1 |
27 |
unneback |
//==========================================================================
|
2 |
|
|
//
|
3 |
|
|
// sa11x0_misc.c
|
4 |
|
|
//
|
5 |
|
|
// HAL misc board support code for StrongARM SA11x0
|
6 |
|
|
//
|
7 |
|
|
//==========================================================================
|
8 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
9 |
|
|
// -------------------------------------------
|
10 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
11 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
12 |
|
|
//
|
13 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
14 |
|
|
// the terms of the GNU General Public License as published by the Free
|
15 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
16 |
|
|
//
|
17 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
18 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
19 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
20 |
|
|
// for more details.
|
21 |
|
|
//
|
22 |
|
|
// You should have received a copy of the GNU General Public License along
|
23 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
24 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
25 |
|
|
//
|
26 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
27 |
|
|
// or inline functions from this file, or you compile this file and link it
|
28 |
|
|
// with other works to produce a work based on this file, this file does not
|
29 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
30 |
|
|
// License. However the source code for this file must still be made available
|
31 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
32 |
|
|
//
|
33 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
34 |
|
|
// this file might be covered by the GNU General Public License.
|
35 |
|
|
//
|
36 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
37 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
38 |
|
|
// -------------------------------------------
|
39 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
40 |
|
|
//==========================================================================
|
41 |
|
|
//#####DESCRIPTIONBEGIN####
|
42 |
|
|
//
|
43 |
|
|
// Author(s): gthomas
|
44 |
|
|
// Contributors: hmt
|
45 |
|
|
// Travis C. Furrer <furrer@mit.edu>
|
46 |
|
|
// Date: 2000-05-08
|
47 |
|
|
// Purpose: HAL board support
|
48 |
|
|
// Description: Implementations of HAL board interfaces
|
49 |
|
|
//
|
50 |
|
|
//####DESCRIPTIONEND####
|
51 |
|
|
//
|
52 |
|
|
//========================================================================*/
|
53 |
|
|
|
54 |
|
|
#include <pkgconf/hal.h>
|
55 |
|
|
#include <pkgconf/system.h>
|
56 |
|
|
#include CYGBLD_HAL_PLATFORM_H
|
57 |
|
|
|
58 |
|
|
#include <cyg/infra/cyg_type.h> // base types
|
59 |
|
|
#include <cyg/infra/cyg_trac.h> // tracing macros
|
60 |
|
|
#include <cyg/infra/cyg_ass.h> // assertion macros
|
61 |
|
|
|
62 |
|
|
#include <cyg/hal/hal_misc.h> // Size constants
|
63 |
|
|
#include <cyg/hal/hal_io.h> // IO macros
|
64 |
|
|
#include <cyg/hal/hal_arch.h> // Register state info
|
65 |
|
|
#include <cyg/hal/hal_diag.h>
|
66 |
|
|
#include <cyg/hal/hal_intr.h> // Interrupt names
|
67 |
|
|
#include <cyg/hal/hal_cache.h> // Cache control
|
68 |
|
|
#include <cyg/hal/hal_sa11x0.h> // Hardware definitions
|
69 |
|
|
#include <cyg/hal/hal_mm.h> // MMap table definitions
|
70 |
|
|
|
71 |
|
|
#include <cyg/infra/diag.h> // diag_printf
|
72 |
|
|
|
73 |
|
|
// Most initialization has already been done before we get here.
|
74 |
|
|
// All we do here is set up the interrupt environment.
|
75 |
|
|
// FIXME: some of the stuff in hal_platform_setup could be moved here.
|
76 |
|
|
|
77 |
|
|
externC void plf_hardware_init(void);
|
78 |
|
|
|
79 |
|
|
void hal_hardware_init(void)
|
80 |
|
|
{
|
81 |
|
|
// Mask all interrupts
|
82 |
|
|
*SA11X0_ICMR = 0;
|
83 |
|
|
|
84 |
|
|
// Make all interrupts do IRQ and not FIQ
|
85 |
|
|
// FIXME: Change this if you use FIQs.
|
86 |
|
|
*SA11X0_ICLR = 0;
|
87 |
|
|
|
88 |
|
|
// Prevent masked interrupts from bringing us out of idle mode
|
89 |
|
|
*SA11X0_ICCR = 1;
|
90 |
|
|
|
91 |
|
|
// Disable all GPIO interrupt sources
|
92 |
|
|
*SA11X0_GPIO_RISING_EDGE_DETECT = 0;
|
93 |
|
|
*SA11X0_GPIO_FALLING_EDGE_DETECT = 0;
|
94 |
|
|
*SA11X0_GPIO_EDGE_DETECT_STATUS = 0x0FFFFFFF;
|
95 |
|
|
|
96 |
|
|
// Perform any platform specific initializations
|
97 |
|
|
plf_hardware_init();
|
98 |
|
|
|
99 |
|
|
// Let the "OS" counter run
|
100 |
|
|
*SA11X0_OSCR = 0;
|
101 |
|
|
*SA11X0_OSMR0 = 0;
|
102 |
|
|
|
103 |
|
|
// Set up eCos/ROM interfaces
|
104 |
|
|
hal_if_init();
|
105 |
|
|
|
106 |
|
|
// Enable caches
|
107 |
|
|
HAL_DCACHE_ENABLE();
|
108 |
|
|
HAL_ICACHE_ENABLE();
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
// -------------------------------------------------------------------------
|
112 |
|
|
static cyg_uint32 clock_period;
|
113 |
|
|
|
114 |
|
|
void hal_clock_initialize(cyg_uint32 period)
|
115 |
|
|
{
|
116 |
|
|
// Load match value
|
117 |
|
|
*SA11X0_OSMR0 = period;
|
118 |
|
|
clock_period = period;
|
119 |
|
|
|
120 |
|
|
// Start the counter
|
121 |
|
|
*SA11X0_OSCR = 0;
|
122 |
|
|
|
123 |
|
|
// Clear any pending interrupt
|
124 |
|
|
*SA11X0_OSSR = SA11X0_OSSR_TIMER0;
|
125 |
|
|
|
126 |
|
|
// Enable timer 0 interrupt
|
127 |
|
|
*SA11X0_OIER |= SA11X0_OIER_TIMER0;
|
128 |
|
|
|
129 |
|
|
// Unmask timer 0 interrupt
|
130 |
|
|
HAL_INTERRUPT_UNMASK( CYGNUM_HAL_INTERRUPT_TIMER0 );
|
131 |
|
|
|
132 |
|
|
// That's all.
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
// This routine is called during a clock interrupt.
|
136 |
|
|
|
137 |
|
|
// Define this if you want to ensure that the clock is perfect (i.e. does
|
138 |
|
|
// not drift). One reason to leave it turned off is that it costs some
|
139 |
|
|
// us per system clock interrupt for this maintenance.
|
140 |
|
|
#undef COMPENSATE_FOR_CLOCK_DRIFT
|
141 |
|
|
|
142 |
|
|
void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period)
|
143 |
|
|
{
|
144 |
|
|
#ifdef COMPENSATE_FOR_CLOCK_DRIFT
|
145 |
|
|
cyg_uint32 next = *SA11X0_OSMR0 + period; // Next interrupt time
|
146 |
|
|
*SA11X0_OSSR = SA11X0_OSSR_TIMER0; // Clear any pending interrupt
|
147 |
|
|
*SA11X0_OSMR0 = next; // Load new match value
|
148 |
|
|
{
|
149 |
|
|
cyg_uint32 ctr = *SA11X0_OSCR;
|
150 |
|
|
clock_period = next - ctr;
|
151 |
|
|
if ((clock_period - 1) >= period) { // Adjust for missed interrupts
|
152 |
|
|
*SA11X0_OSMR0 = ctr + period;
|
153 |
|
|
*SA11X0_OSSR = SA11X0_OSSR_TIMER0; // Clear pending interrupt
|
154 |
|
|
clock_period = period;
|
155 |
|
|
}
|
156 |
|
|
}
|
157 |
|
|
#else
|
158 |
|
|
*SA11X0_OSMR0 = *SA11X0_OSCR + period; // Load new match value
|
159 |
|
|
*SA11X0_OSSR = SA11X0_OSSR_TIMER0; // Clear any pending interrupt
|
160 |
|
|
#endif
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
// Read the current value of the clock, returning the number of hardware
|
164 |
|
|
// "ticks" that have occurred (i.e. how far away the current value is from
|
165 |
|
|
// the start)
|
166 |
|
|
|
167 |
|
|
// Note: The "contract" for this function is that the value is the number
|
168 |
|
|
// of hardware clocks that have happened since the last interrupt (i.e.
|
169 |
|
|
// when it was reset). This value is used to measure interrupt latencies.
|
170 |
|
|
// However, since the hardware counter runs freely, this routine computes
|
171 |
|
|
// the difference between the current clock period and the number of hardware
|
172 |
|
|
// ticks left before the next timer interrupt.
|
173 |
|
|
void hal_clock_read(cyg_uint32 *pvalue)
|
174 |
|
|
{
|
175 |
|
|
int orig;
|
176 |
|
|
HAL_DISABLE_INTERRUPTS(orig);
|
177 |
|
|
*pvalue = clock_period + *SA11X0_OSCR - *SA11X0_OSMR0;
|
178 |
|
|
HAL_RESTORE_INTERRUPTS(orig);
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
// This is to cope with the test read used by tm_basic with
|
182 |
|
|
// CYGVAR_KERNEL_COUNTERS_CLOCK_LATENCY defined; we read the count ASAP
|
183 |
|
|
// in the ISR, *before* resetting the clock. Which returns 1tick +
|
184 |
|
|
// latency if we just use plain hal_clock_read().
|
185 |
|
|
void hal_clock_latency(cyg_uint32 *pvalue)
|
186 |
|
|
{
|
187 |
|
|
int orig;
|
188 |
|
|
HAL_DISABLE_INTERRUPTS(orig);
|
189 |
|
|
*pvalue = *SA11X0_OSCR - *SA11X0_OSMR0;
|
190 |
|
|
HAL_RESTORE_INTERRUPTS(orig);
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
//
|
194 |
|
|
// Delay for some number of micro-seconds
|
195 |
|
|
//
|
196 |
|
|
void hal_delay_us(cyg_int32 usecs)
|
197 |
|
|
{
|
198 |
|
|
cyg_uint32 val = 0;
|
199 |
|
|
cyg_uint32 ctr = *SA11X0_OSCR;
|
200 |
|
|
while (usecs-- > 0) {
|
201 |
|
|
do {
|
202 |
|
|
if (ctr != *SA11X0_OSCR) {
|
203 |
|
|
val += 271267; // 271267ps (3.6865Mhz -> 271.267ns)
|
204 |
|
|
++ctr;
|
205 |
|
|
}
|
206 |
|
|
} while (val < 1000000);
|
207 |
|
|
val -= 1000000;
|
208 |
|
|
}
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
// -------------------------------------------------------------------------
|
212 |
|
|
|
213 |
|
|
// This routine is called to respond to a hardware interrupt (IRQ). It
|
214 |
|
|
// should interrogate the hardware and return the IRQ vector number.
|
215 |
|
|
int hal_IRQ_handler(void)
|
216 |
|
|
{
|
217 |
|
|
cyg_uint32 sources, index;
|
218 |
|
|
|
219 |
|
|
#ifdef HAL_EXTENDED_IRQ_HANDLER
|
220 |
|
|
// Use platform specific IRQ handler, if defined
|
221 |
|
|
// Note: this macro should do a 'return' with the appropriate
|
222 |
|
|
// interrupt number if such an extended interrupt exists. The
|
223 |
|
|
// assumption is that the line after the macro starts 'normal' processing.
|
224 |
|
|
HAL_EXTENDED_IRQ_HANDLER(index);
|
225 |
|
|
#endif
|
226 |
|
|
|
227 |
|
|
#if 0 // test FIQ and print alert if active - really for debugging
|
228 |
|
|
sources = *SA11X0_ICFP;
|
229 |
|
|
if ( 0 != sources )
|
230 |
|
|
diag_printf( "FIQ source active!!! - fiqstatus %08x irqstatus %08x\n",
|
231 |
|
|
sources, *SA11X0_ICIP );
|
232 |
|
|
else
|
233 |
|
|
#endif // Scan FIQ sources also
|
234 |
|
|
|
235 |
|
|
sources = *SA11X0_ICIP;
|
236 |
|
|
|
237 |
|
|
// FIXME
|
238 |
|
|
// if we come to support FIQ properly...
|
239 |
|
|
// if ( 0 == sources )
|
240 |
|
|
// sources = *SA11X0_ICFP;
|
241 |
|
|
|
242 |
|
|
// Nothing wrong with scanning them in any order we choose...
|
243 |
|
|
// So here we try to make the serial devices steal fewer cycles.
|
244 |
|
|
// So, knowing this is an ARM:
|
245 |
|
|
if ( sources & 0xff0000 )
|
246 |
|
|
index = 16;
|
247 |
|
|
else if ( sources & 0xff00 )
|
248 |
|
|
index = 8;
|
249 |
|
|
else if ( sources & 0xff )
|
250 |
|
|
index = 0;
|
251 |
|
|
else // if ( sources & 0xff000000 )
|
252 |
|
|
index = 24;
|
253 |
|
|
|
254 |
|
|
do {
|
255 |
|
|
if ( (1 << index) & sources ) {
|
256 |
|
|
if (index == CYGNUM_HAL_INTERRUPT_GPIO) {
|
257 |
|
|
// Special case of GPIO cascade. Search for lowest set bit
|
258 |
|
|
sources = *SA11X0_GPIO_EDGE_DETECT_STATUS & 0x0FFFF800;
|
259 |
|
|
index = 11;
|
260 |
|
|
do {
|
261 |
|
|
if (sources & (1 << index)) {
|
262 |
|
|
index += 32;
|
263 |
|
|
break;
|
264 |
|
|
}
|
265 |
|
|
index++;
|
266 |
|
|
} while (index < 28);
|
267 |
|
|
}
|
268 |
|
|
return index;
|
269 |
|
|
}
|
270 |
|
|
index++;
|
271 |
|
|
} while ( index & 7 );
|
272 |
|
|
|
273 |
|
|
return CYGNUM_HAL_INTERRUPT_NONE; // This shouldn't happen!
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
//
|
277 |
|
|
// Interrupt control
|
278 |
|
|
//
|
279 |
|
|
|
280 |
|
|
void hal_interrupt_mask(int vector)
|
281 |
|
|
{
|
282 |
|
|
|
283 |
|
|
#ifdef HAL_EXTENDED_INTERRUPT_MASK
|
284 |
|
|
// Use platform specific handling, if defined
|
285 |
|
|
// Note: this macro should do a 'return' for "extended" values of 'vector'
|
286 |
|
|
// Normal vectors are handled by code subsequent to the macro call.
|
287 |
|
|
HAL_EXTENDED_INTERRUPT_MASK(vector);
|
288 |
|
|
#endif
|
289 |
|
|
|
290 |
|
|
// Non-GPIO interrupt sources can be masked separately.
|
291 |
|
|
// Note: masking any non-unique GPIO signal (31..11) results in
|
292 |
|
|
// all GPIO signals (31..11) being masked as only the "lump"
|
293 |
|
|
// source will be changed.
|
294 |
|
|
|
295 |
|
|
if (vector >= CYGNUM_HAL_INTERRUPT_GPIO11) {
|
296 |
|
|
vector = CYGNUM_HAL_INTERRUPT_GPIO;
|
297 |
|
|
}
|
298 |
|
|
*SA11X0_ICMR &= ~(1 << vector);
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
void hal_interrupt_unmask(int vector)
|
302 |
|
|
{
|
303 |
|
|
|
304 |
|
|
#ifdef HAL_EXTENDED_INTERRUPT_UNMASK
|
305 |
|
|
// Use platform specific handling, if defined
|
306 |
|
|
// Note: this macro should do a 'return' for "extended" values of 'vector'
|
307 |
|
|
// Normal vectors are handled by code subsequent to the macro call.
|
308 |
|
|
HAL_EXTENDED_INTERRUPT_UNMASK(vector);
|
309 |
|
|
#endif
|
310 |
|
|
|
311 |
|
|
if (vector >= CYGNUM_HAL_INTERRUPT_GPIO11) {
|
312 |
|
|
vector = CYGNUM_HAL_INTERRUPT_GPIO;
|
313 |
|
|
}
|
314 |
|
|
*SA11X0_ICMR |= (1 << vector);
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
void hal_interrupt_acknowledge(int vector)
|
318 |
|
|
{
|
319 |
|
|
|
320 |
|
|
#ifdef HAL_EXTENDED_INTERRUPT_UNMASK
|
321 |
|
|
// Use platform specific handling, if defined
|
322 |
|
|
// Note: this macro should do a 'return' for "extended" values of 'vector'
|
323 |
|
|
// Normal vectors are handled by code subsequent to the macro call.
|
324 |
|
|
HAL_EXTENDED_INTERRUPT_ACKNOWLEDGE(vector);
|
325 |
|
|
#endif
|
326 |
|
|
|
327 |
|
|
// GPIO interrupts are driven by an edge detection mechanism. This
|
328 |
|
|
// is latching so these interrupts must be acknowledged directly.
|
329 |
|
|
// All other interrupts simply go away when the interrupting unit
|
330 |
|
|
// has been serviced by the ISR.
|
331 |
|
|
if ((vector < CYGNUM_HAL_INTERRUPT_GPIO) ||
|
332 |
|
|
(vector >= CYGNUM_HAL_INTERRUPT_GPIO11)) {
|
333 |
|
|
*SA11X0_GPIO_EDGE_DETECT_STATUS = (1 << (vector & 0x1F));
|
334 |
|
|
} else {
|
335 |
|
|
// Not a GPIO interrupt
|
336 |
|
|
return;
|
337 |
|
|
}
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
void hal_interrupt_configure(int vector, int level, int up)
|
341 |
|
|
{
|
342 |
|
|
|
343 |
|
|
#ifdef HAL_EXTENDED_INTERRUPT_CONFIGURE
|
344 |
|
|
// Use platform specific handling, if defined
|
345 |
|
|
// Note: this macro should do a 'return' for "extended" values of 'vector'
|
346 |
|
|
// Normal vectors are handled by code subsequent to the macro call.
|
347 |
|
|
HAL_EXTENDED_INTERRUPT_CONFIGURE(vector, level, up);
|
348 |
|
|
#endif
|
349 |
|
|
|
350 |
|
|
// This function can be used to configure the GPIO interrupts. All
|
351 |
|
|
// of these pins can potentially generate an interrupt, but only
|
352 |
|
|
// 0..10 are unique. Thus the discontinuity in the numbers.
|
353 |
|
|
// Also, if 'level' is true, then both edges are enabled if 'up' is
|
354 |
|
|
// true, otherwise they will be disabled.
|
355 |
|
|
// Non GPIO sources are ignored.
|
356 |
|
|
if ((vector < CYGNUM_HAL_INTERRUPT_GPIO) ||
|
357 |
|
|
(vector >= CYGNUM_HAL_INTERRUPT_GPIO11)) {
|
358 |
|
|
if (level) {
|
359 |
|
|
if (up) {
|
360 |
|
|
// Enable both edges
|
361 |
|
|
*SA11X0_GPIO_RISING_EDGE_DETECT |= (1 << (vector & 0x1F));
|
362 |
|
|
*SA11X0_GPIO_FALLING_EDGE_DETECT |= (1 << (vector & 0x1F));
|
363 |
|
|
} else {
|
364 |
|
|
// Disable both edges
|
365 |
|
|
*SA11X0_GPIO_RISING_EDGE_DETECT &= ~(1 << (vector & 0x1F));
|
366 |
|
|
*SA11X0_GPIO_FALLING_EDGE_DETECT &= ~(1 << (vector & 0x1F));
|
367 |
|
|
}
|
368 |
|
|
} else {
|
369 |
|
|
// Only interested in one edge
|
370 |
|
|
if (up) {
|
371 |
|
|
// Set rising edge detect and clear falling edge detect.
|
372 |
|
|
*SA11X0_GPIO_RISING_EDGE_DETECT |= (1 << (vector & 0x1F));
|
373 |
|
|
*SA11X0_GPIO_FALLING_EDGE_DETECT &= ~(1 << (vector & 0x1F));
|
374 |
|
|
} else {
|
375 |
|
|
// Set falling edge detect and clear rising edge detect.
|
376 |
|
|
*SA11X0_GPIO_FALLING_EDGE_DETECT |= (1 << (vector & 0x1F));
|
377 |
|
|
*SA11X0_GPIO_RISING_EDGE_DETECT &= ~(1 << (vector & 0x1F));
|
378 |
|
|
}
|
379 |
|
|
}
|
380 |
|
|
}
|
381 |
|
|
}
|
382 |
|
|
|
383 |
|
|
void hal_interrupt_set_level(int vector, int level)
|
384 |
|
|
{
|
385 |
|
|
|
386 |
|
|
#ifdef HAL_EXTENDED_INTERRUPT_SET_LEVEL
|
387 |
|
|
// Use platform specific handling, if defined
|
388 |
|
|
// Note: this macro should do a 'return' for "extended" values of 'vector'
|
389 |
|
|
// Normal vectors are handled by code subsequent to the macro call.
|
390 |
|
|
HAL_EXTENDED_INTERRUPT_SET_LEVEL(vector, level);
|
391 |
|
|
#endif
|
392 |
|
|
|
393 |
|
|
// Interrupt priorities are not configurable on the SA11X0.
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
/*------------------------------------------------------------------------*/
|
397 |
|
|
// These routines are for testing the equivalent efficient macros of the
|
398 |
|
|
// same names. They actually inspect the MMap installed and tell the
|
399 |
|
|
// truth - including about the validity of the address at all.
|
400 |
|
|
|
401 |
|
|
cyg_uint32 hal_virt_to_phys_address( cyg_uint32 vaddr )
|
402 |
|
|
{
|
403 |
|
|
register cyg_uint32 *ttb_base;
|
404 |
|
|
cyg_uint32 noise;
|
405 |
|
|
register union ARM_MMU_FIRST_LEVEL_DESCRIPTOR desc;
|
406 |
|
|
|
407 |
|
|
// Get the TTB register
|
408 |
|
|
asm volatile ("mrc p15,0,%0,c2,c0,0;"
|
409 |
|
|
"mov %0, %0, lsr #14;" // Lower 14 bits are undefined
|
410 |
|
|
"mov %0, %0, asl #14;" // ...so clear them
|
411 |
|
|
: "=r"(ttb_base)
|
412 |
|
|
:
|
413 |
|
|
/*:*/);
|
414 |
|
|
|
415 |
|
|
noise = vaddr & (SZ_1M - 1);
|
416 |
|
|
vaddr /= SZ_1M; // Page size/Entry size is Mb.
|
417 |
|
|
|
418 |
|
|
desc.word = *ARM_MMU_FIRST_LEVEL_DESCRIPTOR_ADDRESS( ttb_base, vaddr );
|
419 |
|
|
|
420 |
|
|
// Is this a valid entry that we understand?
|
421 |
|
|
if ( ARM_MMU_FIRST_LEVEL_SECTION_ID == desc.section.id )
|
422 |
|
|
return noise + desc.section.base_address * SZ_1M;
|
423 |
|
|
|
424 |
|
|
return 0; // Not available.
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
cyg_uint32 hal_phys_to_virt_address( cyg_uint32 paddr )
|
428 |
|
|
{
|
429 |
|
|
cyg_uint32 *ttb_base;
|
430 |
|
|
cyg_uint32 i, noise;
|
431 |
|
|
register union ARM_MMU_FIRST_LEVEL_DESCRIPTOR desc;
|
432 |
|
|
cyg_bool identity_found = false;
|
433 |
|
|
|
434 |
|
|
// Get the TTB register
|
435 |
|
|
asm volatile ("mrc p15,0,%0,c2,c0,0;"
|
436 |
|
|
"mov %0, %0, lsr #14;" // Lower 14 bits are undefined
|
437 |
|
|
"mov %0, %0, asl #14;" // ...so clear them
|
438 |
|
|
: "=r"(ttb_base)
|
439 |
|
|
:
|
440 |
|
|
/*:*/);
|
441 |
|
|
|
442 |
|
|
|
443 |
|
|
noise = paddr & (SZ_1M - 1);
|
444 |
|
|
paddr /= SZ_1M; // Page size/Entry size is Mb.
|
445 |
|
|
|
446 |
|
|
for ( i = 0; i <= 0xfff; i++ ) {
|
447 |
|
|
desc.word = *ARM_MMU_FIRST_LEVEL_DESCRIPTOR_ADDRESS( ttb_base, i );
|
448 |
|
|
|
449 |
|
|
// Is this a valid entry that we understand?
|
450 |
|
|
if ( ARM_MMU_FIRST_LEVEL_SECTION_ID == desc.section.id ) {
|
451 |
|
|
if ( paddr == desc.section.base_address ) {
|
452 |
|
|
// Then the virtual address is i (in Mb).
|
453 |
|
|
if ( i == paddr ) {
|
454 |
|
|
// We found a direct map first. Do not report that
|
455 |
|
|
// immediately because it may be double mapped to a
|
456 |
|
|
// distinct virtual address, which we should return in
|
457 |
|
|
// preference. But remember that we saw it.
|
458 |
|
|
identity_found = true;
|
459 |
|
|
continue;
|
460 |
|
|
}
|
461 |
|
|
// Otherwise report that we found it:
|
462 |
|
|
return noise + i * SZ_1M;
|
463 |
|
|
}
|
464 |
|
|
}
|
465 |
|
|
}
|
466 |
|
|
// No non-identity matches were found.
|
467 |
|
|
if ( identity_found )
|
468 |
|
|
return noise + paddr * SZ_1M;
|
469 |
|
|
|
470 |
|
|
return 0; // Not available.
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
cyg_uint32 hal_virt_to_uncached_address( cyg_uint32 vaddr )
|
474 |
|
|
{
|
475 |
|
|
cyg_uint32 *ttb_base;
|
476 |
|
|
cyg_uint32 noise, paddr, i;
|
477 |
|
|
register union ARM_MMU_FIRST_LEVEL_DESCRIPTOR desc;
|
478 |
|
|
|
479 |
|
|
// Get the TTB register
|
480 |
|
|
asm volatile ("mrc p15,0,%0,c2,c0,0;"
|
481 |
|
|
"mov %0, %0, lsr #14;" // Lower 14 bits are undefined
|
482 |
|
|
"mov %0, %0, asl #14;" // ...so clear them
|
483 |
|
|
: "=r"(ttb_base)
|
484 |
|
|
:
|
485 |
|
|
/*:*/);
|
486 |
|
|
|
487 |
|
|
|
488 |
|
|
noise = vaddr & (SZ_1M - 1);
|
489 |
|
|
vaddr /= SZ_1M; // Page size/Entry size is Mb.
|
490 |
|
|
|
491 |
|
|
desc.word = *ARM_MMU_FIRST_LEVEL_DESCRIPTOR_ADDRESS( ttb_base, vaddr );
|
492 |
|
|
|
493 |
|
|
// Is this a valid entry that we understand?
|
494 |
|
|
if ( ARM_MMU_FIRST_LEVEL_SECTION_ID != desc.section.id )
|
495 |
|
|
return 0; // Not available.
|
496 |
|
|
|
497 |
|
|
// Is this very address uncacheable already?
|
498 |
|
|
if ( ARM_UNCACHEABLE == desc.section.c )
|
499 |
|
|
return noise + vaddr * SZ_1M;
|
500 |
|
|
|
501 |
|
|
paddr = desc.section.base_address;
|
502 |
|
|
|
503 |
|
|
// We could look straight at a direct mapped slot for the physical
|
504 |
|
|
// address as per convention...
|
505 |
|
|
|
506 |
|
|
// Now scan through for a virtual address that maps to the same
|
507 |
|
|
// physical memory, but uncached.
|
508 |
|
|
for ( i = 0; i <= 0xfff; i++ ) {
|
509 |
|
|
desc.word = *ARM_MMU_FIRST_LEVEL_DESCRIPTOR_ADDRESS( ttb_base, i );
|
510 |
|
|
|
511 |
|
|
// Is this a valid entry that we understand?
|
512 |
|
|
if ( ARM_MMU_FIRST_LEVEL_SECTION_ID == desc.section.id )
|
513 |
|
|
if ( paddr == desc.section.base_address )
|
514 |
|
|
// Then the virtual address is i (in Mb).
|
515 |
|
|
if ( ARM_UNCACHEABLE == desc.section.c )
|
516 |
|
|
// Then this one is not cacheable.
|
517 |
|
|
return noise + i * SZ_1M;
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
return 0; // Not available.
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
|
524 |
|
|
/*------------------------------------------------------------------------*/
|
525 |
|
|
// EOF sa11x0_misc.c
|