1 |
27 |
unneback |
#ifndef CYGONCE_HAL_PLATFORM_SETUP_H
|
2 |
|
|
#define CYGONCE_HAL_PLATFORM_SETUP_H
|
3 |
|
|
|
4 |
|
|
/*=============================================================================
|
5 |
|
|
//
|
6 |
|
|
// hal_platform_setup.h
|
7 |
|
|
//
|
8 |
|
|
// Platform specific support for HAL (assembly code)
|
9 |
|
|
//
|
10 |
|
|
//=============================================================================
|
11 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
12 |
|
|
// -------------------------------------------
|
13 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
14 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
15 |
|
|
// Copyright (C) 2002 Gary Thomas
|
16 |
|
|
//
|
17 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
18 |
|
|
// the terms of the GNU General Public License as published by the Free
|
19 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
20 |
|
|
//
|
21 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
22 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
23 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
24 |
|
|
// for more details.
|
25 |
|
|
//
|
26 |
|
|
// You should have received a copy of the GNU General Public License along
|
27 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
28 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
29 |
|
|
//
|
30 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
31 |
|
|
// or inline functions from this file, or you compile this file and link it
|
32 |
|
|
// with other works to produce a work based on this file, this file does not
|
33 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
34 |
|
|
// License. However the source code for this file must still be made available
|
35 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
36 |
|
|
//
|
37 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
38 |
|
|
// this file might be covered by the GNU General Public License.
|
39 |
|
|
//
|
40 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
41 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
42 |
|
|
// -------------------------------------------
|
43 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
44 |
|
|
//=============================================================================
|
45 |
|
|
//#####DESCRIPTIONBEGIN####
|
46 |
|
|
//
|
47 |
|
|
// Author(s): msalter
|
48 |
|
|
// Contributors: gthomas
|
49 |
|
|
// Date: 2000-10-10
|
50 |
|
|
// Purpose: Intel IOP310 platform specific support routines
|
51 |
|
|
// Description:
|
52 |
|
|
// Usage: #include <cyg/hal/hal_platform_setup.h>
|
53 |
|
|
//
|
54 |
|
|
//####DESCRIPTIONEND####
|
55 |
|
|
//
|
56 |
|
|
//===========================================================================*/
|
57 |
|
|
|
58 |
|
|
#include <pkgconf/system.h> // System-wide configuration info
|
59 |
|
|
#include <cyg/hal/hal_mmu.h> // MMU definitions
|
60 |
|
|
#include <cyg/hal/hal_mm.h> // More MMU definitions
|
61 |
|
|
#include CYGBLD_HAL_VARIANT_H // Variant specific configuration
|
62 |
|
|
#include CYGBLD_HAL_PLATFORM_H // Platform specific configuration
|
63 |
|
|
#include <cyg/hal/hal_iop310.h> // Platform specific hardware definitions
|
64 |
|
|
|
65 |
|
|
// Define macro used to diddle the LEDs during early initialization.
|
66 |
|
|
// Can use r0+r1. Argument in \x.
|
67 |
|
|
#define CYGHWR_LED_MACRO \
|
68 |
|
|
b 667f ;\
|
69 |
|
|
666: ;\
|
70 |
|
|
.byte 0xc0, 0xf9, 0xa4, 0xb0 ;\
|
71 |
|
|
.byte 0x99, 0x92, 0x82, 0xf8 ;\
|
72 |
|
|
.byte 0x80, 0x90, 0x88, 0x83 ;\
|
73 |
|
|
.byte 0xa7, 0xa1, 0x86, 0x8e ;\
|
74 |
|
|
667: ;\
|
75 |
|
|
ldr r0, =666b ;\
|
76 |
|
|
add r0, r0, #\x ;\
|
77 |
|
|
ldrb r1, [r0] ;\
|
78 |
|
|
ldr r0, =DISPLAY_RIGHT ;\
|
79 |
|
|
str r1, [r0]
|
80 |
|
|
|
81 |
|
|
#undef CYGHWR_LED_MACRO
|
82 |
|
|
|
83 |
|
|
|
84 |
|
|
// The main useful output of this file is PLATFORM_SETUP1: it invokes lots
|
85 |
|
|
// of other stuff (may depend on RAM or ROM start). The other stuff is
|
86 |
|
|
// divided into further macros to make it easier to manage what's enabled
|
87 |
|
|
// when.
|
88 |
|
|
|
89 |
|
|
#if defined(CYG_HAL_STARTUP_ROM)
|
90 |
|
|
#define PLATFORM_SETUP1 _platform_setup1
|
91 |
|
|
//#define CYGHWR_HAL_ARM_HAS_MMU
|
92 |
|
|
#else
|
93 |
|
|
#define PLATFORM_SETUP1
|
94 |
|
|
#endif
|
95 |
|
|
|
96 |
|
|
#define RAM_BASE 0xa0000000
|
97 |
|
|
#define DRAM_SIZE (512*1024*1024) // max size of available SDRAM
|
98 |
|
|
#define DCACHE_SIZE (32*1024) // size of the Dcache
|
99 |
|
|
|
100 |
|
|
// Reserved area for battery backup SDRAM memory test
|
101 |
|
|
// This area is not zeroed out by initialization code
|
102 |
|
|
#define SDRAM_BATTERY_TEST_BASE 0xA1FFFFF0 // base address of last 16 memory locations in a 32MB SDRAM
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
// Display 'lvalue:rvalue' on the hex display
|
107 |
|
|
// lvalue and rvalue must be of the form 'DISPLAY_x'
|
108 |
|
|
// where 'x' is a hex digit from 0-F.
|
109 |
|
|
.macro HEX_DISPLAY reg0, reg1, lvalue, rvalue
|
110 |
|
|
ldr \reg0, =DISPLAY_LEFT // display left digit
|
111 |
|
|
ldr \reg1, =\lvalue
|
112 |
|
|
str \reg1, [\reg0]
|
113 |
|
|
ldr \reg0, =DISPLAY_RIGHT
|
114 |
|
|
ldr \reg1, =\rvalue // display right digit
|
115 |
|
|
str \reg1, [\reg0]
|
116 |
|
|
.endm
|
117 |
|
|
|
118 |
|
|
// Trigger the logic analyzer by writing a particular
|
119 |
|
|
// address, and triggering on that address.
|
120 |
|
|
.macro TRIGGER_LA_ON_ADDRESS address, reg0, reg1
|
121 |
|
|
mrc p15, 0, \reg0, c1, c0, 0 // read ARM control register
|
122 |
|
|
// CPWAIT \reg0
|
123 |
|
|
ldr \reg1, =\address
|
124 |
|
|
str \reg0, [\reg1]
|
125 |
|
|
.endm
|
126 |
|
|
|
127 |
|
|
// Delay a bit
|
128 |
|
|
.macro DELAY_FOR cycles, reg0
|
129 |
|
|
ldr \reg0, =\cycles
|
130 |
|
|
subs \reg0, \reg0, #1
|
131 |
|
|
subne pc, pc, #0xc
|
132 |
|
|
.endm
|
133 |
|
|
|
134 |
|
|
// wait for coprocessor write complete
|
135 |
|
|
.macro CPWAIT reg
|
136 |
|
|
mrc p15,0,\reg,c2,c0,0
|
137 |
|
|
mov \reg,\reg
|
138 |
|
|
sub pc,pc,#4
|
139 |
|
|
.endm
|
140 |
|
|
|
141 |
|
|
// form a first-level section entry
|
142 |
|
|
.macro FL_SECTION_ENTRY base,x,ap,p,d,c,b
|
143 |
|
|
.word (\base << 20) | (\x << 12) | (\ap << 10) | (\p << 9) |\
|
144 |
|
|
(\d << 5) | (\c << 3) | (\b << 2) | 2
|
145 |
|
|
.endm
|
146 |
|
|
|
147 |
|
|
// form a first-level page table entry
|
148 |
|
|
.macro FL_PT_ENTRY base,p,d
|
149 |
|
|
// I wanted to use logical operations here, but since I am using symbols later
|
150 |
|
|
// to fill in the parameters, I had to use addition to force the assembler to
|
151 |
|
|
// do it right
|
152 |
|
|
.word \base + (\p << 9) + (\d << 5) + 1
|
153 |
|
|
.endm
|
154 |
|
|
|
155 |
|
|
// form a second level small page entry
|
156 |
|
|
.macro SL_SMPAGE_ENTRY base,ap3,ap2,ap1,ap0,c,b
|
157 |
|
|
.word (\base << 12) | (\ap3 << 10) | (\ap2 << 8) | (\ap1 << 6) |\
|
158 |
|
|
(\ap0 << 4) | (\c << 3) | (\b << 2) | 2
|
159 |
|
|
.endm
|
160 |
|
|
|
161 |
|
|
// form a second level extended small page entry
|
162 |
|
|
.macro SL_XSMPAGE_ENTRY base,x,ap,c,b
|
163 |
|
|
.word (\base << 12) | (\x << 6) | (\ap << 4) | (\c << 3) | (\b << 2) | 3
|
164 |
|
|
.endm
|
165 |
|
|
|
166 |
|
|
|
167 |
|
|
// start of platform setup
|
168 |
|
|
.macro _platform_setup1
|
169 |
|
|
|
170 |
|
|
// This is where we wind up immediately after reset. On the IOP310, we have
|
171 |
|
|
// to jump around a hole in flash which runs from 0x00001000 - 0x0001fff.
|
172 |
|
|
// The start of _platform_setup1 will be below 0x1000 and since we need to
|
173 |
|
|
// align the mmu table on a 16k boundary, we just branch around the page
|
174 |
|
|
// table which we will locate at FLASH_BASE+0x4000.
|
175 |
|
|
b _real_platform_setup
|
176 |
|
|
|
177 |
|
|
.p2align 13
|
178 |
|
|
// the following alignment creates the mmu table at address 0x4000.
|
179 |
|
|
mmu_table:
|
180 |
|
|
|
181 |
|
|
// 1MB of FLASH with i80312 MMRs mapped in using 4K small pages so we can
|
182 |
|
|
// set the access permission on flash and memory-mapped registers properly.
|
183 |
|
|
FL_PT_ENTRY mmu_table_flashbase,0,0
|
184 |
|
|
|
185 |
|
|
// Remaining 7MB of FLASH
|
186 |
|
|
// rw, cacheable, non-bufferable
|
187 |
|
|
.set __base,1
|
188 |
|
|
.rept 7
|
189 |
|
|
FL_SECTION_ENTRY __base,0,3,0,0,1,0
|
190 |
|
|
.set __base,__base+1
|
191 |
|
|
.endr
|
192 |
|
|
|
193 |
|
|
// nothing interesting here (Address Translation)
|
194 |
|
|
.rept 0xA00 - 0x8
|
195 |
|
|
FL_SECTION_ENTRY __base,0,3,0,0,0,0
|
196 |
|
|
.set __base,__base+1
|
197 |
|
|
.endr
|
198 |
|
|
|
199 |
|
|
// up to 512MB ECC SDRAM mapped 1-to-1
|
200 |
|
|
// first 1MB mapped in 4K chunks
|
201 |
|
|
// x=c=b=1
|
202 |
|
|
FL_PT_ENTRY mmu_table_rambase,1,0
|
203 |
|
|
.set __base,__base+1
|
204 |
|
|
.rept 0xC00 - 0xA01
|
205 |
|
|
FL_SECTION_ENTRY __base,1,3,1,0,1,1
|
206 |
|
|
.set __base,__base+1
|
207 |
|
|
.endr
|
208 |
|
|
|
209 |
|
|
// Cache flush region.
|
210 |
|
|
// Don't need physical memory, just a cached area.
|
211 |
|
|
.rept 0xD00 - 0xC00
|
212 |
|
|
FL_SECTION_ENTRY __base,0,3,0,0,1,1
|
213 |
|
|
.set __base,__base+1
|
214 |
|
|
.endr
|
215 |
|
|
|
216 |
|
|
// Alias for first 1MB of FLASH
|
217 |
|
|
// rw, cacheable, non-bufferable
|
218 |
|
|
FL_SECTION_ENTRY 0x000,0,3,0,0,1,0
|
219 |
|
|
.set __base,__base+1
|
220 |
|
|
|
221 |
|
|
// Invalid
|
222 |
|
|
.rept 0xE00 - 0xD01
|
223 |
|
|
.word 0
|
224 |
|
|
.set __base,__base+1
|
225 |
|
|
.endr
|
226 |
|
|
|
227 |
|
|
// Uncached and unbuffered alias for first 256MB of SDRAM. This
|
228 |
|
|
// area can be used by device drivers for DMA operations. Buffers
|
229 |
|
|
// should be cache aligned.
|
230 |
|
|
.set __base,0xA00
|
231 |
|
|
.rept 0xF00 - 0xE00
|
232 |
|
|
FL_SECTION_ENTRY __base,0,3,1,0,0,0
|
233 |
|
|
.set __base,__base+1
|
234 |
|
|
.endr
|
235 |
|
|
|
236 |
|
|
// only I/O at 0xFE8xxxxx
|
237 |
|
|
.set __base,0xF00
|
238 |
|
|
.rept 0x1000 - 0xF00
|
239 |
|
|
FL_SECTION_ENTRY __base,0,3,0,0,0,0
|
240 |
|
|
.set __base,__base+1
|
241 |
|
|
.endr
|
242 |
|
|
|
243 |
|
|
// Immediately after the above table (at 0x8000) is the
|
244 |
|
|
// second level page table which breaks up the lowest 1MB
|
245 |
|
|
// of physical memory into 4KB sized virtual pages. These
|
246 |
|
|
// pages work around a hole in flash (0x1000-0x1fff) used
|
247 |
|
|
// by the Yavapai companion chip internal registers.
|
248 |
|
|
mmu_table_flashbase:
|
249 |
|
|
// Virtual address 0 (Flash boot code).
|
250 |
|
|
// Map 4k page at 0x00000000 virt --> 0xA0000000 physical
|
251 |
|
|
// This allows us to have a writable vector table.
|
252 |
|
|
// Read-Write, cacheable, bufferable
|
253 |
|
|
SL_XSMPAGE_ENTRY 0xa0000,1,3,1,1
|
254 |
|
|
|
255 |
|
|
// Virtual address 0x1000 (Memory mapped registers)
|
256 |
|
|
// Map 1-to-1, but don't cache or buffer
|
257 |
|
|
// Read-Write, non-cacheable, non-bufferable
|
258 |
|
|
.set __base,1
|
259 |
|
|
SL_SMPAGE_ENTRY __base,3,3,3,3,0,0
|
260 |
|
|
.set __base,__base+1
|
261 |
|
|
|
262 |
|
|
// Virtual address 0x2000-0x100000 (remainder of flash1)
|
263 |
|
|
// Read-Write, cacheable, non-bufferable
|
264 |
|
|
.rept 0x100 - 0x2
|
265 |
|
|
SL_SMPAGE_ENTRY __base,3,3,3,3,1,0
|
266 |
|
|
.set __base,__base+1
|
267 |
|
|
.endr
|
268 |
|
|
|
269 |
|
|
// Now is the second level table for the first megabyte
|
270 |
|
|
// of DRAM.
|
271 |
|
|
mmu_table_rambase:
|
272 |
|
|
// Map first meg of SDRAM
|
273 |
|
|
// Read-Write, cacheable, bufferable
|
274 |
|
|
.set __base,0xA0000
|
275 |
|
|
.rept 0x100
|
276 |
|
|
SL_XSMPAGE_ENTRY __base,1,3,1,1
|
277 |
|
|
.set __base,__base+1
|
278 |
|
|
.endr
|
279 |
|
|
|
280 |
|
|
_real_platform_setup:
|
281 |
|
|
// Drain write and fill buffer
|
282 |
|
|
mcr p15,0,r0,c7,c10,4
|
283 |
|
|
CPWAIT r0
|
284 |
|
|
|
285 |
|
|
// Disable write buffer coalescing
|
286 |
|
|
mrc p15,0,r0,c1,c0,1
|
287 |
|
|
orr r0,r0,#1 // set the disable bit
|
288 |
|
|
mcr p15,0,r0,c1,c0,1
|
289 |
|
|
CPWAIT r0
|
290 |
|
|
|
291 |
|
|
// Delay appx 60 ms to let battery-backup reset complete
|
292 |
|
|
DELAY_FOR 0x400000, r0
|
293 |
|
|
// Eventually we will be able to check a register bit
|
294 |
|
|
// to determine when this is complete
|
295 |
|
|
|
296 |
|
|
HEX_DISPLAY r0, r1, DISPLAY_0, DISPLAY_1
|
297 |
|
|
|
298 |
|
|
//
|
299 |
|
|
// *** I2C interface initialization ***
|
300 |
|
|
//
|
301 |
|
|
|
302 |
|
|
// Setup I2C Slave Address Register
|
303 |
|
|
ldr r1, =I2C_DEVID // Load slave address r1.
|
304 |
|
|
ldr r2, =ISAR_ADDR // Load address of the I2C Slave Address Register in r2.
|
305 |
|
|
ldr r3, =0x0000007f // Load mask in r3.
|
306 |
|
|
and r1, r3, r3 // The mask zeroes the 25 MSBs of r1 just to make sure.
|
307 |
|
|
str r3, [r2] // Save the value 0x02 (I2C_DEVID) in the register.
|
308 |
|
|
|
309 |
|
|
// Setup I2C Clock Count Register
|
310 |
|
|
ldr r2, =ICCR_ADDR // Load the address of the I2C Clock Control Register in r2.
|
311 |
|
|
ldr r3, =0x0000014d // Set for 5.05 us transition time at 66MHz (0x14D = 333).
|
312 |
|
|
str r3, [r2] // Save the value in the register.
|
313 |
|
|
|
314 |
|
|
// Enable I2C Interface Unit - status will be polled
|
315 |
|
|
ldr r2, =ICR_ADDR // Load the address of the Control Register in r2.
|
316 |
|
|
ldr r1, =ICR_GCALL // Disable General Call (will be master)
|
317 |
|
|
ldr r3, =ICR_ENB // Enable I2C unit ).
|
318 |
|
|
orr r1, r3, r1 // OR the two and store in R1
|
319 |
|
|
ldr r3, =ICR_SCLENB // Enable I2C Clock Generator disabled
|
320 |
|
|
orr r1, r3, r1 // OR the two and store in R1
|
321 |
|
|
str r1, [r2] // Save the value to the Control Register.
|
322 |
|
|
|
323 |
|
|
//
|
324 |
|
|
// *** Now read the SPD Data ***
|
325 |
|
|
//
|
326 |
|
|
|
327 |
|
|
// Pointers to I2C Registers
|
328 |
|
|
ldr r11, =ICR_ADDR // Load the address of the I2C Control Register in r11.
|
329 |
|
|
ldr r12, =ISR_ADDR // Load the address of the I2C Status Register in r12.
|
330 |
|
|
ldr r13, =IDBR_ADDR // Load the address of the I2C Data Buffer Register in r13.
|
331 |
|
|
|
332 |
|
|
// Initialize byte counters
|
333 |
|
|
ldr r6, =0x00000000 // Counter incremented before byte is read
|
334 |
|
|
ldr r7, =0x00000040 // Number of bytes to read in the Presence Detect EEPROM of SDRAM: 64 bytes
|
335 |
|
|
ldr r5, =0x00000000 // R5 has running checksum calculation
|
336 |
|
|
ldr r9, =I2C_TIMOUT // Timeout limit in case EEPROM does not respond
|
337 |
|
|
|
338 |
|
|
// At the end of all this, R4 has DRAM size, R8 has bank count, and R10 has Bank size
|
339 |
|
|
ldr r10,=0x00000000 // Bank size
|
340 |
|
|
ldr r8, =0x00000000 // Bank count
|
341 |
|
|
ldr r4, =0x00000000 // SDRAM size
|
342 |
|
|
|
343 |
|
|
/* FREE REGISTERS ARE R0 - R3 */
|
344 |
|
|
|
345 |
|
|
// *** Put out address, with WRITE mode ***
|
346 |
|
|
|
347 |
|
|
// Set SDRAM module address and write mode
|
348 |
|
|
ldr r1, =SDRAM_DEVID // Load slave address for SDRAM module: 0xA2 (Presence Detect Data)
|
349 |
|
|
bic r1, r1, #IDBR_MODE // Clear read bit (bit #0)
|
350 |
|
|
str r1, [r13] // Store to data register
|
351 |
|
|
|
352 |
|
|
// Initiate dummy write to set EEPROM pointer to 0
|
353 |
|
|
ldr r1, [r11] // read the current Control Register value
|
354 |
|
|
orr r1, r1, #ICR_START // Set start bit
|
355 |
|
|
orr r1, r1, #ICR_TRANSFER // Set transfer bit - bit is self_clearing
|
356 |
|
|
str r1, [r11] // Store to control register
|
357 |
|
|
|
358 |
|
|
// Wait for transmit empty status
|
359 |
|
|
ldr r1, =0x00000000 // Initialize I2C timeout counter
|
360 |
|
|
0:
|
361 |
|
|
add r1, r1, #1 // Increment I2C timeout counter (r1 = r1 + 1)
|
362 |
|
|
cmp r1, r9
|
363 |
|
|
beq i2c_error // Kick out of SDRAM initialization if timeout occurs
|
364 |
|
|
ldr r0, [r12] // Load I2C Status Reg into R0
|
365 |
|
|
ands r3, r0, #ISR_EMPTY // Bit #6 is checked: IDBR Transmit Empty
|
366 |
|
|
beq 0b
|
367 |
|
|
str r0, [r12] // Write back status to clear
|
368 |
|
|
|
369 |
|
|
// *** Write pointer register on EEPROM to 0x00000000 ***
|
370 |
|
|
|
371 |
|
|
// Set SDRAM module EEPROM address to 0
|
372 |
|
|
ldr r1, =0x00000000 // Load base address of SDRAM module EEPROM
|
373 |
|
|
str r1, [r13] // Store to data register
|
374 |
|
|
|
375 |
|
|
// Send address to EEPROM
|
376 |
|
|
ldr r1, [r11] // read the current Control Register value
|
377 |
|
|
bic r1, r1, #ICR_START // No start bit (already started)
|
378 |
|
|
orr r1, r1, #ICR_TRANSFER // Set transfer bit - bit is self_clearing
|
379 |
|
|
str r1, [r11] // Store to control register
|
380 |
|
|
|
381 |
|
|
// Wait for transmit empty status
|
382 |
|
|
ldr r1, =0x00000000 // Initialize I2C timeout counter
|
383 |
|
|
0:
|
384 |
|
|
add r1, r1, #1 // Increment I2C timeout counter (r1 = r1 + 1)
|
385 |
|
|
cmp r1, r9
|
386 |
|
|
beq i2c_error // Kick out of SDRAM initialization if timeout occurs
|
387 |
|
|
ldr r0, [r12] // Load I2C Status Reg into R0 - ld (r12), r10
|
388 |
|
|
ands r3, r0, #ISR_EMPTY // Bit #6 is checked: IDBR Transmit Empty
|
389 |
|
|
beq 0b
|
390 |
|
|
str r0, [r12] // Write back status to clear
|
391 |
|
|
|
392 |
|
|
// *** Read SDRAM PD data ***
|
393 |
|
|
|
394 |
|
|
// *** Put out address, with READ mode ***
|
395 |
|
|
|
396 |
|
|
// Set SDRAM module address and read mode
|
397 |
|
|
ldr r0, =SDRAM_DEVID // Load slave address for SDRAM module (0xA2)
|
398 |
|
|
orr r1, r0, #IDBR_MODE // Set read bit (bit #0)
|
399 |
|
|
str r1, [r13] // Store to data register
|
400 |
|
|
|
401 |
|
|
// Send next read request
|
402 |
|
|
ldr r1, [r11] // read the current Control Register value
|
403 |
|
|
orr r1, r1, #ICR_START // Set start bit
|
404 |
|
|
orr r1, r1, #ICR_TRANSFER // Set transfer bit - bit is self_clearing
|
405 |
|
|
str r1, [r11] // Store to control register
|
406 |
|
|
|
407 |
|
|
// Wait for transmit empty status
|
408 |
|
|
ldr r1, =0x00000000 // Initialize I2C timeout counter
|
409 |
|
|
0:
|
410 |
|
|
add r1, r1, #1 // Increment I2C timeout counter (r1 = r1 + 1)
|
411 |
|
|
cmp r1, r9
|
412 |
|
|
beq i2c_error // Kick out of SDRAM initialization if timeout occurs
|
413 |
|
|
ldr r0, [r12] // Load I2C Status Reg into R0 - ld (r12), r10
|
414 |
|
|
ands r3, r0, #ISR_EMPTY // Bit #6 is checked: IDBR Transmit Empty
|
415 |
|
|
beq 0b
|
416 |
|
|
str r0, [r12] // Write back status to clear
|
417 |
|
|
|
418 |
|
|
sdram_loop:
|
419 |
|
|
add r6, r6, #1 // Increment byte counter
|
420 |
|
|
|
421 |
|
|
// *** READ the next Byte!!! ***
|
422 |
|
|
|
423 |
|
|
ldr r1, [r11] // read the current Control Register value
|
424 |
|
|
bic r1, r1, #ICR_START // No start bit (already started)
|
425 |
|
|
orr r1, r1, #ICR_TRANSFER // Set transfer bit - bit is self_clearing
|
426 |
|
|
|
427 |
|
|
// we have to set NACK before reading the last bit
|
428 |
|
|
cmp r6, r7 // r7 = 64 (decimal) so if r6 = 64, this is the last byte to be read
|
429 |
|
|
bne 1f // If bytes left, skip ahead
|
430 |
|
|
orr r1, r1, #ICR_ACK // Set NACK if this is the last byte
|
431 |
|
|
orr r1, r1, #ICR_STOP // Set STOP if this is the last byte
|
432 |
|
|
1:
|
433 |
|
|
str r1, [r11] // Store to control register
|
434 |
|
|
|
435 |
|
|
// Wait for read full status
|
436 |
|
|
ldr r1, =0x00000000 // Initialize I2C timeout counter
|
437 |
|
|
0:
|
438 |
|
|
add r1, r1, #1 // Increment I2C timeout counter (r1 = r1 + 1)
|
439 |
|
|
cmp r1, r9
|
440 |
|
|
beq i2c_error // Kick out of SDRAM initialization if timeout occurs
|
441 |
|
|
ldr r0, [r12] // Load I2C Status Reg into R0
|
442 |
|
|
ands r3, r0, #ISR_FULL // Bit #6 is checked: IDBR Transmit Empty
|
443 |
|
|
beq 0b
|
444 |
|
|
str r0, [r12] // Write back status to clear
|
445 |
|
|
|
446 |
|
|
// Read the data byte
|
447 |
|
|
ldr r1, [r13] // Read the byte
|
448 |
|
|
|
449 |
|
|
ldr r2, =CHECKSUM_BYTE
|
450 |
|
|
cmp r6, r2 // is it the CHECKSUM byte???
|
451 |
|
|
beq 1f
|
452 |
|
|
add r5, r5, r1 // Add it to the checksum if not the checksum byte
|
453 |
|
|
bal 2f // skip checksum comparison
|
454 |
|
|
1:
|
455 |
|
|
ldr r0, =0xff // If this is the checksum byte, compare it
|
456 |
|
|
and r5, r5, r0 // against the calculated checksum
|
457 |
|
|
cmp r1, r5
|
458 |
|
|
bne bad_checksum // If no match, skip SDRAM controller initialization
|
459 |
|
|
2:
|
460 |
|
|
ldr r2, =BANKCNT_BYTE // Check for bank count byte
|
461 |
|
|
cmp r6, r2
|
462 |
|
|
bne 1f
|
463 |
|
|
mov r8, r1 // Store bank count
|
464 |
|
|
1:
|
465 |
|
|
ldr r2, =BANKSZ_BYTE // Check for bank size byte
|
466 |
|
|
cmp r6, r2
|
467 |
|
|
bne 1f
|
468 |
|
|
|
469 |
|
|
ldr r2, =0x04 // Store bank size in Mbytes (shift left 2 bits)
|
470 |
|
|
mul r10, r1, r2
|
471 |
|
|
mul r2, r8, r10 // Multiply by bank count to get DRAM size in MB
|
472 |
|
|
ldr r0, =0x100000
|
473 |
|
|
mul r4, r2, r0 // Convert size to bytes - r4 contains DRAM size in bytes
|
474 |
|
|
|
475 |
|
|
1:
|
476 |
|
|
// Handle the SDRAM drive strength setup here since we are out of
|
477 |
|
|
// temporary registers to hold the SDRAM width value until after
|
478 |
|
|
// all of the SPD data has been read. Using the value of r8 for
|
479 |
|
|
// the Bank Count is allright here since the SPD specification states that
|
480 |
|
|
// the Bank Count SPD byte is #5 and the SDRAM Width SPD byte is #13.
|
481 |
|
|
|
482 |
|
|
ldr r2, =SDRAM_WIDTH_BYTE // Check for SDRAM width byte
|
483 |
|
|
cmp r6, r2
|
484 |
|
|
bne 1f
|
485 |
|
|
mov r2, #0x10 // Check for data width of 16
|
486 |
|
|
cmp r1, r2
|
487 |
|
|
bne SDRAM_DRIVE_X8
|
488 |
|
|
|
489 |
|
|
// Module is composed of x16 devices
|
490 |
|
|
mov r2, #0x02
|
491 |
|
|
cmp r2, r8 // do we have 2 banks???
|
492 |
|
|
beq SDRAM_DRIVE_2_BANK_X16
|
493 |
|
|
|
494 |
|
|
// Module is composed of 1 Bank of x16 devices
|
495 |
|
|
ldr r1, =SDCR_ADDR // point at SDRAM Control Register
|
496 |
|
|
ldr r2, =SDCR_1BANK_X16 // drive strength value
|
497 |
|
|
str r2, [r1] // set value in SDCR
|
498 |
|
|
b 1f
|
499 |
|
|
|
500 |
|
|
SDRAM_DRIVE_2_BANK_X16:
|
501 |
|
|
// Module is composed of 2 Banks of x16 devices
|
502 |
|
|
ldr r1, =SDCR_ADDR // point at SDRAM Control Register
|
503 |
|
|
ldr r2, =SDCR_2BANK_X16 // drive strength value
|
504 |
|
|
str r2, [r1] // set value in SDCR
|
505 |
|
|
b 1f
|
506 |
|
|
|
507 |
|
|
SDRAM_DRIVE_X8:
|
508 |
|
|
// Module is composed of x8 devices
|
509 |
|
|
mov r2, #0x02
|
510 |
|
|
cmp r2, r8 // do we have 2 banks???
|
511 |
|
|
beq SDRAM_DRIVE_2_BANK_X8
|
512 |
|
|
|
513 |
|
|
// Module is composed of 1 Bank of x8 devices
|
514 |
|
|
ldr r1, =SDCR_ADDR // point at SDRAM Control Register
|
515 |
|
|
ldr r2, =SDCR_1BANK_X8 // drive strength value
|
516 |
|
|
str r2, [r1] // set value in SDCR
|
517 |
|
|
b 1f
|
518 |
|
|
|
519 |
|
|
SDRAM_DRIVE_2_BANK_X8:
|
520 |
|
|
// Module is composed of 2 Banks of x16 devices
|
521 |
|
|
ldr r1, =SDCR_ADDR // point at SDRAM Control Register
|
522 |
|
|
ldr r2, =SDCR_2BANK_X8 // drive strength value
|
523 |
|
|
str r2, [r1] // set value in SDCR
|
524 |
|
|
1:
|
525 |
|
|
|
526 |
|
|
|
527 |
|
|
// Continue reading bytes if not done
|
528 |
|
|
cmp r6, r7
|
529 |
|
|
bne sdram_loop
|
530 |
|
|
|
531 |
|
|
b i2c_disable
|
532 |
|
|
|
533 |
|
|
bad_checksum:
|
534 |
|
|
HEX_DISPLAY r2, r3, DISPLAY_7, DISPLAY_7
|
535 |
|
|
|
536 |
|
|
i2c_error:
|
537 |
|
|
// hit the leds if an error occurred
|
538 |
|
|
HEX_DISPLAY r2, r3, DISPLAY_5, DISPLAY_5
|
539 |
|
|
|
540 |
|
|
|
541 |
|
|
i2c_disable:
|
542 |
|
|
// Disable I2C Interface Unit
|
543 |
|
|
ldr r1, [r11]
|
544 |
|
|
bic r1, r1, #ICR_ENB // Disable I2C unit
|
545 |
|
|
bic r1, r1, #ICR_SCLENB // Disable I2C clock generator
|
546 |
|
|
str r1, [r11] // Store to control register
|
547 |
|
|
|
548 |
|
|
// ADD THIS???:
|
549 |
|
|
// cmpobne 1, g9, test_init
|
550 |
|
|
// Skip SDRAM controller initialization if checksum test failed
|
551 |
|
|
|
552 |
|
|
// *** SDRAM setup ***
|
553 |
|
|
|
554 |
|
|
ldr r9, =MMR_BASE // get base of MMRs
|
555 |
|
|
ldr r0, =RAM_BASE // Program SDRAM Base Address register
|
556 |
|
|
str r0, [r9, #SDBR_OFF]
|
557 |
|
|
|
558 |
|
|
// Set up bank 0 register
|
559 |
|
|
CHECK_32MB:
|
560 |
|
|
ldr r1, =RAM_32MEG // do we have 32 MB banks?
|
561 |
|
|
cmp r10, r1
|
562 |
|
|
bne CHECK_64MB
|
563 |
|
|
|
564 |
|
|
ldr r0, =SBR_32MEG // Program SDRAM Bank0 Boundary register to 32 MB
|
565 |
|
|
b SET_BANK1
|
566 |
|
|
|
567 |
|
|
CHECK_64MB:
|
568 |
|
|
ldr r1, =RAM_64MEG // do we have 64 MB banks?
|
569 |
|
|
cmp r10, r1
|
570 |
|
|
bne CHECK_128MB
|
571 |
|
|
|
572 |
|
|
ldr r0, =SBR_64MEG // Program SDRAM Bank0 Boundary register to 64 MB
|
573 |
|
|
b SET_BANK1
|
574 |
|
|
|
575 |
|
|
CHECK_128MB:
|
576 |
|
|
ldr r1, =RAM_128MEG // do we have 128 MB banks?
|
577 |
|
|
cmp r10, r1
|
578 |
|
|
bne CHECK_256MB
|
579 |
|
|
|
580 |
|
|
ldr r0, =SBR_128MEG // Program SDRAM Bank0 Boundary register to 128 MB
|
581 |
|
|
b SET_BANK1
|
582 |
|
|
|
583 |
|
|
CHECK_256MB:
|
584 |
|
|
ldr r1, =RAM_256MEG // do we have 256 MB banks?
|
585 |
|
|
cmp r10, r1
|
586 |
|
|
bne dram_error
|
587 |
|
|
|
588 |
|
|
ldr r0, =SBR_256MEG // Program SDRAM Bank0 Boundary register to 64 MB
|
589 |
|
|
b SET_BANK1
|
590 |
|
|
|
591 |
|
|
SET_BANK1:
|
592 |
|
|
str r0, [r9, #SBR0_OFF] // store SBR0
|
593 |
|
|
|
594 |
|
|
ldr r2, =0x02
|
595 |
|
|
cmp r2, r8 // do we have 2 banks???
|
596 |
|
|
bne SDRAM_1_BANK
|
597 |
|
|
|
598 |
|
|
add r0, r0, r0 // SDRAM Bank1 Boundary register is double SBR0
|
599 |
|
|
str r0, [r9, #SBR1_OFF]
|
600 |
|
|
b END_DRAM_SIZE
|
601 |
|
|
|
602 |
|
|
SDRAM_1_BANK:
|
603 |
|
|
// SDRAM Bank1 Boundary register is same as SBR0 for 1 bank configuration
|
604 |
|
|
str r0, [r9, #SBR1_OFF]
|
605 |
|
|
b END_DRAM_SIZE
|
606 |
|
|
|
607 |
|
|
END_DRAM_SIZE:
|
608 |
|
|
b init_dram
|
609 |
|
|
|
610 |
|
|
dram_error:
|
611 |
|
|
|
612 |
|
|
HEX_DISPLAY r2, r3, DISPLAY_F, DISPLAY_F
|
613 |
|
|
|
614 |
|
|
init_dram:
|
615 |
|
|
ldr r0, =0 // turn off refresh
|
616 |
|
|
str r0, [r9, #RFR_OFF]
|
617 |
|
|
|
618 |
|
|
ldr r0, =MRS_NO_OP // Issue NOP cmd to SDRAM
|
619 |
|
|
str r0, [r9, #SDIR_OFF]
|
620 |
|
|
DELAY_FOR 0x4000, r0
|
621 |
|
|
|
622 |
|
|
ldr r0, =MRS_PRECHRG // Issue 1 Precharge all
|
623 |
|
|
str r0, [r9, #SDIR_OFF]
|
624 |
|
|
DELAY_FOR 0x4000, r0
|
625 |
|
|
|
626 |
|
|
|
627 |
|
|
ldr r0, =MRS_AUTO_RFRSH // Issue 1 Auto Refresh command
|
628 |
|
|
str r0, [r9, #SDIR_OFF]
|
629 |
|
|
DELAY_FOR 0x4000, r0
|
630 |
|
|
|
631 |
|
|
|
632 |
|
|
ldr r0, =MRS_AUTO_RFRSH
|
633 |
|
|
str r0, [r9, #SDIR_OFF] // Auto Refresh #1
|
634 |
|
|
str r0, [r9, #SDIR_OFF] // Auto Refresh #2
|
635 |
|
|
str r0, [r9, #SDIR_OFF] // Auto Refresh #3
|
636 |
|
|
str r0, [r9, #SDIR_OFF] // Auto Refresh #4
|
637 |
|
|
str r0, [r9, #SDIR_OFF] // Auto Refresh #5
|
638 |
|
|
str r0, [r9, #SDIR_OFF] // Auto Refresh #6
|
639 |
|
|
str r0, [r9, #SDIR_OFF] // Auto Refresh #7
|
640 |
|
|
str r0, [r9, #SDIR_OFF] // Auto Refresh #8
|
641 |
|
|
|
642 |
|
|
ldr r0, =MRS_CAS_LAT_2 // set the CAS latency
|
643 |
|
|
str r0, [r9, #SDIR_OFF]
|
644 |
|
|
DELAY_FOR 0x4000, r0
|
645 |
|
|
|
646 |
|
|
ldr r0, =MRS_NORM_OP // Issue a Normal Operation command
|
647 |
|
|
str r0, [r9, #SDIR_OFF]
|
648 |
|
|
|
649 |
|
|
ldr r0, =RFR_INIT_VAL // Program Refresh Rate register
|
650 |
|
|
str r0, [r9, #RFR_OFF]
|
651 |
|
|
|
652 |
|
|
// ldr r0, =(FLASH_BASE :AND: &FFFF0000)
|
653 |
|
|
// str r0, [r10, #FEBR1_OFF] ; Program Flash Bank1 Base Address register
|
654 |
|
|
|
655 |
|
|
// ldr r0, =(FLASH_SIZE :AND: &FFFF0000)
|
656 |
|
|
// str r0, [r10, #FBSR1_OFF] ; Program Flash Bank1 Size register
|
657 |
|
|
|
658 |
|
|
// ldr r0, =FWSR0_INIT_VAL
|
659 |
|
|
// str r0, [r10, #FWSR0_OFF] ; Program Flash Bank0 Wait State register
|
660 |
|
|
|
661 |
|
|
// ldr r0, =FWSR1_INIT_VAL
|
662 |
|
|
// str r0, [r10, #FWSR1_OFF] ; Program Flash Bank1 Wait State register
|
663 |
|
|
|
664 |
|
|
HEX_DISPLAY r0, r1, DISPLAY_0, DISPLAY_2
|
665 |
|
|
|
666 |
|
|
// begin initializing the i80310
|
667 |
|
|
|
668 |
|
|
// Enable access to all coprocessor registers
|
669 |
|
|
ldr r0, =0x2001 // enable access to all coprocessors
|
670 |
|
|
mcr p15, 0, r0, c15, c1, 0
|
671 |
|
|
|
672 |
|
|
mcr p15, 0, r0, c7, c10, 4 // drain the write & fill buffers
|
673 |
|
|
CPWAIT r0
|
674 |
|
|
|
675 |
|
|
mcr p15, 0, r0, c7, c7, 0 // flush Icache, Dcache and BTB
|
676 |
|
|
CPWAIT r0
|
677 |
|
|
|
678 |
|
|
mcr p15, 0, r0, c8, c7, 0 // flush instuction and data TLBs
|
679 |
|
|
CPWAIT r0
|
680 |
|
|
|
681 |
|
|
// Enable the Icache
|
682 |
|
|
mrc p15, 0, r0, c1, c0, 0
|
683 |
|
|
orr r0, r0, #MMU_Control_I
|
684 |
|
|
mcr p15, 0, r0, c1, c0, 0
|
685 |
|
|
CPWAIT r0
|
686 |
|
|
|
687 |
|
|
// Set the TTB register
|
688 |
|
|
ldr r0, =mmu_table
|
689 |
|
|
mcr p15, 0, r0, c2, c0, 0
|
690 |
|
|
|
691 |
|
|
// Enable permission checks in all domains
|
692 |
|
|
ldr r0, =0x55555555
|
693 |
|
|
mcr p15, 0, r0, c3, c0, 0
|
694 |
|
|
|
695 |
|
|
// Enable the MMU
|
696 |
|
|
mrc p15, 0, r0, c1, c0, 0
|
697 |
|
|
orr r0, r0, #MMU_Control_M
|
698 |
|
|
orr r0, r0, #MMU_Control_R
|
699 |
|
|
mcr p15, 0, r0, c1, c0, 0
|
700 |
|
|
CPWAIT r0
|
701 |
|
|
|
702 |
|
|
mcr p15, 0, r0, c7, c10, 4 // drain the write & fill buffers
|
703 |
|
|
CPWAIT r0
|
704 |
|
|
|
705 |
|
|
// Enable the Dcache
|
706 |
|
|
mrc p15, 0, r0, c1, c0, 0
|
707 |
|
|
orr r0, r0, #MMU_Control_C
|
708 |
|
|
mcr p15, 0, r0, c1, c0, 0
|
709 |
|
|
CPWAIT r0
|
710 |
|
|
|
711 |
|
|
// Initialize branch target buffer
|
712 |
|
|
BTB_INIT r0
|
713 |
|
|
|
714 |
|
|
// Battery Backup SDRAM Memory Test
|
715 |
|
|
// Move 4 byte Test Pattern into register prior to zeroing out
|
716 |
|
|
// contents of SDRAM locations
|
717 |
|
|
ldr r9, =SDRAM_BATTERY_TEST_BASE
|
718 |
|
|
ldr r10, [r9]
|
719 |
|
|
|
720 |
|
|
IOP310_EARLY_PCI_SETUP r0, r1, r4, 0x113C, 0x0700
|
721 |
|
|
|
722 |
|
|
// scrub/init SDRAM if enabled/present
|
723 |
|
|
ldr r11, =RAM_BASE // base address of SDRAM
|
724 |
|
|
mov r12, r4 // size of memory to scrub
|
725 |
|
|
mov r8,r4 // save DRAM size
|
726 |
|
|
mov r0, #0 // scrub with 0x0000:0000
|
727 |
|
|
mov r1, #0
|
728 |
|
|
mov r2, #0
|
729 |
|
|
mov r3, #0
|
730 |
|
|
mov r4, #0
|
731 |
|
|
mov r5, #0
|
732 |
|
|
mov r6, #0
|
733 |
|
|
mov r7, #0
|
734 |
|
|
10: // fastScrubLoop
|
735 |
|
|
subs r12, r12, #32 // 32 bytes/line
|
736 |
|
|
stmia r11!, {r0-r7}
|
737 |
|
|
beq 15f
|
738 |
|
|
b 10b
|
739 |
|
|
15:
|
740 |
|
|
|
741 |
|
|
// now copy 1st 4K page of flash into first 4K of RAM.
|
742 |
|
|
ldr r1, =RAM_BASE // base address of SDRAM
|
743 |
|
|
mov r2, #0xd0000000 // alias for first 1M of flash
|
744 |
|
|
mov r3, #0x1000
|
745 |
|
|
16:
|
746 |
|
|
ldr r4, [r2]
|
747 |
|
|
add r2, r2, #4
|
748 |
|
|
str r4, [r1]
|
749 |
|
|
add r1, r1, #4
|
750 |
|
|
subs r3, r3, #4
|
751 |
|
|
bne 16b
|
752 |
|
|
|
753 |
|
|
// Battery Backup SDRAM Memory Test
|
754 |
|
|
// Store 4 byte Test Pattern back into memory
|
755 |
|
|
str r10, [r9, #0x0]
|
756 |
|
|
|
757 |
|
|
HEX_DISPLAY r0, r1, DISPLAY_1, DISPLAY_0
|
758 |
|
|
|
759 |
|
|
// clean/drain/flush the main Dcache
|
760 |
|
|
mov r1, #DCACHE_FLUSH_AREA // use a CACHEABLE area of
|
761 |
|
|
// the memory map above SDRAM
|
762 |
|
|
mov r0, #1024 // number of lines in the Dcache
|
763 |
|
|
20:
|
764 |
|
|
mcr p15, 0, r1, c7, c2, 5 // allocate a Dcache line
|
765 |
|
|
add r1, r1, #32 // increment the address to
|
766 |
|
|
// the next cache line
|
767 |
|
|
subs r0, r0, #1 // decrement the loop count
|
768 |
|
|
bne 20b
|
769 |
|
|
|
770 |
|
|
HEX_DISPLAY r0, r1, DISPLAY_9, DISPLAY_9
|
771 |
|
|
|
772 |
|
|
// clean/drain/flush the mini Dcache
|
773 |
|
|
ldr r2, =(DCACHE_FLUSH_AREA+DCACHE_SIZE) // use a CACHEABLE area of
|
774 |
|
|
// the memory map above SDRAM
|
775 |
|
|
mov r0, #64 // number of lines in the mini Dcache
|
776 |
|
|
21:
|
777 |
|
|
mcr p15, 0, r2, c7, c2, 5 // allocate a Dcache line
|
778 |
|
|
add r2, r2, #32 // increment the address to
|
779 |
|
|
// the next cache line
|
780 |
|
|
subs r0, r0, #1 // decrement the loop count
|
781 |
|
|
bne 21b
|
782 |
|
|
|
783 |
|
|
mcr p15, 0, r0, c7, c6, 0 // flush Dcache
|
784 |
|
|
CPWAIT r0
|
785 |
|
|
|
786 |
|
|
HEX_DISPLAY r0, r1, DISPLAY_7, DISPLAY_7
|
787 |
|
|
|
788 |
|
|
mcr p15, 0, r0, c7, c10, 4 // drain the write & fill buffers
|
789 |
|
|
CPWAIT r0
|
790 |
|
|
|
791 |
|
|
// enable ECC stuff here
|
792 |
|
|
mcr p15, 0, r0, c7, c10, 4 //
|
793 |
|
|
CPWAIT r0
|
794 |
|
|
|
795 |
|
|
mrc p13, 0, r0, c0, c1, 0 // BCU_WAIT --> wait until the BCU isn't busy
|
796 |
|
|
submi pc, pc, #0xc
|
797 |
|
|
|
798 |
|
|
checkme: // add in multi-bit error reporting */
|
799 |
|
|
mrc p13, 0, r0, c0, c1, 0 // disable ECC
|
800 |
|
|
and r0, r0, #(-1-8)
|
801 |
|
|
mcr p13, 0, r0, c0, c1, 0
|
802 |
|
|
orr r0, r0, #6 // enable single-bit correction,
|
803 |
|
|
mcr p13, 0, r0, c0, c1, 0 // multi-bit detection
|
804 |
|
|
orr r0, r0, #8 // enable ECC
|
805 |
|
|
mcr p13, 0, r0, c0, c1, 0
|
806 |
|
|
|
807 |
|
|
mrc p13, 0, r0, c0, c1, 0 // BCU_WAIT --> wait until the BCU isn't busy
|
808 |
|
|
submi pc, pc, #0xc
|
809 |
|
|
|
810 |
|
|
// Enable ECC circuitry in Yavapai
|
811 |
|
|
ldr r1, =ECCR_ADDR
|
812 |
|
|
mov r0, #0x6 // Enable single bit ECC Correction (Reporting Enabled)
|
813 |
|
|
str r0, [r1, #0]
|
814 |
|
|
|
815 |
|
|
HEX_DISPLAY r0, r1, DISPLAY_6, DISPLAY_6
|
816 |
|
|
|
817 |
|
|
#if 1
|
818 |
|
|
mov r0, #0x1000000
|
819 |
|
|
1: subs r0,r0,#1
|
820 |
|
|
bne 1b
|
821 |
|
|
#endif
|
822 |
|
|
// Save SDRAM size
|
823 |
|
|
ldr r1, =hal_dram_size /* [see hal_intr.h] */
|
824 |
|
|
str r8, [r1]
|
825 |
|
|
|
826 |
|
|
// Move mmu tables into RAM so page table walks by the cpu
|
827 |
|
|
// don't interfere with FLASH programming.
|
828 |
|
|
ldr r0, =mmu_table
|
829 |
|
|
mov r4, r0
|
830 |
|
|
add r2, r0, #0x4800 // End of tables
|
831 |
|
|
mov r1, #RAM_BASE
|
832 |
|
|
orr r1, r1, #0x4000 // RAM tables
|
833 |
|
|
mov r5, r1
|
834 |
|
|
|
835 |
|
|
// first, fixup physical address to second level
|
836 |
|
|
// table used to map first 1MB of flash.
|
837 |
|
|
ldr r3, [r0], #4
|
838 |
|
|
sub r3, r3, r4
|
839 |
|
|
add r3, r3, r5
|
840 |
|
|
str r3, [r1], #4
|
841 |
|
|
// everything else can go as-is
|
842 |
|
|
1:
|
843 |
|
|
ldr r3, [r0], #4
|
844 |
|
|
str r3, [r1], #4
|
845 |
|
|
cmp r0, r2
|
846 |
|
|
bne 1b
|
847 |
|
|
|
848 |
|
|
// go back and fixup physical address to second level
|
849 |
|
|
// table used to map first 1MB of SDRAM.
|
850 |
|
|
add r1, r5, #(0xA00 * 4)
|
851 |
|
|
ldr r0, [r1] // entry for first 1MB of DRAM
|
852 |
|
|
sub r0, r0, r4
|
853 |
|
|
add r0, r0, r5
|
854 |
|
|
str r0, [r1] // store it back
|
855 |
|
|
|
856 |
|
|
// Flush the cache
|
857 |
|
|
mov r0, #DCACHE_FLUSH_AREA /* cache flush region */
|
858 |
|
|
add r1, r0, #0x8000 /* 32KB cache */
|
859 |
|
|
667:
|
860 |
|
|
mcr p15,0,r0,c7,c2,5 /* allocate a line */
|
861 |
|
|
add r0, r0, #32 /* 32 bytes/line */
|
862 |
|
|
teq r1, r0
|
863 |
|
|
bne 667b
|
864 |
|
|
mcr p15,0,r0,c7,c6,0 /* invalidate data cache */
|
865 |
|
|
/* cpuwait */
|
866 |
|
|
mrc p15,0,r1,c2,c0,0 /* arbitrary read */
|
867 |
|
|
mov r1,r1
|
868 |
|
|
sub pc,pc,#4
|
869 |
|
|
mcr p15,0,r0,c7,c10,4
|
870 |
|
|
/* cpuwait */
|
871 |
|
|
mrc p15,0,r1,c2,c0,0 /* arbitrary read */
|
872 |
|
|
mov r1,r1
|
873 |
|
|
sub pc,pc,#4
|
874 |
|
|
nop
|
875 |
|
|
|
876 |
|
|
HEX_DISPLAY r0, r1, DISPLAY_5, DISPLAY_2
|
877 |
|
|
|
878 |
|
|
// Set the TTB register to DRAM mmu_table
|
879 |
|
|
mov r0, r5
|
880 |
|
|
mov r1, #0
|
881 |
|
|
mcr p15, 0, r1, c7, c5, 0 // flush I cache
|
882 |
|
|
mcr p15, 0, r1, c7, c10, 4 // drain WB
|
883 |
|
|
mcr p15, 0, r0, c2, c0, 0 // load page table pointer
|
884 |
|
|
mcr p15, 0, r1, c8, c7, 0 // flush TLBs
|
885 |
|
|
CPWAIT r0
|
886 |
|
|
|
887 |
|
|
// Interrupt init
|
888 |
|
|
mov r0, #0 // enable no sources
|
889 |
|
|
mcr p13,0,r0,c0,c0,0 // write to INTCTL
|
890 |
|
|
// Steer both BCU and PMU to IRQ
|
891 |
|
|
mcr p13,0,r0,c8,c0,0 // write to INTSTR
|
892 |
|
|
|
893 |
|
|
HEX_DISPLAY r0, r1, DISPLAY_0, DISPLAY_0
|
894 |
|
|
|
895 |
|
|
.endm // _platform_setup1
|
896 |
|
|
|
897 |
|
|
|
898 |
|
|
#define PLATFORM_VECTORS _platform_vectors
|
899 |
|
|
.macro _platform_vectors
|
900 |
|
|
.globl _80312_EMISR
|
901 |
|
|
_80312_EMISR: .long 0 // Companion chip "clear-on-read" interrupt status
|
902 |
|
|
// register for the performance monitor unit.
|
903 |
|
|
.endm
|
904 |
|
|
|
905 |
|
|
/*---------------------------------------------------------------------------*/
|
906 |
|
|
/* end of hal_platform_setup.h */
|
907 |
|
|
#endif /* CYGONCE_HAL_PLATFORM_SETUP_H */
|
908 |
|
|
|