1 |
27 |
unneback |
/*
|
2 |
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 2001, 2002 Red Hat, Inc.
|
5 |
|
|
*
|
6 |
|
|
* Created by David Woodhouse <dwmw2@cambridge.redhat.com>
|
7 |
|
|
*
|
8 |
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
9 |
|
|
*
|
10 |
|
|
* $Id: nodemgmt.c,v 1.1.1.1 2004-02-14 13:29:19 phoenix Exp $
|
11 |
|
|
*
|
12 |
|
|
*/
|
13 |
|
|
|
14 |
|
|
#include <linux/kernel.h>
|
15 |
|
|
#include <linux/slab.h>
|
16 |
|
|
#include <linux/mtd/mtd.h>
|
17 |
|
|
#include <linux/compiler.h>
|
18 |
|
|
#include <linux/sched.h> /* For cond_resched() */
|
19 |
|
|
#include "nodelist.h"
|
20 |
|
|
|
21 |
|
|
/**
|
22 |
|
|
* jffs2_reserve_space - request physical space to write nodes to flash
|
23 |
|
|
* @c: superblock info
|
24 |
|
|
* @minsize: Minimum acceptable size of allocation
|
25 |
|
|
* @ofs: Returned value of node offset
|
26 |
|
|
* @len: Returned value of allocation length
|
27 |
|
|
* @prio: Allocation type - ALLOC_{NORMAL,DELETION}
|
28 |
|
|
*
|
29 |
|
|
* Requests a block of physical space on the flash. Returns zero for success
|
30 |
|
|
* and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC
|
31 |
|
|
* or other error if appropriate.
|
32 |
|
|
*
|
33 |
|
|
* If it returns zero, jffs2_reserve_space() also downs the per-filesystem
|
34 |
|
|
* allocation semaphore, to prevent more than one allocation from being
|
35 |
|
|
* active at any time. The semaphore is later released by jffs2_commit_allocation()
|
36 |
|
|
*
|
37 |
|
|
* jffs2_reserve_space() may trigger garbage collection in order to make room
|
38 |
|
|
* for the requested allocation.
|
39 |
|
|
*/
|
40 |
|
|
|
41 |
|
|
static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len);
|
42 |
|
|
|
43 |
|
|
int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio)
|
44 |
|
|
{
|
45 |
|
|
int ret = -EAGAIN;
|
46 |
|
|
int blocksneeded = JFFS2_RESERVED_BLOCKS_WRITE;
|
47 |
|
|
/* align it */
|
48 |
|
|
minsize = PAD(minsize);
|
49 |
|
|
|
50 |
|
|
if (prio == ALLOC_DELETION)
|
51 |
|
|
blocksneeded = JFFS2_RESERVED_BLOCKS_DELETION;
|
52 |
|
|
|
53 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
|
54 |
|
|
down(&c->alloc_sem);
|
55 |
|
|
|
56 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
|
57 |
|
|
|
58 |
|
|
spin_lock(&c->erase_completion_lock);
|
59 |
|
|
|
60 |
|
|
/* this needs a little more thought */
|
61 |
|
|
while(ret == -EAGAIN) {
|
62 |
|
|
while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
|
63 |
|
|
int ret;
|
64 |
|
|
|
65 |
|
|
up(&c->alloc_sem);
|
66 |
|
|
|
67 |
|
|
if (c->dirty_size + c->unchecked_size < c->sector_size) {
|
68 |
|
|
D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < sector size 0x%08x, returning -ENOSPC\n",
|
69 |
|
|
c->dirty_size, c->unchecked_size, c->sector_size));
|
70 |
|
|
spin_unlock(&c->erase_completion_lock);
|
71 |
|
|
return -ENOSPC;
|
72 |
|
|
}
|
73 |
|
|
|
74 |
|
|
D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
|
75 |
|
|
c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
|
76 |
|
|
c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
|
77 |
|
|
spin_unlock(&c->erase_completion_lock);
|
78 |
|
|
|
79 |
|
|
ret = jffs2_garbage_collect_pass(c);
|
80 |
|
|
if (ret)
|
81 |
|
|
return ret;
|
82 |
|
|
|
83 |
|
|
cond_resched();
|
84 |
|
|
|
85 |
|
|
if (signal_pending(current))
|
86 |
|
|
return -EINTR;
|
87 |
|
|
|
88 |
|
|
down(&c->alloc_sem);
|
89 |
|
|
spin_lock(&c->erase_completion_lock);
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
ret = jffs2_do_reserve_space(c, minsize, ofs, len);
|
93 |
|
|
if (ret) {
|
94 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
|
95 |
|
|
}
|
96 |
|
|
}
|
97 |
|
|
spin_unlock(&c->erase_completion_lock);
|
98 |
|
|
if (ret)
|
99 |
|
|
up(&c->alloc_sem);
|
100 |
|
|
return ret;
|
101 |
|
|
}
|
102 |
|
|
|
103 |
|
|
int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len)
|
104 |
|
|
{
|
105 |
|
|
int ret = -EAGAIN;
|
106 |
|
|
minsize = PAD(minsize);
|
107 |
|
|
|
108 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
|
109 |
|
|
|
110 |
|
|
spin_lock(&c->erase_completion_lock);
|
111 |
|
|
while(ret == -EAGAIN) {
|
112 |
|
|
ret = jffs2_do_reserve_space(c, minsize, ofs, len);
|
113 |
|
|
if (ret) {
|
114 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
|
115 |
|
|
}
|
116 |
|
|
}
|
117 |
|
|
spin_unlock(&c->erase_completion_lock);
|
118 |
|
|
return ret;
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
/* Called with alloc sem _and_ erase_completion_lock */
|
122 |
|
|
static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len)
|
123 |
|
|
{
|
124 |
|
|
struct jffs2_eraseblock *jeb = c->nextblock;
|
125 |
|
|
|
126 |
|
|
restart:
|
127 |
|
|
if (jeb && minsize > jeb->free_size) {
|
128 |
|
|
/* Skip the end of this block and file it as having some dirty space */
|
129 |
|
|
/* If there's a pending write to it, flush now */
|
130 |
|
|
if (c->wbuf_len) {
|
131 |
|
|
spin_unlock(&c->erase_completion_lock);
|
132 |
|
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
|
133 |
|
|
jffs2_flush_wbuf(c, 1);
|
134 |
|
|
spin_lock(&c->erase_completion_lock);
|
135 |
|
|
/* We know nobody's going to have changed nextblock. Just continue */
|
136 |
|
|
}
|
137 |
|
|
c->wasted_size += jeb->free_size;
|
138 |
|
|
c->free_size -= jeb->free_size;
|
139 |
|
|
jeb->wasted_size += jeb->free_size;
|
140 |
|
|
jeb->free_size = 0;
|
141 |
|
|
|
142 |
|
|
/* Check, if we have a dirty block now, or if it was dirty already */
|
143 |
|
|
if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
|
144 |
|
|
c->dirty_size += jeb->wasted_size;
|
145 |
|
|
c->wasted_size -= jeb->wasted_size;
|
146 |
|
|
jeb->dirty_size += jeb->wasted_size;
|
147 |
|
|
jeb->wasted_size = 0;
|
148 |
|
|
if (VERYDIRTY(c, jeb->dirty_size)) {
|
149 |
|
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
150 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
151 |
|
|
list_add_tail(&jeb->list, &c->very_dirty_list);
|
152 |
|
|
} else {
|
153 |
|
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
154 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
155 |
|
|
list_add_tail(&jeb->list, &c->dirty_list);
|
156 |
|
|
}
|
157 |
|
|
} else {
|
158 |
|
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
159 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
160 |
|
|
list_add_tail(&jeb->list, &c->clean_list);
|
161 |
|
|
}
|
162 |
|
|
c->nextblock = jeb = NULL;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
if (!jeb) {
|
166 |
|
|
struct list_head *next;
|
167 |
|
|
/* Take the next block off the 'free' list */
|
168 |
|
|
|
169 |
|
|
if (list_empty(&c->free_list)) {
|
170 |
|
|
|
171 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
172 |
|
|
|
173 |
|
|
if (!c->nr_erasing_blocks &&
|
174 |
|
|
!list_empty(&c->erasable_list)) {
|
175 |
|
|
struct jffs2_eraseblock *ejeb;
|
176 |
|
|
|
177 |
|
|
ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
|
178 |
|
|
list_del(&ejeb->list);
|
179 |
|
|
list_add_tail(&ejeb->list, &c->erase_pending_list);
|
180 |
|
|
c->nr_erasing_blocks++;
|
181 |
|
|
jffs2_erase_pending_trigger(c);
|
182 |
|
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n",
|
183 |
|
|
ejeb->offset));
|
184 |
|
|
}
|
185 |
|
|
|
186 |
|
|
if (!c->nr_erasing_blocks &&
|
187 |
|
|
!list_empty(&c->erasable_pending_wbuf_list)) {
|
188 |
|
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
|
189 |
|
|
/* c->nextblock is NULL, no update to c->nextblock allowed */
|
190 |
|
|
spin_unlock(&c->erase_completion_lock);
|
191 |
|
|
jffs2_flush_wbuf(c, 1);
|
192 |
|
|
spin_lock(&c->erase_completion_lock);
|
193 |
|
|
/* Have another go. It'll be on the erasable_list now */
|
194 |
|
|
return -EAGAIN;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
if (!c->nr_erasing_blocks) {
|
198 |
|
|
/* Ouch. We're in GC, or we wouldn't have got here.
|
199 |
|
|
And there's no space left. At all. */
|
200 |
|
|
printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
|
201 |
|
|
c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
|
202 |
|
|
list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
|
203 |
|
|
return -ENOSPC;
|
204 |
|
|
}
|
205 |
|
|
/* Make sure this can't deadlock. Someone has to start the erases
|
206 |
|
|
of erase_pending blocks */
|
207 |
|
|
#ifdef __ECOS
|
208 |
|
|
/* In eCos, we don't have a handy kernel thread doing the erases for
|
209 |
|
|
us. We do them ourselves right now. */
|
210 |
|
|
jffs2_erase_pending_blocks(c);
|
211 |
|
|
#else
|
212 |
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
213 |
|
|
add_wait_queue(&c->erase_wait, &wait);
|
214 |
|
|
D1(printk(KERN_DEBUG "Waiting for erases to complete. erasing_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
|
215 |
|
|
c->nr_erasing_blocks, list_empty(&c->erasable_list)?"yes":"no",
|
216 |
|
|
list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"));
|
217 |
|
|
if (!list_empty(&c->erase_pending_list)) {
|
218 |
|
|
D1(printk(KERN_DEBUG "Triggering pending erases\n"));
|
219 |
|
|
jffs2_erase_pending_trigger(c);
|
220 |
|
|
}
|
221 |
|
|
spin_unlock(&c->erase_completion_lock);
|
222 |
|
|
schedule();
|
223 |
|
|
remove_wait_queue(&c->erase_wait, &wait);
|
224 |
|
|
spin_lock(&c->erase_completion_lock);
|
225 |
|
|
if (signal_pending(current)) {
|
226 |
|
|
return -EINTR;
|
227 |
|
|
}
|
228 |
|
|
#endif
|
229 |
|
|
/* An erase may have failed, decreasing the
|
230 |
|
|
amount of free space available. So we must
|
231 |
|
|
restart from the beginning */
|
232 |
|
|
return -EAGAIN;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
next = c->free_list.next;
|
236 |
|
|
list_del(next);
|
237 |
|
|
c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list);
|
238 |
|
|
c->nr_free_blocks--;
|
239 |
|
|
|
240 |
|
|
if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
|
241 |
|
|
printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
|
242 |
|
|
goto restart;
|
243 |
|
|
}
|
244 |
|
|
}
|
245 |
|
|
/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
|
246 |
|
|
enough space */
|
247 |
|
|
*ofs = jeb->offset + (c->sector_size - jeb->free_size);
|
248 |
|
|
*len = jeb->free_size;
|
249 |
|
|
|
250 |
|
|
if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
|
251 |
|
|
!jeb->first_node->next_in_ino) {
|
252 |
|
|
/* Only node in it beforehand was a CLEANMARKER node (we think).
|
253 |
|
|
So mark it obsolete now that there's going to be another node
|
254 |
|
|
in the block. This will reduce used_size to zero but We've
|
255 |
|
|
already set c->nextblock so that jffs2_mark_node_obsolete()
|
256 |
|
|
won't try to refile it to the dirty_list.
|
257 |
|
|
*/
|
258 |
|
|
spin_unlock(&c->erase_completion_lock);
|
259 |
|
|
jffs2_mark_node_obsolete(c, jeb->first_node);
|
260 |
|
|
spin_lock(&c->erase_completion_lock);
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs));
|
264 |
|
|
return 0;
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
/**
|
268 |
|
|
* jffs2_add_physical_node_ref - add a physical node reference to the list
|
269 |
|
|
* @c: superblock info
|
270 |
|
|
* @new: new node reference to add
|
271 |
|
|
* @len: length of this physical node
|
272 |
|
|
* @dirty: dirty flag for new node
|
273 |
|
|
*
|
274 |
|
|
* Should only be used to report nodes for which space has been allocated
|
275 |
|
|
* by jffs2_reserve_space.
|
276 |
|
|
*
|
277 |
|
|
* Must be called with the alloc_sem held.
|
278 |
|
|
*/
|
279 |
|
|
|
280 |
|
|
int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new)
|
281 |
|
|
{
|
282 |
|
|
struct jffs2_eraseblock *jeb;
|
283 |
|
|
uint32_t len = new->totlen;
|
284 |
|
|
|
285 |
|
|
jeb = &c->blocks[new->flash_offset / c->sector_size];
|
286 |
|
|
D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len));
|
287 |
|
|
#if 1
|
288 |
|
|
if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) {
|
289 |
|
|
printk(KERN_WARNING "argh. node added in wrong place\n");
|
290 |
|
|
jffs2_free_raw_node_ref(new);
|
291 |
|
|
return -EINVAL;
|
292 |
|
|
}
|
293 |
|
|
#endif
|
294 |
|
|
spin_lock(&c->erase_completion_lock);
|
295 |
|
|
|
296 |
|
|
if (!jeb->first_node)
|
297 |
|
|
jeb->first_node = new;
|
298 |
|
|
if (jeb->last_node)
|
299 |
|
|
jeb->last_node->next_phys = new;
|
300 |
|
|
jeb->last_node = new;
|
301 |
|
|
|
302 |
|
|
jeb->free_size -= len;
|
303 |
|
|
c->free_size -= len;
|
304 |
|
|
if (ref_obsolete(new)) {
|
305 |
|
|
jeb->dirty_size += len;
|
306 |
|
|
c->dirty_size += len;
|
307 |
|
|
} else {
|
308 |
|
|
jeb->used_size += len;
|
309 |
|
|
c->used_size += len;
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
if (!jeb->free_size && !jeb->dirty_size) {
|
313 |
|
|
/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
|
314 |
|
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
315 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
316 |
|
|
if (c->wbuf_len) {
|
317 |
|
|
/* Flush the last write in the block if it's outstanding */
|
318 |
|
|
spin_unlock(&c->erase_completion_lock);
|
319 |
|
|
jffs2_flush_wbuf(c, 1);
|
320 |
|
|
spin_lock(&c->erase_completion_lock);
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
list_add_tail(&jeb->list, &c->clean_list);
|
324 |
|
|
c->nextblock = NULL;
|
325 |
|
|
}
|
326 |
|
|
ACCT_SANITY_CHECK(c,jeb);
|
327 |
|
|
D1(ACCT_PARANOIA_CHECK(jeb));
|
328 |
|
|
|
329 |
|
|
spin_unlock(&c->erase_completion_lock);
|
330 |
|
|
|
331 |
|
|
return 0;
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
|
335 |
|
|
void jffs2_complete_reservation(struct jffs2_sb_info *c)
|
336 |
|
|
{
|
337 |
|
|
D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
|
338 |
|
|
jffs2_garbage_collect_trigger(c);
|
339 |
|
|
up(&c->alloc_sem);
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
|
343 |
|
|
{
|
344 |
|
|
struct jffs2_eraseblock *jeb;
|
345 |
|
|
int blocknr;
|
346 |
|
|
struct jffs2_unknown_node n;
|
347 |
|
|
int ret;
|
348 |
|
|
size_t retlen;
|
349 |
|
|
|
350 |
|
|
if(!ref) {
|
351 |
|
|
printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
|
352 |
|
|
return;
|
353 |
|
|
}
|
354 |
|
|
if (ref_obsolete(ref)) {
|
355 |
|
|
D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
|
356 |
|
|
return;
|
357 |
|
|
}
|
358 |
|
|
blocknr = ref->flash_offset / c->sector_size;
|
359 |
|
|
if (blocknr >= c->nr_blocks) {
|
360 |
|
|
printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
|
361 |
|
|
BUG();
|
362 |
|
|
}
|
363 |
|
|
jeb = &c->blocks[blocknr];
|
364 |
|
|
|
365 |
|
|
spin_lock(&c->erase_completion_lock);
|
366 |
|
|
|
367 |
|
|
if (ref_flags(ref) == REF_UNCHECKED) {
|
368 |
|
|
D1(if (unlikely(jeb->unchecked_size < ref->totlen)) {
|
369 |
|
|
printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
|
370 |
|
|
ref->totlen, blocknr, ref->flash_offset, jeb->used_size);
|
371 |
|
|
BUG();
|
372 |
|
|
})
|
373 |
|
|
D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref->totlen));
|
374 |
|
|
jeb->unchecked_size -= ref->totlen;
|
375 |
|
|
c->unchecked_size -= ref->totlen;
|
376 |
|
|
} else {
|
377 |
|
|
D1(if (unlikely(jeb->used_size < ref->totlen)) {
|
378 |
|
|
printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
|
379 |
|
|
ref->totlen, blocknr, ref->flash_offset, jeb->used_size);
|
380 |
|
|
BUG();
|
381 |
|
|
})
|
382 |
|
|
D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref->totlen));
|
383 |
|
|
jeb->used_size -= ref->totlen;
|
384 |
|
|
c->used_size -= ref->totlen;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref->totlen)) && jeb != c->nextblock) {
|
388 |
|
|
D1(printk("Dirtying\n"));
|
389 |
|
|
jeb->dirty_size += ref->totlen + jeb->wasted_size;
|
390 |
|
|
c->dirty_size += ref->totlen + jeb->wasted_size;
|
391 |
|
|
c->wasted_size -= jeb->wasted_size;
|
392 |
|
|
jeb->wasted_size = 0;
|
393 |
|
|
} else {
|
394 |
|
|
D1(printk("Wasting\n"));
|
395 |
|
|
jeb->wasted_size += ref->totlen;
|
396 |
|
|
c->wasted_size += ref->totlen;
|
397 |
|
|
}
|
398 |
|
|
ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
|
399 |
|
|
|
400 |
|
|
ACCT_SANITY_CHECK(c, jeb);
|
401 |
|
|
|
402 |
|
|
D1(ACCT_PARANOIA_CHECK(jeb));
|
403 |
|
|
|
404 |
|
|
if (c->flags & JFFS2_SB_FLAG_MOUNTING) {
|
405 |
|
|
/* Mount in progress. Don't muck about with the block
|
406 |
|
|
lists because they're not ready yet, and don't actually
|
407 |
|
|
obliterate nodes that look obsolete. If they weren't
|
408 |
|
|
marked obsolete on the flash at the time they _became_
|
409 |
|
|
obsolete, there was probably a reason for that. */
|
410 |
|
|
spin_unlock(&c->erase_completion_lock);
|
411 |
|
|
return;
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
if (jeb == c->nextblock) {
|
415 |
|
|
D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
|
416 |
|
|
} else if (!jeb->used_size && !jeb->unchecked_size) {
|
417 |
|
|
if (jeb == c->gcblock) {
|
418 |
|
|
D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
|
419 |
|
|
c->gcblock = NULL;
|
420 |
|
|
} else {
|
421 |
|
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
|
422 |
|
|
list_del(&jeb->list);
|
423 |
|
|
}
|
424 |
|
|
if (c->wbuf_len) {
|
425 |
|
|
D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
|
426 |
|
|
list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
|
427 |
|
|
#if 0 /* This check was added to allow us to find places where we added nodes to the lists
|
428 |
|
|
after dropping the alloc_sem, and it did that just fine. But it also caused us to
|
429 |
|
|
lock the alloc_sem in other places, like clear_inode(), when we wouldn't otherwise
|
430 |
|
|
have needed to. So I suspect it's outlived its usefulness. Thomas? */
|
431 |
|
|
|
432 |
|
|
/* We've changed the rules slightly. After
|
433 |
|
|
writing a node you now mustn't drop the
|
434 |
|
|
alloc_sem before you've finished all the
|
435 |
|
|
list management - this is so that when we
|
436 |
|
|
get here, we know that no other nodes have
|
437 |
|
|
been written, and the above check on wbuf
|
438 |
|
|
is valid - wbuf_len is nonzero IFF the node
|
439 |
|
|
which obsoletes this node is still in the
|
440 |
|
|
wbuf.
|
441 |
|
|
|
442 |
|
|
So we BUG() if that new rule is broken, to
|
443 |
|
|
make sure we catch it and fix it.
|
444 |
|
|
*/
|
445 |
|
|
if (!down_trylock(&c->alloc_sem)) {
|
446 |
|
|
up(&c->alloc_sem);
|
447 |
|
|
printk(KERN_CRIT "jffs2_mark_node_obsolete() called with wbuf active but alloc_sem not locked!\n");
|
448 |
|
|
BUG();
|
449 |
|
|
}
|
450 |
|
|
#endif
|
451 |
|
|
} else {
|
452 |
|
|
if (jiffies & 127) {
|
453 |
|
|
/* Most of the time, we just erase it immediately. Otherwise we
|
454 |
|
|
spend ages scanning it on mount, etc. */
|
455 |
|
|
D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
|
456 |
|
|
list_add_tail(&jeb->list, &c->erase_pending_list);
|
457 |
|
|
c->nr_erasing_blocks++;
|
458 |
|
|
jffs2_erase_pending_trigger(c);
|
459 |
|
|
} else {
|
460 |
|
|
/* Sometimes, however, we leave it elsewhere so it doesn't get
|
461 |
|
|
immediately reused, and we spread the load a bit. */
|
462 |
|
|
D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
|
463 |
|
|
list_add_tail(&jeb->list, &c->erasable_list);
|
464 |
|
|
}
|
465 |
|
|
}
|
466 |
|
|
D1(printk(KERN_DEBUG "Done OK\n"));
|
467 |
|
|
} else if (jeb == c->gcblock) {
|
468 |
|
|
D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
|
469 |
|
|
} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - ref->totlen)) {
|
470 |
|
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
|
471 |
|
|
list_del(&jeb->list);
|
472 |
|
|
D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
|
473 |
|
|
list_add_tail(&jeb->list, &c->dirty_list);
|
474 |
|
|
} else if (VERYDIRTY(c, jeb->dirty_size) &&
|
475 |
|
|
!VERYDIRTY(c, jeb->dirty_size - ref->totlen)) {
|
476 |
|
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
|
477 |
|
|
list_del(&jeb->list);
|
478 |
|
|
D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
|
479 |
|
|
list_add_tail(&jeb->list, &c->very_dirty_list);
|
480 |
|
|
} else {
|
481 |
|
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
|
482 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
spin_unlock(&c->erase_completion_lock);
|
486 |
|
|
|
487 |
|
|
if (!jffs2_can_mark_obsolete(c))
|
488 |
|
|
return;
|
489 |
|
|
if (jffs2_is_readonly(c))
|
490 |
|
|
return;
|
491 |
|
|
|
492 |
|
|
D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
|
493 |
|
|
ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
|
494 |
|
|
if (ret) {
|
495 |
|
|
printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
|
496 |
|
|
return;
|
497 |
|
|
}
|
498 |
|
|
if (retlen != sizeof(n)) {
|
499 |
|
|
printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
|
500 |
|
|
return;
|
501 |
|
|
}
|
502 |
|
|
if (PAD(je32_to_cpu(n.totlen)) != PAD(ref->totlen)) {
|
503 |
|
|
printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen in node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref->totlen);
|
504 |
|
|
return;
|
505 |
|
|
}
|
506 |
|
|
if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
|
507 |
|
|
D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
|
508 |
|
|
return;
|
509 |
|
|
}
|
510 |
|
|
/* XXX FIXME: This is ugly now */
|
511 |
|
|
n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
|
512 |
|
|
ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
|
513 |
|
|
if (ret) {
|
514 |
|
|
printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
|
515 |
|
|
return;
|
516 |
|
|
}
|
517 |
|
|
if (retlen != sizeof(n)) {
|
518 |
|
|
printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
|
519 |
|
|
return;
|
520 |
|
|
}
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
#if CONFIG_JFFS2_FS_DEBUG > 0
|
524 |
|
|
void jffs2_dump_block_lists(struct jffs2_sb_info *c)
|
525 |
|
|
{
|
526 |
|
|
|
527 |
|
|
|
528 |
|
|
printk(KERN_DEBUG "jffs2_dump_block_lists:\n");
|
529 |
|
|
printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size);
|
530 |
|
|
printk(KERN_DEBUG "used_size: %08x\n", c->used_size);
|
531 |
|
|
printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size);
|
532 |
|
|
printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size);
|
533 |
|
|
printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size);
|
534 |
|
|
printk(KERN_DEBUG "free_size: %08x\n", c->free_size);
|
535 |
|
|
printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size);
|
536 |
|
|
printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size);
|
537 |
|
|
printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size);
|
538 |
|
|
printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * JFFS2_RESERVED_BLOCKS_WRITE);
|
539 |
|
|
|
540 |
|
|
if (c->nextblock) {
|
541 |
|
|
printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
542 |
|
|
c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size);
|
543 |
|
|
} else {
|
544 |
|
|
printk(KERN_DEBUG "nextblock: NULL\n");
|
545 |
|
|
}
|
546 |
|
|
if (c->gcblock) {
|
547 |
|
|
printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
548 |
|
|
c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size);
|
549 |
|
|
} else {
|
550 |
|
|
printk(KERN_DEBUG "gcblock: NULL\n");
|
551 |
|
|
}
|
552 |
|
|
if (list_empty(&c->clean_list)) {
|
553 |
|
|
printk(KERN_DEBUG "clean_list: empty\n");
|
554 |
|
|
} else {
|
555 |
|
|
struct list_head *this;
|
556 |
|
|
int numblocks = 0;
|
557 |
|
|
uint32_t dirty = 0;
|
558 |
|
|
|
559 |
|
|
list_for_each(this, &c->clean_list) {
|
560 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
561 |
|
|
numblocks ++;
|
562 |
|
|
dirty += jeb->wasted_size;
|
563 |
|
|
printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
564 |
|
|
}
|
565 |
|
|
printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks);
|
566 |
|
|
}
|
567 |
|
|
if (list_empty(&c->very_dirty_list)) {
|
568 |
|
|
printk(KERN_DEBUG "very_dirty_list: empty\n");
|
569 |
|
|
} else {
|
570 |
|
|
struct list_head *this;
|
571 |
|
|
int numblocks = 0;
|
572 |
|
|
uint32_t dirty = 0;
|
573 |
|
|
|
574 |
|
|
list_for_each(this, &c->very_dirty_list) {
|
575 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
576 |
|
|
numblocks ++;
|
577 |
|
|
dirty += jeb->dirty_size;
|
578 |
|
|
printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
579 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
580 |
|
|
}
|
581 |
|
|
printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
|
582 |
|
|
numblocks, dirty, dirty / numblocks);
|
583 |
|
|
}
|
584 |
|
|
if (list_empty(&c->dirty_list)) {
|
585 |
|
|
printk(KERN_DEBUG "dirty_list: empty\n");
|
586 |
|
|
} else {
|
587 |
|
|
struct list_head *this;
|
588 |
|
|
int numblocks = 0;
|
589 |
|
|
uint32_t dirty = 0;
|
590 |
|
|
|
591 |
|
|
list_for_each(this, &c->dirty_list) {
|
592 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
593 |
|
|
numblocks ++;
|
594 |
|
|
dirty += jeb->dirty_size;
|
595 |
|
|
printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
596 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
597 |
|
|
}
|
598 |
|
|
printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
|
599 |
|
|
numblocks, dirty, dirty / numblocks);
|
600 |
|
|
}
|
601 |
|
|
if (list_empty(&c->erasable_list)) {
|
602 |
|
|
printk(KERN_DEBUG "erasable_list: empty\n");
|
603 |
|
|
} else {
|
604 |
|
|
struct list_head *this;
|
605 |
|
|
|
606 |
|
|
list_for_each(this, &c->erasable_list) {
|
607 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
608 |
|
|
printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
609 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
610 |
|
|
}
|
611 |
|
|
}
|
612 |
|
|
if (list_empty(&c->erasing_list)) {
|
613 |
|
|
printk(KERN_DEBUG "erasing_list: empty\n");
|
614 |
|
|
} else {
|
615 |
|
|
struct list_head *this;
|
616 |
|
|
|
617 |
|
|
list_for_each(this, &c->erasing_list) {
|
618 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
619 |
|
|
printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
620 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
621 |
|
|
}
|
622 |
|
|
}
|
623 |
|
|
if (list_empty(&c->erase_pending_list)) {
|
624 |
|
|
printk(KERN_DEBUG "erase_pending_list: empty\n");
|
625 |
|
|
} else {
|
626 |
|
|
struct list_head *this;
|
627 |
|
|
|
628 |
|
|
list_for_each(this, &c->erase_pending_list) {
|
629 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
630 |
|
|
printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
631 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
632 |
|
|
}
|
633 |
|
|
}
|
634 |
|
|
if (list_empty(&c->erasable_pending_wbuf_list)) {
|
635 |
|
|
printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n");
|
636 |
|
|
} else {
|
637 |
|
|
struct list_head *this;
|
638 |
|
|
|
639 |
|
|
list_for_each(this, &c->erasable_pending_wbuf_list) {
|
640 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
641 |
|
|
printk(KERN_DEBUG "erase_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
642 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
643 |
|
|
}
|
644 |
|
|
}
|
645 |
|
|
if (list_empty(&c->free_list)) {
|
646 |
|
|
printk(KERN_DEBUG "free_list: empty\n");
|
647 |
|
|
} else {
|
648 |
|
|
struct list_head *this;
|
649 |
|
|
|
650 |
|
|
list_for_each(this, &c->free_list) {
|
651 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
652 |
|
|
printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
653 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
654 |
|
|
}
|
655 |
|
|
}
|
656 |
|
|
if (list_empty(&c->bad_list)) {
|
657 |
|
|
printk(KERN_DEBUG "bad_list: empty\n");
|
658 |
|
|
} else {
|
659 |
|
|
struct list_head *this;
|
660 |
|
|
|
661 |
|
|
list_for_each(this, &c->bad_list) {
|
662 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
663 |
|
|
printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
664 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
665 |
|
|
}
|
666 |
|
|
}
|
667 |
|
|
if (list_empty(&c->bad_used_list)) {
|
668 |
|
|
printk(KERN_DEBUG "bad_used_list: empty\n");
|
669 |
|
|
} else {
|
670 |
|
|
struct list_head *this;
|
671 |
|
|
|
672 |
|
|
list_for_each(this, &c->bad_used_list) {
|
673 |
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
674 |
|
|
printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
675 |
|
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
676 |
|
|
}
|
677 |
|
|
}
|
678 |
|
|
}
|
679 |
|
|
#endif /* CONFIG_JFFS2_FS_DEBUG */
|