1 |
27 |
unneback |
//==========================================================================
|
2 |
|
|
//
|
3 |
|
|
// integrator_misc.c
|
4 |
|
|
//
|
5 |
|
|
// HAL misc board support code for ARM INTEGRATOR7
|
6 |
|
|
//
|
7 |
|
|
//==========================================================================
|
8 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
9 |
|
|
// -------------------------------------------
|
10 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
11 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
12 |
|
|
//
|
13 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
14 |
|
|
// the terms of the GNU General Public License as published by the Free
|
15 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
16 |
|
|
//
|
17 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
18 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
19 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
20 |
|
|
// for more details.
|
21 |
|
|
//
|
22 |
|
|
// You should have received a copy of the GNU General Public License along
|
23 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
24 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
25 |
|
|
//
|
26 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
27 |
|
|
// or inline functions from this file, or you compile this file and link it
|
28 |
|
|
// with other works to produce a work based on this file, this file does not
|
29 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
30 |
|
|
// License. However the source code for this file must still be made available
|
31 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
32 |
|
|
//
|
33 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
34 |
|
|
// this file might be covered by the GNU General Public License.
|
35 |
|
|
//
|
36 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
37 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
38 |
|
|
// -------------------------------------------
|
39 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
40 |
|
|
//==========================================================================
|
41 |
|
|
//#####DESCRIPTIONBEGIN####
|
42 |
|
|
//
|
43 |
|
|
// Author(s): David A Rusling
|
44 |
|
|
// Contributors: Philippe Robin
|
45 |
|
|
// Date: November 7, 2000
|
46 |
|
|
// Purpose: HAL board support
|
47 |
|
|
// Description: Implementations of HAL board interfaces
|
48 |
|
|
//
|
49 |
|
|
//####DESCRIPTIONEND####
|
50 |
|
|
//
|
51 |
|
|
//===========================================================================*/
|
52 |
|
|
|
53 |
|
|
#include <pkgconf/hal.h>
|
54 |
|
|
|
55 |
|
|
#include <cyg/infra/cyg_type.h> // base types
|
56 |
|
|
#include <cyg/infra/cyg_trac.h> // tracing macros
|
57 |
|
|
#include <cyg/infra/cyg_ass.h> // assertion macros
|
58 |
|
|
|
59 |
|
|
#include <cyg/hal/hal_io.h> // IO macros
|
60 |
|
|
#include <cyg/hal/hal_arch.h> // Register state info
|
61 |
|
|
#include <cyg/hal/hal_diag.h>
|
62 |
|
|
#include <cyg/hal/hal_intr.h> // necessary?
|
63 |
|
|
#include <cyg/hal/hal_integrator.h>
|
64 |
|
|
|
65 |
|
|
/*------------------------------------------------------------------------*/
|
66 |
|
|
// On-board timer
|
67 |
|
|
/*------------------------------------------------------------------------*/
|
68 |
|
|
|
69 |
|
|
// forward declarations
|
70 |
|
|
void hal_if_init(void);
|
71 |
|
|
|
72 |
|
|
// declarations
|
73 |
|
|
static cyg_uint32 _period;
|
74 |
|
|
|
75 |
|
|
void hal_clock_initialize(cyg_uint32 period)
|
76 |
|
|
{
|
77 |
|
|
//diag_init(); diag_printf("%s(%d)\n", __PRETTY_FUNCTION__, period);
|
78 |
|
|
//diag_printf("psr = %x\n", psr());
|
79 |
|
|
HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CONTROL, CTL_DISABLE); // Turn off
|
80 |
|
|
HAL_WRITE_UINT32(CYG_DEVICE_TIMER_LOAD, period);
|
81 |
|
|
HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CONTROL,
|
82 |
|
|
CTL_ENABLE | CTL_PERIODIC | CTL_SCALE_16);
|
83 |
|
|
_period = period;
|
84 |
|
|
}
|
85 |
|
|
|
86 |
|
|
void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period)
|
87 |
|
|
{
|
88 |
|
|
//diag_init(); diag_printf("%s\n", __PRETTY_FUNCTION__);
|
89 |
|
|
HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CLEAR, 0);
|
90 |
|
|
_period = period;
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
void hal_clock_read(cyg_uint32 *pvalue)
|
94 |
|
|
{
|
95 |
|
|
cyg_uint32 value;
|
96 |
|
|
// diag_init(); diag_printf("%s\n", __PRETTY_FUNCTION__);
|
97 |
|
|
HAL_READ_UINT32(CYG_DEVICE_TIMER_CURRENT, value);
|
98 |
|
|
value &= 0xFFFF;
|
99 |
|
|
*pvalue = _period - (value & 0xFFFF); // Note: counter is only 16 bits
|
100 |
|
|
// and decreases
|
101 |
|
|
}
|
102 |
|
|
|
103 |
|
|
// Delay for some usecs.
|
104 |
|
|
void hal_delay_us(cyg_uint32 delay)
|
105 |
|
|
{
|
106 |
|
|
#if 0
|
107 |
|
|
int i;
|
108 |
|
|
for( i = 0; i < delay; i++ );
|
109 |
|
|
|
110 |
|
|
#else
|
111 |
|
|
cyg_uint32 now, last, diff, ticks;
|
112 |
|
|
|
113 |
|
|
// The timer actually runs at 1.25 ticks per micrsecond.
|
114 |
|
|
// Adjust the supplied delay to compensate.
|
115 |
|
|
|
116 |
|
|
delay *= 4;
|
117 |
|
|
delay /= 5;
|
118 |
|
|
|
119 |
|
|
hal_clock_read(&last);
|
120 |
|
|
diff = ticks = 0;
|
121 |
|
|
|
122 |
|
|
while (delay > ticks) {
|
123 |
|
|
hal_clock_read(&now);
|
124 |
|
|
|
125 |
|
|
// Cope with wrap-around of timer
|
126 |
|
|
if (now < last)
|
127 |
|
|
diff = ((_period - last) + now);
|
128 |
|
|
else
|
129 |
|
|
diff = (now - last);
|
130 |
|
|
|
131 |
|
|
last = now;
|
132 |
|
|
|
133 |
|
|
ticks += diff;
|
134 |
|
|
}
|
135 |
|
|
#endif
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
#if defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM7)
|
140 |
|
|
void hal_hardware_init(void)
|
141 |
|
|
#elif defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM9)
|
142 |
|
|
void plf_hardware_init(void)
|
143 |
|
|
#endif
|
144 |
|
|
{
|
145 |
|
|
// Any hardware/platform initialization that needs to be done.
|
146 |
|
|
|
147 |
|
|
// Clear all interrupt sources
|
148 |
|
|
HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableClear, 0xFFFF);
|
149 |
|
|
|
150 |
|
|
#ifndef CYGFUN_HAL_COMMON_KERNEL_SUPPORT
|
151 |
|
|
HAL_CLOCK_INITIALIZE( CYGNUM_HAL_RTC_PERIOD );
|
152 |
|
|
#endif
|
153 |
|
|
|
154 |
|
|
// FIXME: The line with the thumb check is a hack, allowing
|
155 |
|
|
// the farm to run test. Problem is that virtual vector table
|
156 |
|
|
// API needs to be ARM/Thumb consistent. Will fix later.
|
157 |
|
|
#if !defined(__thumb__) && !defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM9)
|
158 |
|
|
// Set up eCos/ROM interfaces
|
159 |
|
|
hal_if_init();
|
160 |
|
|
#endif
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
//
|
164 |
|
|
// This routine is called to respond to a hardware interrupt (IRQ). It
|
165 |
|
|
// should interrogate the hardware and return the IRQ vector number.
|
166 |
|
|
|
167 |
|
|
int hal_IRQ_handler(void)
|
168 |
|
|
{
|
169 |
|
|
// Do hardware-level IRQ handling
|
170 |
|
|
int irq_status, vector;
|
171 |
|
|
HAL_READ_UINT32(CYG_DEVICE_IRQ_Status, irq_status);
|
172 |
|
|
//diag_init(); diag_printf("IRQ status: 0x%x\n", irq_status);
|
173 |
|
|
for (vector = 1; vector <= 16; vector++) {
|
174 |
|
|
if (irq_status & (1<<vector)) return vector;
|
175 |
|
|
}
|
176 |
|
|
return -1 ; // This shouldn't happen!
|
177 |
|
|
}
|
178 |
|
|
|
179 |
|
|
//
|
180 |
|
|
// Interrupt control
|
181 |
|
|
//
|
182 |
|
|
|
183 |
|
|
void hal_interrupt_mask(int vector)
|
184 |
|
|
{
|
185 |
|
|
//diag_init(); diag_printf("hal_interrupt_mask(%d)\n", vector);
|
186 |
|
|
HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableClear, 1<<vector);
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
#if 0
|
190 |
|
|
void hal_interrupt_status(void)
|
191 |
|
|
{
|
192 |
|
|
int irq_status, irq_enable, timer_status, timer_value, timer_load;
|
193 |
|
|
HAL_READ_UINT32(CYG_DEVICE_IRQ_Status, irq_status);
|
194 |
|
|
HAL_READ_UINT32(CYG_DEVICE_IRQ_Enable, irq_enable);
|
195 |
|
|
HAL_READ_UINT32(CYG_DEVICE_TIMER_LOAD, timer_load);
|
196 |
|
|
HAL_READ_UINT32(CYG_DEVICE_TIMER_CURRENT, timer_value);
|
197 |
|
|
HAL_READ_UINT32(CYG_DEVICE_TIMER_CONTROL, timer_status);
|
198 |
|
|
diag_printf("Interrupt: IRQ: %x.%x, TIMER: %x.%x.%x, psr: %x\n",
|
199 |
|
|
irq_status, irq_enable, timer_status, timer_value,
|
200 |
|
|
timer_load, psr());
|
201 |
|
|
}
|
202 |
|
|
#endif
|
203 |
|
|
|
204 |
|
|
void hal_interrupt_unmask(int vector)
|
205 |
|
|
{
|
206 |
|
|
//diag_init(); diag_printf("hal_interrupt_unmask(%d)\n", vector);
|
207 |
|
|
HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableSet, 1<<vector);
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
void hal_interrupt_acknowledge(int vector)
|
211 |
|
|
{
|
212 |
|
|
//diag_init(); diag_printf("%s(%d)\n", __PRETTY_FUNCTION__, vector);
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
void hal_interrupt_configure(int vector, int level, int up)
|
216 |
|
|
{
|
217 |
|
|
//diag_init(); diag_printf("%s(%d,%d,%d)\n", __PRETTY_FUNCTION__, vector, level, up);
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
void hal_interrupt_set_level(int vector, int level)
|
221 |
|
|
{
|
222 |
|
|
//diag_init(); diag_printf("%s(%d,%d)\n", __PRETTY_FUNCTION__, vector, level);
|
223 |
|
|
}
|
224 |
|
|
|
225 |
|
|
void hal_show_IRQ(int vector, int data, int handler)
|
226 |
|
|
{
|
227 |
|
|
// diag_printf("IRQ - vector: %x, data: %x, handler: %x\n", vector, data, handler);
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/*---------------------------------------------------------------------------*/
|
231 |
|
|
|
232 |
|
|
__externC void cyg_plf_pci_init(void)
|
233 |
|
|
{
|
234 |
|
|
// Only do this for non-RAM startups. If we do it during RAM
|
235 |
|
|
// startup and we are using the ethernet for debugging, this kills
|
236 |
|
|
// the ethernet controller.
|
237 |
|
|
#ifndef CYG_HAL_STARTUP_RAM
|
238 |
|
|
|
239 |
|
|
volatile int i, j;
|
240 |
|
|
|
241 |
|
|
/* setting this register will take the V3 out of reset */
|
242 |
|
|
|
243 |
|
|
*(volatile cyg_uint32 *)(INTEGRATOR_SC_PCIENABLE) = 1;
|
244 |
|
|
|
245 |
|
|
/* wait a few usecs to settle the device and the PCI bus */
|
246 |
|
|
|
247 |
|
|
for (i = 0; i < 100 ; i++)
|
248 |
|
|
j = i + 1;
|
249 |
|
|
|
250 |
|
|
/* Now write the Base I/O Address Word to V3_BASE + 0x6C */
|
251 |
|
|
|
252 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_IO_BASE) = (cyg_uint16)(V3_BASE >> 16);
|
253 |
|
|
|
254 |
|
|
do {
|
255 |
|
|
*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA) = 0xAA;
|
256 |
|
|
*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA + 4) = 0x55;
|
257 |
|
|
} while (*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA) != 0xAA ||
|
258 |
|
|
*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA + 4) != 0x55);
|
259 |
|
|
|
260 |
|
|
/* Make sure that V3 register access is not locked, if it is, unlock it */
|
261 |
|
|
|
262 |
|
|
if ((*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) & V3_SYSTEM_M_LOCK)
|
263 |
|
|
== V3_SYSTEM_M_LOCK)
|
264 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) = 0xA05F;
|
265 |
|
|
|
266 |
|
|
/* Ensure that the slave accesses from PCI are disabled while we */
|
267 |
|
|
/* setup windows */
|
268 |
|
|
|
269 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) &=
|
270 |
|
|
~(V3_COMMAND_M_MEM_EN | V3_COMMAND_M_IO_EN);
|
271 |
|
|
|
272 |
|
|
/* Clear RST_OUT to 0; keep the PCI bus in reset until we've finished */
|
273 |
|
|
|
274 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) &= ~V3_SYSTEM_M_RST_OUT;
|
275 |
|
|
|
276 |
|
|
/* Make all accesses from PCI space retry until we're ready for them */
|
277 |
|
|
|
278 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG) |= V3_PCI_CFG_M_RETRY_EN;
|
279 |
|
|
|
280 |
|
|
/* Set up any V3 PCI Configuration Registers that we absolutely have to */
|
281 |
|
|
/* LB_CFG controls Local Bus protocol. */
|
282 |
|
|
/* Enable LocalBus byte strobes for READ accesses too. */
|
283 |
|
|
/* set bit 7 BE_IMODE and bit 6 BE_OMODE */
|
284 |
|
|
|
285 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_CFG) |= 0x0C0;
|
286 |
|
|
|
287 |
|
|
/* PCI_CMD controls overall PCI operation. */
|
288 |
|
|
/* Enable PCI bus master. */
|
289 |
|
|
|
290 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) |= 0x04;
|
291 |
|
|
|
292 |
|
|
/* PCI_MAP0 controls where the PCI to CPU memory window is on Local Bus*/
|
293 |
|
|
|
294 |
|
|
*(volatile cyg_uint32 *)(V3_BASE + V3_PCI_MAP0) = (INTEGRATOR_BOOT_ROM_BASE) |
|
295 |
|
|
(V3_PCI_MAP_M_ADR_SIZE_512M |
|
296 |
|
|
V3_PCI_MAP_M_REG_EN |
|
297 |
|
|
V3_PCI_MAP_M_ENABLE);
|
298 |
|
|
|
299 |
|
|
/* PCI_BASE0 is the PCI address of the start of the window */
|
300 |
|
|
|
301 |
|
|
*(volatile cyg_uint32 *)(V3_BASE + V3_PCI_BASE0) = INTEGRATOR_BOOT_ROM_BASE;
|
302 |
|
|
|
303 |
|
|
/* PCI_MAP1 is LOCAL address of the start of the window */
|
304 |
|
|
|
305 |
|
|
*(volatile cyg_uint32 *)(V3_BASE + V3_PCI_MAP1) = (INTEGRATOR_HDR0_SDRAM_BASE) |
|
306 |
|
|
(V3_PCI_MAP_M_ADR_SIZE_1024M | V3_PCI_MAP_M_REG_EN |
|
307 |
|
|
V3_PCI_MAP_M_ENABLE);
|
308 |
|
|
|
309 |
|
|
/* PCI_BASE1 is the PCI address of the start of the window */
|
310 |
|
|
|
311 |
|
|
*(volatile cyg_uint32 *)(V3_BASE + V3_PCI_BASE1) = INTEGRATOR_HDR0_SDRAM_BASE;
|
312 |
|
|
|
313 |
|
|
/* Set up the windows from local bus memory into PCI configuration, */
|
314 |
|
|
/* I/O and Memory. */
|
315 |
|
|
/* PCI I/O, LB_BASE2 and LB_MAP2 are used exclusively for this. */
|
316 |
|
|
|
317 |
|
|
*(volatile cyg_uint16 *)(V3_BASE +V3_LB_BASE2) =
|
318 |
|
|
((CPU_PCI_IO_ADRS >> 24) << 8) | V3_LB_BASE_M_ENABLE;
|
319 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP2) = 0;
|
320 |
|
|
|
321 |
|
|
/* PCI Configuration, use LB_BASE1/LB_MAP1. */
|
322 |
|
|
|
323 |
|
|
/* PCI Memory use LB_BASE0/LB_MAP0 and LB_BASE1/LB_MAP1 */
|
324 |
|
|
/* Map first 256Mbytes as non-prefetchable via BASE0/MAP0 */
|
325 |
|
|
/* (INTEGRATOR_PCI_BASE == PCI_MEM_BASE) */
|
326 |
|
|
|
327 |
|
|
*(volatile cyg_uint32 *)(V3_BASE + V3_LB_BASE0) =
|
328 |
|
|
INTEGRATOR_PCI_BASE | (0x80 | V3_LB_BASE_M_ENABLE);
|
329 |
|
|
|
330 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP0) =
|
331 |
|
|
((INTEGRATOR_PCI_BASE >> 20) << 0x4) | 0x0006;
|
332 |
|
|
|
333 |
|
|
/* Map second 256 Mbytes as prefetchable via BASE1/MAP1 */
|
334 |
|
|
|
335 |
|
|
*(volatile cyg_uint32 *)(V3_BASE + V3_LB_BASE1) =
|
336 |
|
|
INTEGRATOR_PCI_BASE | (0x84 | V3_LB_BASE_M_ENABLE);
|
337 |
|
|
|
338 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP1) =
|
339 |
|
|
(((INTEGRATOR_PCI_BASE + SZ_256M) >> 20) << 4) | 0x0006;
|
340 |
|
|
|
341 |
|
|
/* Allow accesses to PCI Configuration space */
|
342 |
|
|
/* and set up A1, A0 for type 1 config cycles */
|
343 |
|
|
|
344 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG) =
|
345 |
|
|
((*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG)) &
|
346 |
|
|
~(V3_PCI_CFG_M_RETRY_EN | V3_PCI_CFG_M_AD_LOW1) ) |
|
347 |
|
|
V3_PCI_CFG_M_AD_LOW0;
|
348 |
|
|
|
349 |
|
|
/* now we can allow in PCI MEMORY accesses */
|
350 |
|
|
|
351 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) =
|
352 |
|
|
(*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD)) | V3_COMMAND_M_MEM_EN;
|
353 |
|
|
|
354 |
|
|
/* Set RST_OUT to take the PCI bus is out of reset, PCI devices can */
|
355 |
|
|
/* initialise and lock the V3 system register so that no one else */
|
356 |
|
|
/* can play with it */
|
357 |
|
|
|
358 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) =
|
359 |
|
|
(*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_RST_OUT;
|
360 |
|
|
|
361 |
|
|
*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) =
|
362 |
|
|
(*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_LOCK;
|
363 |
|
|
|
364 |
|
|
#endif
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
/*---------------------------------------------------------------------------*/
|
368 |
|
|
/* End of hal_misc.c */
|