
139
      // generate for write data fifo .
140
      for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf
141
 
142
        FIFO36_72  #
143
          (
144
           .ALMOST_EMPTY_OFFSET     (9'h007),
145
           .ALMOST_FULL_OFFSET      (9'h00F),
146
           .DO_REG                  (1),          // extra CC output delay
147
           .EN_ECC_WRITE            ("TRUE"),
148
           .EN_ECC_READ             ("FALSE"),
149
           .EN_SYN                  ("FALSE"),
150
           .FIRST_WORD_FALL_THROUGH ("FALSE")
151
           )
152
          u_wdf_ecc
153
            (
154
             .ALMOSTEMPTY (),
155
             .ALMOSTFULL  (i_wdf_afull[wdf_i]),
156
             .DBITERR     (),
157
             .DO          (i_wdf_data_out_ecc[((64*(wdf_i+1))+(wdf_i *8))-1:
158
                                              (64*wdf_i)+(wdf_i *8)]),
159
             .DOP         (i_wdf_data_out_ecc[(72*(wdf_i+1))-1:
160
                                              (64*(wdf_i+1))+ (8*wdf_i) ]),
161
             .ECCPARITY   (),
162
             .EMPTY       (),
163
             .FULL        (),
164
             .RDCOUNT     (),
165
             .RDERR       (),
166
             .SBITERR     (),
167
             .WRCOUNT     (),
168
             .WRERR       (),
169
             .DI          (app_wdf_data[(64*(wdf_i+1))-1:
170
                                        (64*wdf_i)]),
171
             .DIP         (),
172
             .RDCLK       (clk90),
173
             .RDEN        (wdf_rden),
174
             .RST         (rst_r),          // or can use rst0
175
             .WRCLK       (clk0),
176
//           .WRCLK       (usr_clk), //jb
177
             .WREN        (app_wdf_wren)
178
             );
179
      end
180
 
181
      // remapping the mask data. The mask data from user i/f does not have
182
      // the mask for the ECC byte. Assigning 0 to the ECC mask byte.
183
      for (mask_i = 0; mask_i < (DQ_WIDTH)/36;
184
           mask_i = mask_i +1) begin: gen_mask
185
        assign mask_data_in_ecc[((8*(mask_i+1))+ mask_i)-1:((8*mask_i)+mask_i)]
186
                 = app_wdf_mask_data[(8*(mask_i+1))-1:8*(mask_i)] ;
187
        assign mask_data_in_ecc[((8*(mask_i+1))+mask_i)] = 1'd0;
188
      end
189
 
190
      // assign ecc bits to temp variables to avoid
191
      // sim warnings. Not all the 64 bits of the fifo
192
      // are used in ECC mode.
193
       assign  mask_data_in_ecc_wire[((2*DQ_WIDTH)/8)-1:0] = mask_data_in_ecc;
194
       assign  mask_data_in_ecc_wire[63:((2*DQ_WIDTH)/8)]  =
195
              {(64-((2*DQ_WIDTH)/8)){1'b0}};
196
       assign i_wdf_mask_data_out_ecc =
197
               i_wdf_mask_data_out_ecc_wire[((2*DQ_WIDTH)/8)-1:0];
198
 
199
 
200
      FIFO36_72  #
201
        (
202
         .ALMOST_EMPTY_OFFSET     (9'h007),
203
         .ALMOST_FULL_OFFSET      (9'h00F),
204
         .DO_REG                  (1),          // extra CC output delay
205
         .EN_ECC_WRITE            ("TRUE"),
206
         .EN_ECC_READ             ("FALSE"),
207
         .EN_SYN                  ("FALSE"),
208
         .FIRST_WORD_FALL_THROUGH ("FALSE")
209
         )
210
        u_wdf_ecc_mask
211
          (
212
           .ALMOSTEMPTY (),
213
           .ALMOSTFULL  (),
214
           .DBITERR     (),
215
           .DO          (i_wdf_mask_data_out_ecc_wire),
216
           .DOP         (),
217
           .ECCPARITY   (),
218
           .EMPTY       (),
219
           .FULL        (),
220
           .RDCOUNT     (),
221
           .RDERR       (),
222
           .SBITERR     (),
223
           .WRCOUNT     (),
224
           .WRERR       (),
225
           .DI          (mask_data_in_ecc_wire),
226
           .DIP         (),
227
           .RDCLK       (clk90),
228
           .RDEN        (wdf_rden),
229
           .RST         (rst_r),          // or can use rst0
230
           .WRCLK       (clk0),
231
//         .WRCLK       (usr_clk), // jb
232
           .WREN        (app_wdf_wren)
233
           );
234
    end else begin
235
 
236
      //***********************************************************************
237
 
238
      // Define intermediate buses:
239
      assign i_wdf_data_rise_in
240
        = app_wdf_data[DQ_WIDTH-1:0];
241
      assign i_wdf_data_fall_in
242
        = app_wdf_data[(2*DQ_WIDTH)-1:DQ_WIDTH];
243
      assign i_wdf_mask_data_rise_in
244
        = app_wdf_mask_data[MASK_WIDTH-1:0];
245
      assign i_wdf_mask_data_fall_in
246
        = app_wdf_mask_data[(2*MASK_WIDTH)-1:MASK_WIDTH];
247
 
248
      //***********************************************************************
249
      // Write data FIFO Input:
250
      // Arrange DQ's so that the rise data and fall data are interleaved.
251
      // the data arrives at the input of the wdf fifo as {fall,rise}.
252
      // It is remapped as:
253
      //     {...fall[15:8],rise[15:8],fall[7:0],rise[7:0]}
254
      // This is done to avoid having separate fifo's for rise and fall data
255
      // and to keep rise/fall data for the same DQ's on same FIFO
256
      // Data masks are interleaved in a similar manner
257
      // NOTE: Initialization data from PHY_INIT module does not need to be
258
      //  interleaved - it's already in the correct format - and the same
259
      //  initialization pattern from PHY_INIT is sent to all write FIFOs
260
      //***********************************************************************
261
 
262
      for (wdf_di_i = 0; wdf_di_i < MASK_WIDTH;
263
           wdf_di_i = wdf_di_i + 1) begin: gen_wdf_data_in
264
        assign i_wdf_data_in[(16*wdf_di_i)+15:(16*wdf_di_i)]
265
                 = {i_wdf_data_fall_in[(8*wdf_di_i)+7:(8*wdf_di_i)],
266
                    i_wdf_data_rise_in[(8*wdf_di_i)+7:(8*wdf_di_i)]};
267
        assign i_wdf_mask_data_in[(2*wdf_di_i)+1:(2*wdf_di_i)]
268
                 = {i_wdf_mask_data_fall_in[wdf_di_i],
269
                    i_wdf_mask_data_rise_in[wdf_di_i]};
270
      end
271
 
272
      //***********************************************************************
273
      // Write data FIFO Output:
274
      // FIFO DQ and mask outputs must be untangled and put in the standard
275
      // format of {fall,rise}. Same goes for mask output
276
      //***********************************************************************
277
 
278
      for (wdf_do_i = 0; wdf_do_i < MASK_WIDTH;
279
           wdf_do_i = wdf_do_i + 1) begin: gen_wdf_data_out
280
        assign i_wdf_data_rise_out[(8*wdf_do_i)+7:(8*wdf_do_i)]
281
                 = i_wdf_data_out[(16*wdf_do_i)+7:(16*wdf_do_i)];
282
        assign i_wdf_data_fall_out[(8*wdf_do_i)+7:(8*wdf_do_i)]
283
                 = i_wdf_data_out[(16*wdf_do_i)+15:(16*wdf_do_i)+8];
284
        assign i_wdf_mask_data_rise_out[wdf_do_i]
285
                 = i_wdf_mask_data_out[2*wdf_do_i];
286
        assign i_wdf_mask_data_fall_out[wdf_do_i]
287
                 = i_wdf_mask_data_out[(2*wdf_do_i)+1];
288
      end
289
 
290
      assign wdf_data = {i_wdf_data_fall_out,
291
                         i_wdf_data_rise_out};
292
 
293
      assign wdf_mask_data = {i_wdf_mask_data_fall_out,
294
                              i_wdf_mask_data_rise_out};
295
 
296
      //***********************************************************************
297
 
298
      for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf
299
 
300
        FIFO36_72  #
301
          (
302
           .ALMOST_EMPTY_OFFSET     (9'h007),
303
           .ALMOST_FULL_OFFSET      (9'h00F),
304
           .DO_REG                  (1),          // extra CC output delay
305
           .EN_ECC_WRITE            ("FALSE"),
306
           .EN_ECC_READ             ("FALSE"),
307
           .EN_SYN                  ("FALSE"),
308
           .FIRST_WORD_FALL_THROUGH ("FALSE")
309
           )
310
          u_wdf
311
            (
312
             .ALMOSTEMPTY (),
313
             .ALMOSTFULL  (i_wdf_afull[wdf_i]),
314
             .DBITERR     (),
315
             .DO          (i_wdf_data_out[(64*(wdf_i+1))-1:64*wdf_i]),
316
             .DOP         (i_wdf_mask_data_out[(8*(wdf_i+1))-1:8*wdf_i]),
317
             .ECCPARITY   (),
318
             .EMPTY       (),
319
             .FULL        (),
320
             .RDCOUNT     (),
321
             .RDERR       (),
322
             .SBITERR     (),
323
             .WRCOUNT     (),
324
             .WRERR       (),
325
             .DI          (i_wdf_data_in[(64*(wdf_i+1))-1:64*wdf_i]),
326
             .DIP         (i_wdf_mask_data_in[(8*(wdf_i+1))-1:8*wdf_i]),
327
             .RDCLK       (clk90),
328
             .RDEN        (wdf_rden),
329
             .RST         (rst_r),          // or can use rst0
330
             .WRCLK       (clk0),
331
//           .WRCLK       (usr_clk), //jb
332
             .WREN        (app_wdf_wren)
333
             );
334
      end
335
    end
336
  endgenerate
337
 
338
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.