1 |
408 |
julius |
//////////////////////////////////////////////////////////////////////
|
2 |
|
|
//// ////
|
3 |
|
|
//// SMII ////
|
4 |
|
|
//// ////
|
5 |
|
|
//// Description ////
|
6 |
|
|
//// Low pin count serial MII ethernet interface ////
|
7 |
|
|
//// ////
|
8 |
|
|
//// To Do: ////
|
9 |
|
|
//// - ////
|
10 |
|
|
//// ////
|
11 |
|
|
//// Author(s): ////
|
12 |
|
|
//// - Michael Unneback, unneback@opencores.org ////
|
13 |
|
|
//// ORSoC AB michael.unneback@orsoc.se ////
|
14 |
|
|
//// - Julius Baxter, julius@orsoc.se ////
|
15 |
|
|
//// ORSoC AB ////
|
16 |
|
|
//// ////
|
17 |
|
|
//////////////////////////////////////////////////////////////////////
|
18 |
|
|
//// ////
|
19 |
|
|
//// Copyright (C) 2009, 2010 Authors and OPENCORES.ORG ////
|
20 |
|
|
//// ////
|
21 |
|
|
//// This source file may be used and distributed without ////
|
22 |
|
|
//// restriction provided that this copyright statement is not ////
|
23 |
|
|
//// removed from the file and that any derivative work contains ////
|
24 |
|
|
//// the original copyright notice and the associated disclaimer. ////
|
25 |
|
|
//// ////
|
26 |
|
|
//// This source file is free software; you can redistribute it ////
|
27 |
|
|
//// and/or modify it under the terms of the GNU Lesser General ////
|
28 |
|
|
//// Public License as published by the Free Software Foundation; ////
|
29 |
|
|
//// either version 2.1 of the License, or (at your option) any ////
|
30 |
|
|
//// later version. ////
|
31 |
|
|
//// ////
|
32 |
|
|
//// This source is distributed in the hope that it will be ////
|
33 |
|
|
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
|
34 |
|
|
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
|
35 |
|
|
//// PURPOSE. See the GNU Lesser General Public License for more ////
|
36 |
|
|
//// details. ////
|
37 |
|
|
//// ////
|
38 |
|
|
//// You should have received a copy of the GNU Lesser General ////
|
39 |
|
|
//// Public License along with this source; if not, download it ////
|
40 |
|
|
//// from http://www.opencores.org/lgpl.shtml ////
|
41 |
|
|
//// ////
|
42 |
|
|
//////////////////////////////////////////////////////////////////////
|
43 |
|
|
`include "synthesis-defines.v"
|
44 |
|
|
`include "orpsoc-defines.v" // To determine synthesis technology.
|
45 |
|
|
module smii_if
|
46 |
|
|
(
|
47 |
|
|
// SMII
|
48 |
|
|
output tx,
|
49 |
|
|
input rx,
|
50 |
|
|
// MII
|
51 |
|
|
// TX
|
52 |
|
|
input [3:0] mtxd,
|
53 |
|
|
input mtxen,
|
54 |
|
|
input mtxerr,
|
55 |
|
|
output mtx_clk,
|
56 |
|
|
// RX
|
57 |
|
|
output [3:0] mrxd,
|
58 |
|
|
output mrxdv,
|
59 |
|
|
output mrxerr,
|
60 |
|
|
output mrx_clk,
|
61 |
|
|
output mcoll,
|
62 |
|
|
output reg mcrs,
|
63 |
|
|
output reg speed,
|
64 |
|
|
output reg duplex,
|
65 |
|
|
output reg link,
|
66 |
|
|
// internal
|
67 |
|
|
input [10:1] tx_smii_state,
|
68 |
|
|
input [10:1] next_tx_smii_state,
|
69 |
|
|
input [10:1] rx_smii_state,
|
70 |
|
|
// clock and reset
|
71 |
|
|
input eth_clk,
|
72 |
|
|
input eth_rst
|
73 |
|
|
);
|
74 |
|
|
|
75 |
|
|
reg [7:0] tx_data_reg;
|
76 |
|
|
reg tx_data_reg_valid;
|
77 |
|
|
reg a0;
|
78 |
|
|
reg state_data;
|
79 |
|
|
|
80 |
|
|
reg [3:0] rx_tmp;
|
81 |
|
|
|
82 |
|
|
reg [3:0] rxd_nib;
|
83 |
|
|
reg rxdv, rxerr;
|
84 |
|
|
|
85 |
|
|
reg jabber;
|
86 |
|
|
|
87 |
|
|
reg [10:1] tx_cnt;
|
88 |
|
|
reg [10:1] rx_cnt;
|
89 |
|
|
|
90 |
|
|
|
91 |
|
|
/////////////////////////////////////////////////
|
92 |
|
|
// Transmit
|
93 |
|
|
|
94 |
|
|
// Tx segment counter when !speed
|
95 |
|
|
always @ (posedge eth_clk or posedge eth_rst)
|
96 |
|
|
if (eth_rst)
|
97 |
|
|
tx_cnt <= 10'b00_0000_0001;
|
98 |
|
|
else if (tx_smii_state[10])
|
99 |
|
|
tx_cnt <= {tx_cnt[9:1],tx_cnt[10]};
|
100 |
|
|
|
101 |
|
|
// MII signals registered in eth_clk domain
|
102 |
|
|
reg txen_r, txerr_r;
|
103 |
|
|
// TX clock generation to the MAC
|
104 |
|
|
reg mtx_clk_gen, mtx_clk_gen_reg,
|
105 |
|
|
mtx_clk_gen_reg2, mtx_clk_gen_reg3,
|
106 |
|
|
mtx_clk_gen_reg4, mtx_clk_gen_reg5,
|
107 |
|
|
mtx_clk_gen_reg6, mtx_clk_gen_reg7,
|
108 |
|
|
tx_first_clk_gen,
|
109 |
|
|
tx_first_clk_reg, tx_first_clk_reg2,
|
110 |
|
|
tx_first_clk_reg3, tx_first_clk_reg4,
|
111 |
|
|
tx_first_clk_reg5, tx_first_clk_reg6,
|
112 |
|
|
tx_first_clk_reg7;
|
113 |
|
|
|
114 |
|
|
// Generate clocks when state is 2, and 7 when transmitting
|
115 |
|
|
// We then sample the MII txen signal, to see if we have a valid data frame
|
116 |
|
|
// coming up. We can do this 2 or 3 clocks after the MII tx clk. If we do it
|
117 |
|
|
// 2 then we allow 2 cycles for our mtxen_r signal to propegate, doubling the
|
118 |
|
|
// period contstraint for the path from mtxen_r to the stuff it controls in
|
119 |
|
|
// eth_clk domain. If we allow 3 from the eth MAC, then all stuff on the
|
120 |
|
|
// eth_clk side of mtxen_r must meet the 125MHz timing.
|
121 |
|
|
//
|
122 |
|
|
// Once the data is sampled at the right times (plenty after they come from
|
123 |
|
|
// the eth MAC, should be no issues there), then it all propegates through
|
124 |
|
|
// relatively various levels of registering, configured so that the signals
|
125 |
|
|
// appear in the tx_bits[] vector at the right time to be registered once
|
126 |
|
|
// more before before having its bits AND-OR selected based on the smii state
|
127 |
|
|
// The final SMII TX bit is generated from a sync counter that is one ahead
|
128 |
|
|
// of the one we output.
|
129 |
|
|
|
130 |
|
|
wire tx_first_clk, tx_second_clk;
|
131 |
|
|
assign tx_first_clk = (tx_smii_state[2] &
|
132 |
|
|
( speed | ( !speed & tx_cnt[10]) ) );
|
133 |
|
|
assign tx_second_clk = (tx_smii_state[7] &
|
134 |
|
|
txen_r & ( speed | ( !speed & tx_cnt[1]) ) );
|
135 |
|
|
|
136 |
|
|
always @(posedge eth_clk)
|
137 |
|
|
if (eth_rst)
|
138 |
|
|
mtx_clk_gen <= 1'b0;
|
139 |
|
|
else if (mtx_clk_gen)
|
140 |
|
|
mtx_clk_gen <= 1'b0;
|
141 |
|
|
// Clock high
|
142 |
|
|
else if (tx_first_clk | tx_second_clk)
|
143 |
|
|
mtx_clk_gen <= 1'b1;
|
144 |
|
|
|
145 |
|
|
always @(posedge eth_clk)
|
146 |
|
|
mtx_clk_gen_reg <= mtx_clk_gen;
|
147 |
|
|
|
148 |
|
|
always @(posedge eth_clk)
|
149 |
|
|
mtx_clk_gen_reg2 <= mtx_clk_gen_reg;
|
150 |
|
|
|
151 |
|
|
always @(posedge eth_clk)
|
152 |
|
|
mtx_clk_gen_reg3 <= mtx_clk_gen_reg2;
|
153 |
|
|
|
154 |
|
|
always @(posedge eth_clk)
|
155 |
|
|
mtx_clk_gen_reg4 <= mtx_clk_gen_reg3;
|
156 |
|
|
|
157 |
|
|
always @(posedge eth_clk)
|
158 |
|
|
mtx_clk_gen_reg5 <= mtx_clk_gen_reg4;
|
159 |
|
|
|
160 |
|
|
always @(posedge eth_clk)
|
161 |
|
|
mtx_clk_gen_reg6 <= mtx_clk_gen_reg5;
|
162 |
|
|
|
163 |
|
|
always @(posedge eth_clk)
|
164 |
|
|
mtx_clk_gen_reg7 <= mtx_clk_gen_reg6;
|
165 |
|
|
|
166 |
|
|
always @(posedge eth_clk)
|
167 |
|
|
tx_first_clk_gen <= tx_first_clk;
|
168 |
|
|
|
169 |
|
|
always @(posedge eth_clk)
|
170 |
|
|
tx_first_clk_reg <= tx_first_clk_gen;
|
171 |
|
|
|
172 |
|
|
always @(posedge eth_clk)
|
173 |
|
|
tx_first_clk_reg2 <= tx_first_clk_reg;
|
174 |
|
|
|
175 |
|
|
always @(posedge eth_clk)
|
176 |
|
|
tx_first_clk_reg3 <= tx_first_clk_reg2;
|
177 |
|
|
|
178 |
|
|
always @(posedge eth_clk)
|
179 |
|
|
tx_first_clk_reg4 <= tx_first_clk_reg3;
|
180 |
|
|
|
181 |
|
|
always @(posedge eth_clk)
|
182 |
|
|
tx_first_clk_reg5 <= tx_first_clk_reg4;
|
183 |
|
|
|
184 |
|
|
always @(posedge eth_clk)
|
185 |
|
|
tx_first_clk_reg6 <= tx_first_clk_reg5;
|
186 |
|
|
|
187 |
|
|
always @(posedge eth_clk)
|
188 |
|
|
tx_first_clk_reg7 <= tx_first_clk_reg6;
|
189 |
|
|
|
190 |
|
|
|
191 |
|
|
// Register MII TX enable
|
192 |
|
|
always @(posedge eth_clk)
|
193 |
|
|
if (eth_rst)
|
194 |
|
|
txen_r <= 1'b0;
|
195 |
|
|
else if (tx_first_clk_reg3)
|
196 |
|
|
txen_r <= mtxen;
|
197 |
|
|
|
198 |
|
|
// Register MII TX error
|
199 |
|
|
always @(posedge eth_clk)
|
200 |
|
|
if (eth_rst)
|
201 |
|
|
txerr_r <= 1'b0;
|
202 |
|
|
else if (tx_first_clk_reg3)
|
203 |
|
|
txerr_r <= mtxerr;
|
204 |
|
|
|
205 |
|
|
// Register indicating if we're going to sample the second nibble of data
|
206 |
|
|
reg tx_nib_second;
|
207 |
|
|
always @(posedge eth_clk)
|
208 |
|
|
if (eth_rst)
|
209 |
|
|
tx_nib_second <= 0;
|
210 |
|
|
else if (mtx_clk_gen_reg4)
|
211 |
|
|
begin
|
212 |
|
|
if (!txen_r)
|
213 |
|
|
tx_nib_second <= 0;
|
214 |
|
|
else
|
215 |
|
|
tx_nib_second <= ~tx_nib_second;
|
216 |
|
|
end
|
217 |
|
|
// Byte register, appropriately storing nibbles as we recieve them from MAC
|
218 |
|
|
reg [7:0] mtxd_r;
|
219 |
|
|
always @(posedge eth_clk)
|
220 |
|
|
if (txen_r & mtx_clk_gen_reg4 & !tx_nib_second)
|
221 |
|
|
mtxd_r[3:0] <= mtxd;
|
222 |
|
|
else if (txen_r & mtx_clk_gen_reg4 & tx_nib_second)
|
223 |
|
|
mtxd_r[7:4] <= mtxd;
|
224 |
|
|
|
225 |
|
|
// Sample our registered version of txen_r when we generate our
|
226 |
|
|
// "first" of the 2 TX clocks per frame.
|
227 |
|
|
reg tx_state_or_data; // 0 = state, 1 = data
|
228 |
|
|
always @ (posedge eth_clk)
|
229 |
|
|
if (eth_rst)
|
230 |
|
|
tx_state_or_data <= 0;
|
231 |
|
|
else if (tx_first_clk_reg4)
|
232 |
|
|
tx_state_or_data <= txen_r;
|
233 |
|
|
|
234 |
|
|
reg [10:1] tx_bits, tx_bits_reg, tx_bits_reg2;
|
235 |
|
|
always @(posedge eth_clk)
|
236 |
|
|
begin
|
237 |
|
|
tx_bits_reg <= tx_bits;
|
238 |
|
|
tx_bits[1] <= txerr_r;
|
239 |
|
|
tx_bits[2] <= tx_state_or_data;
|
240 |
|
|
tx_bits[3] <= (tx_state_or_data) ? mtxd_r[0] : txerr_r;
|
241 |
|
|
tx_bits[4] <= (tx_state_or_data) ? mtxd_r[1] : speed;
|
242 |
|
|
tx_bits[5] <= (tx_state_or_data) ? mtxd_r[2] : duplex;
|
243 |
|
|
tx_bits[6] <= (tx_state_or_data) ? mtxd_r[3] : link;
|
244 |
|
|
tx_bits[7] <= (tx_state_or_data) ? mtxd_r[4] : 0;
|
245 |
|
|
tx_bits[8] <= (tx_state_or_data) ? mtxd_r[5] : 1;
|
246 |
|
|
tx_bits[9] <= (tx_state_or_data) ? mtxd_r[6] : 1;
|
247 |
|
|
tx_bits[10] <= (tx_state_or_data) ? mtxd_r[7] : 1;
|
248 |
|
|
end
|
249 |
|
|
|
250 |
|
|
// Generate tx output bit one clock infront, because we register
|
251 |
|
|
// in the IOB too.
|
252 |
|
|
reg tx_bit;
|
253 |
|
|
always @(posedge eth_clk)
|
254 |
|
|
tx_bit <= |(tx_bits_reg & next_tx_smii_state);
|
255 |
|
|
|
256 |
|
|
assign tx = tx_bit;
|
257 |
|
|
|
258 |
|
|
`ifdef ACTEL
|
259 |
|
|
|
260 |
|
|
wire GND;
|
261 |
|
|
|
262 |
|
|
GND GND_1_net(.Y(GND));
|
263 |
|
|
CLKDLY Inst1(.CLK(mtx_clk_gen), .GL(mtx_clk), .DLYGL0(GND), .DLYGL1(GND),
|
264 |
|
|
.DLYGL2(GND), .DLYGL3(GND), .DLYGL4(GND)) /* synthesis black_box */;
|
265 |
|
|
/*
|
266 |
|
|
gbuf mtx_clk_bufg
|
267 |
|
|
(
|
268 |
|
|
.CLK(mtx_clk_gen),
|
269 |
|
|
.GL(mtx_clk)
|
270 |
|
|
);
|
271 |
|
|
*/
|
272 |
|
|
`else
|
273 |
|
|
assign mtx_clk = mtx_clk_gen;
|
274 |
|
|
`endif
|
275 |
|
|
|
276 |
|
|
/////////////////////////////////////////////////
|
277 |
|
|
// Receive
|
278 |
|
|
|
279 |
|
|
`ifndef SYNTHESIS
|
280 |
|
|
reg [79:0] rx_statename;
|
281 |
|
|
always @* begin
|
282 |
|
|
case (1)
|
283 |
|
|
rx_smii_state[1] :
|
284 |
|
|
rx_statename = "CRS";
|
285 |
|
|
rx_smii_state[2] :
|
286 |
|
|
rx_statename = "RX_DV";
|
287 |
|
|
rx_smii_state[3]:
|
288 |
|
|
rx_statename = "RXD0/RXERR";
|
289 |
|
|
rx_smii_state[4]:
|
290 |
|
|
rx_statename = "RXD1/Fast";
|
291 |
|
|
rx_smii_state[5]:
|
292 |
|
|
rx_statename = "RXD2/Dupl";
|
293 |
|
|
rx_smii_state[6]:
|
294 |
|
|
rx_statename = "RXD3/Link";
|
295 |
|
|
rx_smii_state[7]:
|
296 |
|
|
rx_statename = "RXD4/Jabb";
|
297 |
|
|
rx_smii_state[8]:
|
298 |
|
|
rx_statename = "RXD5/UNV";
|
299 |
|
|
rx_smii_state[9]:
|
300 |
|
|
rx_statename = "RXD6/FCD";
|
301 |
|
|
rx_smii_state[10] :
|
302 |
|
|
rx_statename = "RXD7/AS1";
|
303 |
|
|
default:
|
304 |
|
|
rx_statename = "XXXXXXX";
|
305 |
|
|
endcase // case (1)
|
306 |
|
|
end // always @ *
|
307 |
|
|
`endif
|
308 |
|
|
|
309 |
|
|
reg rxdv_thisframe;
|
310 |
|
|
wire rxdv_lastframe;
|
311 |
|
|
reg rxdv_lastframe_r;
|
312 |
|
|
reg [9:0] rxd_thisframe;
|
313 |
|
|
reg [9:0] rxd_lastframe;
|
314 |
|
|
|
315 |
|
|
// Logic to detect change in ethernet speed
|
316 |
|
|
reg speed_r;
|
317 |
|
|
always @(posedge eth_clk)
|
318 |
|
|
speed_r <= speed;
|
319 |
|
|
|
320 |
|
|
wire speed_edge;
|
321 |
|
|
assign speed_edge = speed_r != speed;
|
322 |
|
|
|
323 |
|
|
|
324 |
|
|
always @ (posedge eth_clk or posedge eth_rst)
|
325 |
|
|
if (eth_rst)
|
326 |
|
|
rx_cnt <= 10'd1;
|
327 |
|
|
// Data coming in, or we've changed from fast to slow ethernet
|
328 |
|
|
else if ((!rxdv_lastframe & rx_smii_state[8] & rxdv_thisframe) | speed_edge)
|
329 |
|
|
rx_cnt[10] <= ~speed; // Will be high if not in 100MBit mode
|
330 |
|
|
else if (rx_smii_state[10]) // wrap
|
331 |
|
|
if (rx_cnt[10])
|
332 |
|
|
rx_cnt[10:1] <= {9'b000000000, ~speed}; // Clears bit when fasteth
|
333 |
|
|
else
|
334 |
|
|
rx_cnt <= {rx_cnt[9:1],1'b0};
|
335 |
|
|
|
336 |
|
|
always @(posedge eth_clk)
|
337 |
|
|
if (rx_smii_state[2])
|
338 |
|
|
rxdv_thisframe <= rx;
|
339 |
|
|
|
340 |
|
|
always @(posedge eth_clk)
|
341 |
|
|
if (rx_smii_state[1])
|
342 |
|
|
mcrs <= rx;
|
343 |
|
|
|
344 |
|
|
always @(posedge eth_clk) // shift register sampling incoming data
|
345 |
|
|
rxd_thisframe <= {rx, rxd_thisframe[9:1]};
|
346 |
|
|
|
347 |
|
|
always @(posedge eth_clk)
|
348 |
|
|
if (rx_smii_state[1])
|
349 |
|
|
rxd_lastframe <= rxd_thisframe;
|
350 |
|
|
|
351 |
|
|
assign rxdv_lastframe = rxd_lastframe[1];
|
352 |
|
|
|
353 |
|
|
// Must remember with rxd_thisframe, data has been registered, so state
|
354 |
|
|
// counter is 1 infront of what we have in it
|
355 |
|
|
|
356 |
|
|
always @(posedge eth_clk)
|
357 |
|
|
if (eth_rst)
|
358 |
|
|
begin
|
359 |
|
|
{rxdv, rxerr, speed, duplex, link, jabber} <= 6'b001110;
|
360 |
|
|
end
|
361 |
|
|
else
|
362 |
|
|
begin
|
363 |
|
|
if (rx_smii_state[10]) // Look at sampled shift reg
|
364 |
|
|
begin
|
365 |
|
|
if ((!rxdv_lastframe)) // !RX DV from last frame
|
366 |
|
|
begin
|
367 |
|
|
rxerr <= rxd_lastframe[2];
|
368 |
|
|
speed <= rxd_lastframe[3];
|
369 |
|
|
duplex <= rxd_lastframe[4];
|
370 |
|
|
link <= rxd_lastframe[5];
|
371 |
|
|
jabber <= rxd_lastframe[6];
|
372 |
|
|
// rxd_thisframe[7] should be 1 if
|
373 |
|
|
end
|
374 |
|
|
end
|
375 |
|
|
end // else: !if(eth_rst)
|
376 |
|
|
|
377 |
|
|
// Latch the nibbles at the appropriate moments
|
378 |
|
|
always @(posedge eth_clk)
|
379 |
|
|
if (rx_smii_state[2])
|
380 |
|
|
rxd_nib <= rxd_lastframe[5:2];
|
381 |
|
|
else if (rx_smii_state[8])
|
382 |
|
|
rxd_nib <= rxd_lastframe[9:6];
|
383 |
|
|
|
384 |
|
|
// Nibble write enables
|
385 |
|
|
reg rx_we_nib0, rx_we_nib1;
|
386 |
|
|
|
387 |
|
|
always @(posedge eth_clk)
|
388 |
|
|
if (eth_rst)
|
389 |
|
|
rx_we_nib0 <= 0;
|
390 |
|
|
else if (rx_smii_state[3] & rxdv_lastframe &
|
391 |
|
|
!(!rxdv_thisframe & rx))
|
392 |
|
|
// Check in state 3, if DV was high for buffered frame (lastframe), and
|
393 |
|
|
// if the incoming frame doesn't negate it with error being signaled
|
394 |
|
|
rx_we_nib0 <= 1;
|
395 |
|
|
else
|
396 |
|
|
rx_we_nib0 <= 0;
|
397 |
|
|
|
398 |
|
|
always @(posedge eth_clk)
|
399 |
|
|
if (eth_rst)
|
400 |
|
|
rx_we_nib1 <= 0;
|
401 |
|
|
else if (rx_smii_state[8] & !(!rxdv_thisframe & (rxd_thisframe[5] | !rx))
|
402 |
|
|
& rxdv_lastframe)
|
403 |
|
|
// Check in state 8, if DV was high last frame, and this frame isn't a
|
404 |
|
|
// status frame indicating either error or not upper nibble valid, in
|
405 |
|
|
// which case we do not generate a WE to the FIFO
|
406 |
|
|
rx_we_nib1 <= 1;
|
407 |
|
|
else
|
408 |
|
|
rx_we_nib1 <= 0;
|
409 |
|
|
|
410 |
|
|
// Pipelining of clocks to MAC, this should run at 125MHz
|
411 |
|
|
reg nib_rx_clock;
|
412 |
|
|
always @(posedge eth_clk)
|
413 |
|
|
nib_rx_clock <= ((rx_smii_state[4] & rx_we_nib0)|(rx_smii_state[9] & rx_we_nib1));
|
414 |
|
|
|
415 |
|
|
// Enable for mrxclk inbetween frame receive
|
416 |
|
|
reg inbetween_rx_clock;
|
417 |
|
|
always @(posedge eth_clk)
|
418 |
|
|
inbetween_rx_clock <= rx_smii_state[4];//(!rxdv_thisframe & !rxdv_lastframe);
|
419 |
|
|
|
420 |
|
|
// Enable to clock the segment in the 10MBit mode, change rx_cnt[x] to alter
|
421 |
|
|
// which of the 10 the segments we use
|
422 |
|
|
reg thissegment_rx_clock;
|
423 |
|
|
always @(posedge eth_clk)
|
424 |
|
|
thissegment_rx_clock <= speed | (rx_cnt[6] & !speed);
|
425 |
|
|
|
426 |
|
|
reg mrx_clk_gen;
|
427 |
|
|
// Receive MII clock generation (very similar to Receive FIFO WE generation)
|
428 |
|
|
// This ends up being only about 20MHz when clocking in data
|
429 |
|
|
always @(posedge eth_clk)
|
430 |
|
|
if (eth_rst)
|
431 |
|
|
mrx_clk_gen <= 0;
|
432 |
|
|
else if (mrx_clk_gen)
|
433 |
|
|
mrx_clk_gen <= 0;
|
434 |
|
|
else if ((nib_rx_clock | inbetween_rx_clock) & thissegment_rx_clock )
|
435 |
|
|
mrx_clk_gen <= 1;
|
436 |
|
|
|
437 |
|
|
`ifdef ACTEL
|
438 |
|
|
|
439 |
|
|
|
440 |
|
|
CLKDLY Inst2(.CLK(mrx_clk_gen), .GL(mrx_clk), .DLYGL0(GND), .DLYGL1(GND),
|
441 |
|
|
.DLYGL2(GND), .DLYGL3(GND), .DLYGL4(GND)) /* synthesis black_box */;
|
442 |
|
|
|
443 |
|
|
/*
|
444 |
|
|
gbuf mrx_clk_bufg
|
445 |
|
|
(
|
446 |
|
|
.CLK(mrx_clk_gen),
|
447 |
|
|
.GL(mrx_clk)
|
448 |
|
|
);
|
449 |
|
|
*/
|
450 |
|
|
`else
|
451 |
|
|
assign mrx_clk = mrx_clk_gen;
|
452 |
|
|
`endif
|
453 |
|
|
|
454 |
|
|
assign mrxd = rxd_nib;
|
455 |
|
|
assign mrxdv = rxdv_lastframe;
|
456 |
|
|
assign mrxerr = rxerr;
|
457 |
|
|
|
458 |
|
|
assign mcoll = mcrs & mtxen & !duplex;
|
459 |
|
|
|
460 |
|
|
endmodule // smii_if
|