1 |
412 |
julius |
//////////////////////////////////////////////////////////////////////
|
2 |
|
|
//// ////
|
3 |
|
|
//// Xilinx ML501 SSRAM controller with Wishbone Interface ////
|
4 |
|
|
//// ////
|
5 |
|
|
//// Description ////
|
6 |
|
|
//// ZBT SSRAM controller for ML501 board part (or any ZBT RAM) ////
|
7 |
|
|
//// Timing relies on definition of multi-cycle paths during ////
|
8 |
|
|
//// synthesis. ////
|
9 |
|
|
//// ////
|
10 |
|
|
//// To Do: ////
|
11 |
|
|
//// ////
|
12 |
|
|
//// Author(s): ////
|
13 |
|
|
//// - Julius Baxter, julius.baxter@orsoc.se ////
|
14 |
|
|
//// ////
|
15 |
|
|
//// ////
|
16 |
|
|
//////////////////////////////////////////////////////////////////////
|
17 |
|
|
//// ////
|
18 |
|
|
//// Copyright (C) 2010 Authors and OPENCORES.ORG ////
|
19 |
|
|
//// ////
|
20 |
|
|
//// This source file may be used and distributed without ////
|
21 |
|
|
//// restriction provided that this copyright statement is not ////
|
22 |
|
|
//// removed from the file and that any derivative work contains ////
|
23 |
|
|
//// the original copyright notice and the associated disclaimer. ////
|
24 |
|
|
//// ////
|
25 |
|
|
//// This source file is free software; you can redistribute it ////
|
26 |
|
|
//// and/or modify it under the terms of the GNU Lesser General ////
|
27 |
|
|
//// Public License as published by the Free Software Foundation; ////
|
28 |
|
|
//// either version 2.1 of the License, or (at your option) any ////
|
29 |
|
|
//// later version. ////
|
30 |
|
|
//// ////
|
31 |
|
|
//// This source is distributed in the hope that it will be ////
|
32 |
|
|
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
|
33 |
|
|
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
|
34 |
|
|
//// PURPOSE. See the GNU Lesser General Public License for more ////
|
35 |
|
|
//// details. ////
|
36 |
|
|
//// ////
|
37 |
|
|
//// You should have received a copy of the GNU Lesser General ////
|
38 |
|
|
//// Public License along with this source; if not, download it ////
|
39 |
|
|
//// from http://www.opencores.org/lgpl.shtml ////
|
40 |
|
|
//// ////
|
41 |
|
|
//////////////////////////////////////////////////////////////////////
|
42 |
|
|
/*
|
43 |
|
|
* Controller for ZBT synchronous SRAM (ISSI IS61NLP25636A-200TQL)
|
44 |
|
|
* Explicitly uses Xilinx primitives
|
45 |
|
|
* Currently configured for a 1/4 ratio between bus/ssram clocks: 50 / 200 MHz
|
46 |
|
|
* Requires declaration of some multi-cycle paths during synthesis.
|
47 |
|
|
*
|
48 |
|
|
* Note: clk_200 and bus clock should be in phase (from same DCM)
|
49 |
|
|
*
|
50 |
|
|
* Clocking/phase counting scheme (to change it to higher/lower ratio):
|
51 |
|
|
*
|
52 |
|
|
* We run a phase counter, checking the bus on the last cycle before we hit another multiple of the SSRAM clock to the bus clock (so cycle 3 if ratio is 4, or a 50MHz system bus and 200MHz SRAM), this gives the system bus signals almost another whole cycle to reach our 200MHz regs (and where we define one of the multi-cycle paths). Once we have the stuff registered it's business as usual on the bus to the SRAM. Then we let it sit in our register for a clock or two
|
53 |
|
|
*/
|
54 |
|
|
module xilinx_ssram
|
55 |
|
|
(
|
56 |
|
|
// WB ports
|
57 |
|
|
input [31:0] wb_adr_i,
|
58 |
|
|
input wb_stb_i,
|
59 |
|
|
input wb_cyc_i,
|
60 |
|
|
input wb_we_i,
|
61 |
|
|
input [3:0] wb_sel_i,
|
62 |
|
|
input [31:0] wb_dat_i,
|
63 |
|
|
output [31:0] wb_dat_o,
|
64 |
|
|
output wb_ack_o,
|
65 |
|
|
|
66 |
|
|
input wb_clk,
|
67 |
|
|
input wb_rst,
|
68 |
|
|
|
69 |
|
|
// SSRAM interface
|
70 |
|
|
input clk_200,
|
71 |
|
|
output wire sram_clk,
|
72 |
|
|
input sram_clk_fb,
|
73 |
|
|
output reg [21:1] sram_addr,
|
74 |
|
|
inout [31:0] sram_dq_io,
|
75 |
|
|
output reg sram_ce_l,
|
76 |
|
|
output reg sram_oe_l,
|
77 |
|
|
output reg sram_we_l,
|
78 |
|
|
output reg [3:0] sram_bw_l,
|
79 |
|
|
output reg sram_adv_ld_l,
|
80 |
|
|
output sram_mode
|
81 |
|
|
|
82 |
|
|
);
|
83 |
|
|
|
84 |
|
|
wire [31:0] sram_dq_i;
|
85 |
|
|
reg [31:0] sram_dq_o;
|
86 |
|
|
reg ssram_controller_oe_l;
|
87 |
|
|
|
88 |
|
|
wire dcm0_clk0_prebufg, dcm0_clk0;
|
89 |
|
|
wire dcm0_locked;
|
90 |
|
|
|
91 |
|
|
wire dcms_locked;
|
92 |
|
|
|
93 |
|
|
reg wb_clk_r = 1'b0;
|
94 |
|
|
reg wb_clk_r_d;
|
95 |
|
|
wire wb_clk_edge;
|
96 |
|
|
|
97 |
|
|
reg wb_ack_write;
|
98 |
|
|
reg [2:0] wb_ack_read_shiftreg;
|
99 |
|
|
|
100 |
|
|
reg [2:0] clk_200_phase;
|
101 |
|
|
reg [4:0] clk_200_cycle_counter;
|
102 |
|
|
|
103 |
|
|
reg [31:0] data_rd;
|
104 |
|
|
wire [3:0] we;
|
105 |
|
|
|
106 |
|
|
reg write_cycle;
|
107 |
|
|
reg [3:0] we_r;
|
108 |
|
|
reg reg_from_bus_domain, reg_from_bus_domain_r;
|
109 |
|
|
|
110 |
|
|
assign dcms_locked = dcm0_locked;
|
111 |
|
|
|
112 |
|
|
assign we = wb_sel_i & {4{wb_cyc_i & wb_stb_i & wb_we_i}};
|
113 |
|
|
|
114 |
|
|
assign sram_clk = dcm0_clk0;
|
115 |
|
|
|
116 |
|
|
// Do wb_clk edge detection with this
|
117 |
|
|
assign wb_clk_edge = wb_clk_r & ~wb_clk_r_d;
|
118 |
|
|
|
119 |
|
|
assign sram_mode = 0;
|
120 |
|
|
|
121 |
|
|
initial begin
|
122 |
|
|
$display("* SSRAM controller instantiated at %m.");
|
123 |
|
|
end
|
124 |
|
|
|
125 |
|
|
// We ACK writes after one cycle
|
126 |
|
|
always @(posedge wb_clk)
|
127 |
|
|
wb_ack_write <= wb_cyc_i & wb_stb_i & wb_we_i & !wb_ack_write;
|
128 |
|
|
|
129 |
|
|
// We ACK reads after 3
|
130 |
|
|
always @(posedge wb_clk)
|
131 |
|
|
wb_ack_read_shiftreg <= {wb_ack_read_shiftreg[1:0], wb_cyc_i & wb_stb_i & !wb_we_i & !(|wb_ack_read_shiftreg)};
|
132 |
|
|
|
133 |
|
|
assign wb_ack_o = wb_we_i ? wb_ack_write : wb_ack_read_shiftreg[2];
|
134 |
|
|
|
135 |
|
|
// Push the bus clock through a register
|
136 |
|
|
always @(posedge wb_clk) begin
|
137 |
|
|
wb_clk_r <= ~wb_clk_r;
|
138 |
|
|
end
|
139 |
|
|
|
140 |
|
|
// Sample this with the 150 MHz clock
|
141 |
|
|
always @(posedge clk_200) begin
|
142 |
|
|
wb_clk_r_d <= wb_clk_r;
|
143 |
|
|
end
|
144 |
|
|
|
145 |
|
|
// Maintain a phase count, it goes 0->7 (8 phases, to be clear)
|
146 |
|
|
always @(posedge clk_200) begin
|
147 |
|
|
if (wb_clk_edge) begin
|
148 |
|
|
// Will be at 1 next cycle
|
149 |
|
|
clk_200_phase <= 3'd1;
|
150 |
|
|
end else if (clk_200_phase < 3'd7 & dcms_locked) begin
|
151 |
|
|
clk_200_phase <= clk_200_phase + 1;
|
152 |
|
|
end else begin
|
153 |
|
|
clk_200_phase <= 3'd0;
|
154 |
|
|
end
|
155 |
|
|
end
|
156 |
|
|
|
157 |
|
|
// Multicycle trickery
|
158 |
|
|
|
159 |
|
|
// Reads will happen like this:
|
160 |
|
|
// * Read address is given 3 clk_200 cycles to settle
|
161 |
|
|
// * It is put onto the bus for two cycles
|
162 |
|
|
// * Read data is then registered
|
163 |
|
|
// * It then has several phases to make it back to the bus register
|
164 |
|
|
|
165 |
|
|
// Number of cycles we preload counter with, depending on access
|
166 |
|
|
`define WRITE_CYCLES 5'h04
|
167 |
|
|
`define READ_CYCLES 5'h0c
|
168 |
|
|
|
169 |
|
|
// We let the commands settle for 2 cycles (0, 1) and then sample
|
170 |
|
|
// *but* data could have come on either cycle 0 _or_ 3, so check both
|
171 |
|
|
`define REQ_CHECK_CYCLE ((clk_200_phase == 3'd3)||(clk_200_phase == 3'd7))
|
172 |
|
|
|
173 |
|
|
// Write OE - whole time, doesn't matter so much
|
174 |
|
|
`define WRITE_OE_CYCLE (|clk_200_cycle_counter)
|
175 |
|
|
// Read OE, just the first two cycles
|
176 |
|
|
//`define READ_OE_CYCLE (clk_200_cycle_counter > (`READ_CYCLES - 5'h4))
|
177 |
|
|
`define READ_OE_CYCLE (|clk_200_cycle_counter)
|
178 |
|
|
|
179 |
|
|
// Sample data from RAM 2 cycles after we sample the addr from system bus
|
180 |
|
|
`define RAM_DATA_SAMPLE_CYCLE (!(|we_r) && clk_200_cycle_counter == (`READ_CYCLES - 5'h5))
|
181 |
|
|
|
182 |
|
|
// Cycle when we pull sram_we_l low
|
183 |
|
|
`define WRITE_CE_CYCLE (reg_from_bus_domain & (|we))
|
184 |
|
|
// Cycle when we ouptut the CE
|
185 |
|
|
`define READ_CE_CYCLE (reg_from_bus_domain & !(|we))
|
186 |
|
|
|
187 |
|
|
// Register stuff when we've just loaded the counter
|
188 |
|
|
`define REG_FROM_BUS_DOMAIN reg_from_bus_domain
|
189 |
|
|
|
190 |
|
|
// CE 2 cycles dring writes, only one during reads
|
191 |
|
|
always @(posedge clk_200)
|
192 |
|
|
sram_ce_l <= 0;
|
193 |
|
|
//sram_ce_l <= ~((`WRITE_CE_CYCLE) || (`READ_CE_CYCLE ));
|
194 |
|
|
|
195 |
|
|
|
196 |
|
|
always @(posedge clk_200)
|
197 |
|
|
sram_adv_ld_l <= 0;
|
198 |
|
|
//sram_adv_ld_l <= ~((`WRITE_CE_CYCLE) || (`READ_CE_CYCLE ));
|
199 |
|
|
|
200 |
|
|
always @(posedge clk_200)
|
201 |
|
|
sram_we_l <= ~(`WRITE_CE_CYCLE);
|
202 |
|
|
|
203 |
|
|
always @(posedge clk_200)
|
204 |
|
|
if (`REG_FROM_BUS_DOMAIN)
|
205 |
|
|
sram_addr[21:1] <= wb_adr_i[22:2];
|
206 |
|
|
|
207 |
|
|
always @(posedge clk_200)
|
208 |
|
|
if (`REG_FROM_BUS_DOMAIN)
|
209 |
|
|
sram_dq_o <= wb_dat_i;
|
210 |
|
|
|
211 |
|
|
always @(posedge clk_200)
|
212 |
|
|
if (`REG_FROM_BUS_DOMAIN)
|
213 |
|
|
sram_bw_l <= ~we;
|
214 |
|
|
|
215 |
|
|
always @(posedge clk_200)
|
216 |
|
|
sram_oe_l <= ~((`READ_OE_CYCLE) & !(|(we_r | we)));
|
217 |
|
|
|
218 |
|
|
always @(posedge clk_200)
|
219 |
|
|
ssram_controller_oe_l = ~((`WRITE_OE_CYCLE) & (|we_r));
|
220 |
|
|
|
221 |
|
|
// Register data from SSRAM
|
222 |
|
|
always @(posedge clk_200)
|
223 |
|
|
if (`RAM_DATA_SAMPLE_CYCLE)
|
224 |
|
|
data_rd[31:0] <= sram_dq_i[31:0];
|
225 |
|
|
|
226 |
|
|
assign wb_dat_o = data_rd;
|
227 |
|
|
|
228 |
|
|
// Determine if we've got a request
|
229 |
|
|
// This logic means the bus' control signals are slightly
|
230 |
|
|
// more constrained than the data and address.
|
231 |
|
|
always @(posedge clk_200)
|
232 |
|
|
begin
|
233 |
|
|
if (|clk_200_cycle_counter)
|
234 |
|
|
clk_200_cycle_counter <= clk_200_cycle_counter - 1;
|
235 |
|
|
else if (`REQ_CHECK_CYCLE)
|
236 |
|
|
if (wb_cyc_i & wb_stb_i)
|
237 |
|
|
clk_200_cycle_counter <= wb_we_i ?
|
238 |
|
|
`WRITE_CYCLES : `READ_CYCLES;
|
239 |
|
|
else
|
240 |
|
|
clk_200_cycle_counter <= 0;
|
241 |
|
|
end // always @ (posedge clk_200)
|
242 |
|
|
|
243 |
|
|
always @(posedge clk_200)
|
244 |
|
|
begin
|
245 |
|
|
reg_from_bus_domain <= ((`REQ_CHECK_CYCLE) & wb_cyc_i & wb_stb_i & !(|clk_200_cycle_counter));
|
246 |
|
|
reg_from_bus_domain_r <= reg_from_bus_domain;
|
247 |
|
|
end
|
248 |
|
|
|
249 |
|
|
// Must clear
|
250 |
|
|
always @(posedge clk_200)
|
251 |
|
|
if (`REG_FROM_BUS_DOMAIN)
|
252 |
|
|
we_r <= we;
|
253 |
|
|
else if (!(|clk_200_cycle_counter))
|
254 |
|
|
we_r <= 0;
|
255 |
|
|
|
256 |
|
|
|
257 |
|
|
/* SSRAM Clocking configuration */
|
258 |
|
|
|
259 |
|
|
/* DCM de-skewing SSRAM clock via external trace */
|
260 |
|
|
DCM_BASE dcm0
|
261 |
|
|
(/*AUTOINST*/
|
262 |
|
|
// Outputs
|
263 |
|
|
.CLK0 (dcm0_clk0_prebufg),
|
264 |
|
|
.CLK180 (),
|
265 |
|
|
.CLK270 (),
|
266 |
|
|
.CLK2X180 (),
|
267 |
|
|
.CLK2X (),
|
268 |
|
|
.CLK90 (),
|
269 |
|
|
.CLKDV (),
|
270 |
|
|
.CLKFX180 (),
|
271 |
|
|
.CLKFX (),
|
272 |
|
|
.LOCKED (dcm0_locked),
|
273 |
|
|
// Inputs
|
274 |
|
|
.CLKFB (sram_clk_fb),
|
275 |
|
|
.CLKIN (clk_200),
|
276 |
|
|
.RST (wb_rst));
|
277 |
|
|
|
278 |
|
|
BUFG dcm0_clk0_bufg
|
279 |
|
|
(// Outputs
|
280 |
|
|
.O (dcm0_clk0),
|
281 |
|
|
// Inputs
|
282 |
|
|
.I (dcm0_clk0_prebufg));
|
283 |
|
|
|
284 |
|
|
/* Generate the DQ bus tristate buffers */
|
285 |
|
|
genvar i;
|
286 |
|
|
generate
|
287 |
|
|
for (i=0; i<32; i=i+1) begin: SSRAM_DQ_TRISTATE
|
288 |
|
|
IOBUF U (.O(sram_dq_i[i]),
|
289 |
|
|
.IO(sram_dq_io[i]),
|
290 |
|
|
.I(sram_dq_o[i]),
|
291 |
|
|
.T(ssram_controller_oe_l));
|
292 |
|
|
end
|
293 |
|
|
endgenerate
|
294 |
|
|
|
295 |
|
|
endmodule // xilinx_ssram
|
296 |
|
|
|
297 |
|
|
// Local Variables:
|
298 |
|
|
// verilog-library-directories:(".")
|
299 |
|
|
// verilog-library-extensions:(".v" ".h")
|
300 |
|
|
// End:
|