1 |
27 |
unneback |
//==========================================================================
|
2 |
|
|
//
|
3 |
|
|
// usbethdrv.c
|
4 |
|
|
//
|
5 |
|
|
// Network device driver for USB-ethernet devices.
|
6 |
|
|
//
|
7 |
|
|
//==========================================================================
|
8 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
9 |
|
|
// -------------------------------------------
|
10 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
11 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
12 |
|
|
//
|
13 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
14 |
|
|
// the terms of the GNU General Public License as published by the Free
|
15 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
16 |
|
|
//
|
17 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
18 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
19 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
20 |
|
|
// for more details.
|
21 |
|
|
//
|
22 |
|
|
// You should have received a copy of the GNU General Public License along
|
23 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
24 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
25 |
|
|
//
|
26 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
27 |
|
|
// or inline functions from this file, or you compile this file and link it
|
28 |
|
|
// with other works to produce a work based on this file, this file does not
|
29 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
30 |
|
|
// License. However the source code for this file must still be made available
|
31 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
32 |
|
|
//
|
33 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
34 |
|
|
// this file might be covered by the GNU General Public License.
|
35 |
|
|
//
|
36 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
37 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
38 |
|
|
// -------------------------------------------
|
39 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
40 |
|
|
//==========================================================================
|
41 |
|
|
//#####DESCRIPTIONBEGIN####
|
42 |
|
|
//
|
43 |
|
|
// Author(s): bartv
|
44 |
|
|
// Contributors: bartv
|
45 |
|
|
// Date: 2000-10-04
|
46 |
|
|
//
|
47 |
|
|
//####DESCRIPTIONEND####
|
48 |
|
|
//==========================================================================
|
49 |
|
|
|
50 |
|
|
#include <cyg/infra/cyg_type.h>
|
51 |
|
|
#include <cyg/hal/hal_arch.h>
|
52 |
|
|
#include <cyg/infra/diag.h>
|
53 |
|
|
#include <cyg/hal/drv_api.h>
|
54 |
|
|
|
55 |
|
|
#define __ECOS 1
|
56 |
|
|
#include <cyg/io/eth/netdev.h>
|
57 |
|
|
#include <cyg/io/eth/eth_drv.h>
|
58 |
|
|
#include <cyg/io/eth/eth_drv_stats.h>
|
59 |
|
|
|
60 |
|
|
#include <pkgconf/io_usb_slave_eth.h>
|
61 |
|
|
#include <cyg/io/usb/usbs_eth.h>
|
62 |
|
|
|
63 |
|
|
// ----------------------------------------------------------------------------
|
64 |
|
|
// The network driver data structure.
|
65 |
|
|
ETH_DRV_SC(usbs_eth_sc0,
|
66 |
|
|
(void*) &usbs_eth0,
|
67 |
|
|
CYGDAT_USBS_ETHDRV_NAME,
|
68 |
|
|
usbs_ethdrv_start,
|
69 |
|
|
usbs_ethdrv_stop,
|
70 |
|
|
usbs_ethdrv_ioctl,
|
71 |
|
|
usbs_ethdrv_can_send,
|
72 |
|
|
usbs_ethdrv_send,
|
73 |
|
|
usbs_ethdrv_recv,
|
74 |
|
|
usbs_ethdrv_deliver,
|
75 |
|
|
usbs_ethdrv_poll,
|
76 |
|
|
usbs_ethdrv_intvector);
|
77 |
|
|
|
78 |
|
|
NETDEVTAB_ENTRY(usbs_eth_netdev0,
|
79 |
|
|
"usbs_eth0",
|
80 |
|
|
usbs_ethdrv_init,
|
81 |
|
|
&usbs_eth_sc0);
|
82 |
|
|
|
83 |
|
|
// ----------------------------------------------------------------------------
|
84 |
|
|
// Statics gathering. The following macro can be used to increment a
|
85 |
|
|
// statistic without having to use a #ifdef for the statistics
|
86 |
|
|
// configuration option everywhere.
|
87 |
|
|
#ifdef CYGFUN_USBS_ETHDRV_STATISTICS
|
88 |
|
|
# define INCR_STAT(a) \
|
89 |
|
|
CYG_MACRO_START \
|
90 |
|
|
(a) += 1; \
|
91 |
|
|
CYG_MACRO_END
|
92 |
|
|
#else
|
93 |
|
|
# define INCR_STAT(a) CYG_EMPTY_STATEMENT
|
94 |
|
|
#endif
|
95 |
|
|
|
96 |
|
|
// Various constants related to SNMP statistics. It is not clear
|
97 |
|
|
// what these are all for.
|
98 |
|
|
#ifdef CYGFUN_USBS_ETHDRV_STATISTICS
|
99 |
|
|
# define CYGDAT_USBS_ETHDRV_DESCRIPTION "eCos USB ethernet device"
|
100 |
|
|
#endif
|
101 |
|
|
// ----------------------------------------------------------------------------
|
102 |
|
|
// Utility functions.
|
103 |
|
|
//
|
104 |
|
|
// The TCP/IP stack works in terms of scatter/gather buffers. USB tends to
|
105 |
|
|
// involve DMA operations so it is more convenient to work in terms of
|
106 |
|
|
// 1514 byte flat buffers. Actually, the first two bytes of the buffer
|
107 |
|
|
// are used to hold the ethernet frame size to work around restrictions
|
108 |
|
|
// with certain hardware implementations of USB that may be unable to
|
109 |
|
|
// transfer certain packet sizes.
|
110 |
|
|
|
111 |
|
|
static bool
|
112 |
|
|
scatter(unsigned char* buf, struct eth_drv_sg* sg, int sg_len)
|
113 |
|
|
{
|
114 |
|
|
unsigned int size;
|
115 |
|
|
|
116 |
|
|
size = buf[0] | (buf[1] << 8);
|
117 |
|
|
buf++; buf++;
|
118 |
|
|
|
119 |
|
|
CYG_ASSERT((size >= CYGNUM_USBS_ETH_MIN_FRAME_SIZE) && (size <= CYGNUM_USBS_ETH_MAX_FRAME_SIZE),\
|
120 |
|
|
"ethernet frame size limits must be observed");
|
121 |
|
|
|
122 |
|
|
while ((size > 0) && (sg_len > 0)) {
|
123 |
|
|
if (size > sg->len) {
|
124 |
|
|
memcpy((void*) sg->buf, buf, sg->len);
|
125 |
|
|
buf += sg->len;
|
126 |
|
|
size -= sg->len;
|
127 |
|
|
sg++;
|
128 |
|
|
sg_len--;
|
129 |
|
|
} else {
|
130 |
|
|
memcpy((void*) sg->buf, buf, size);
|
131 |
|
|
size = 0;
|
132 |
|
|
}
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
return 0 == size;
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
static bool
|
139 |
|
|
gather(unsigned char* buf, unsigned int size, struct eth_drv_sg* sg, int sg_len)
|
140 |
|
|
{
|
141 |
|
|
unsigned int left = size;
|
142 |
|
|
unsigned char* base = buf;
|
143 |
|
|
|
144 |
|
|
buf++; buf++;
|
145 |
|
|
while ((left > 0) && (sg_len > 0)) {
|
146 |
|
|
if (left > sg->len) {
|
147 |
|
|
memcpy(buf, (void*) sg->buf, sg->len);
|
148 |
|
|
buf += sg->len;
|
149 |
|
|
left -= sg->len;
|
150 |
|
|
sg++;
|
151 |
|
|
sg_len--;
|
152 |
|
|
} else {
|
153 |
|
|
memcpy(buf, (void*) sg->buf, left);
|
154 |
|
|
left = 0;
|
155 |
|
|
}
|
156 |
|
|
}
|
157 |
|
|
size = size - left;
|
158 |
|
|
base[0] = size & 0x00FF;
|
159 |
|
|
base[1] = (size >> 8) & 0x00FF;
|
160 |
|
|
|
161 |
|
|
return 0 == left;
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
|
165 |
|
|
// ----------------------------------------------------------------------------
|
166 |
|
|
// usbs_ethdrv_init()
|
167 |
|
|
//
|
168 |
|
|
// This function is called during system initialization to decide
|
169 |
|
|
// whether or not this particular network device is usable. For
|
170 |
|
|
// USB-ethernet this is problematical, the device is only really
|
171 |
|
|
// usable once both sides have come up. The typical sequence
|
172 |
|
|
// of events is something like:
|
173 |
|
|
//
|
174 |
|
|
// 1) the eCos peripheral is powered up. Static constructors are
|
175 |
|
|
// run resulting in basic initialization.
|
176 |
|
|
//
|
177 |
|
|
// 2) the eCos TCP/IP stack initialization happens. Roughly in
|
178 |
|
|
// parallel the eCos USB slave side is initialized as well,
|
179 |
|
|
// i.e. enumeration data is supplied to control endpoints,
|
180 |
|
|
// endpoints are associated with application classes, and so
|
181 |
|
|
// on. The relative order of TCP/IP and USB initialization is
|
182 |
|
|
// not particularly important.
|
183 |
|
|
//
|
184 |
|
|
// It is the TCP/IP stack's initialization code that will
|
185 |
|
|
// invoke usbs_eth_init().
|
186 |
|
|
//
|
187 |
|
|
// 3) host-side USB detects that the eCos peripheral has been
|
188 |
|
|
// connected or powered up. It goes through the enumeration
|
189 |
|
|
// process and will end up loading a host-side network driver.
|
190 |
|
|
// This connects to the eCos-side USB ethernet code to
|
191 |
|
|
// e.g. obtain the MAC address.
|
192 |
|
|
//
|
193 |
|
|
// 4) when the host-side is ready, the eCos side can be brought up.
|
194 |
|
|
// The required call is (sc->funs->eth_drv->init)(sc, enaddr)
|
195 |
|
|
//
|
196 |
|
|
// In practice it is easier for now to invoke the init() function
|
197 |
|
|
// immediately. There are not going to be any incoming packets
|
198 |
|
|
// until the host is ready, and can_send() can just return false
|
199 |
|
|
// for the time being.
|
200 |
|
|
//
|
201 |
|
|
// Invoked in: thread context only
|
202 |
|
|
// ----------------------------------------------------------------------------
|
203 |
|
|
|
204 |
|
|
static bool
|
205 |
|
|
usbs_ethdrv_init(struct cyg_netdevtab_entry* ndp)
|
206 |
|
|
{
|
207 |
|
|
struct eth_drv_sc* sc = (struct eth_drv_sc*)(ndp->device_instance);
|
208 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
209 |
|
|
|
210 |
|
|
(*sc->funs->eth_drv->init)(sc, eth->ecos_MAC);
|
211 |
|
|
return true;
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
// ----------------------------------------------------------------------------
|
215 |
|
|
// The receive process that is used to transfer a received ethernet
|
216 |
|
|
// packet into the stack. The calling sequence is somewhat convoluted.
|
217 |
|
|
// It started off as:
|
218 |
|
|
//
|
219 |
|
|
// 1) Ethernet hw ISR invoked by hardware, schedules its own
|
220 |
|
|
// hw_dsr(), and blocks further interrupts in the ethernet chip
|
221 |
|
|
// 2) hw_dsr() calls generic eth_drv_dsr() from io/eth common package
|
222 |
|
|
// 3) eth_drv_dsr() interacts with the TCP/IP stack and allocates mbufs
|
223 |
|
|
// (typically, the TCP/IP stack might not be in use)
|
224 |
|
|
// 4) eth_drv_dsr() calls usbs_eth_recv() to transfer the data to mbufs
|
225 |
|
|
// 5) eth_drv_dsr() returns to hw_dsr() which reenables interrupts
|
226 |
|
|
// 6) hw_dsr() completes and everything can proceed.
|
227 |
|
|
//
|
228 |
|
|
// The problem with this is that the whole ethernet packet gets copied
|
229 |
|
|
// inside a DSR, affecting dispatch latency (but not interrupt latency).
|
230 |
|
|
// This is bad. Hence there is an alternative route involving a separate
|
231 |
|
|
// thread in the TCP/IP stack.
|
232 |
|
|
//
|
233 |
|
|
// 1) Ethernet hw ISR runs as before, scheduling hw_dsr()
|
234 |
|
|
// 2) hw_dsr() calls up into eth_drv_dsr()
|
235 |
|
|
// 3) eth_drv_dsr() wakes up a thread inside the TCP/IP stack
|
236 |
|
|
// 4) eth_drv_dsr() returns to hw_dsr(), which performs no further
|
237 |
|
|
// processing. Ethernet chip interrupts remain disabled.
|
238 |
|
|
// 5) The TCP/IP thread ends up calling hw_deliver(). This should take
|
239 |
|
|
// care of any pending activity. For every buffered packet there should
|
240 |
|
|
// be a call to a generic recv() function which then goes back into
|
241 |
|
|
// the driver-specific recv() function.
|
242 |
|
|
//
|
243 |
|
|
// The advantage is that ethernet packet copying now happens at thread
|
244 |
|
|
// level rather than DSR level so thread priorities can be used to
|
245 |
|
|
// schedule things.
|
246 |
|
|
//
|
247 |
|
|
// USB-ethernet does not interact directly with any hardware, instead
|
248 |
|
|
// it just passes information to lower levels of USB code. The reception
|
249 |
|
|
// process is started by usbs_ethdrv_start() when the TCP/IP stack brings
|
250 |
|
|
// up the interface.
|
251 |
|
|
//
|
252 |
|
|
// When the USB transfer has completed a callback will be invoked, at
|
253 |
|
|
// DSR level. Assuming the transfer went ok, the callback will invoke
|
254 |
|
|
// eth_drv_dsr() to inform the higher level code.
|
255 |
|
|
//
|
256 |
|
|
// The deliver function can check the state of the buffer
|
257 |
|
|
// and go through the sc->funs->eth_drv->recv()/recv() sequence
|
258 |
|
|
// to transfer the data into the stack.
|
259 |
|
|
//
|
260 |
|
|
// usbs_ethdrv_recv() does a scatter from the internal buffer into the
|
261 |
|
|
// mbuf, thus freeing up the buffer. This allows it to start another
|
262 |
|
|
// receive,
|
263 |
|
|
//
|
264 |
|
|
// Synchronisation involves the scheduler lock because the recv
|
265 |
|
|
// callback is invoked inside a DSR.
|
266 |
|
|
|
267 |
|
|
static void usbs_ethdrv_halted_callback(void*, int);
|
268 |
|
|
|
269 |
|
|
static void
|
270 |
|
|
usbs_ethdrv_recv_callback(usbs_eth* eth, void* callback_data, int size)
|
271 |
|
|
{
|
272 |
|
|
cyg_bool resubmit = true;
|
273 |
|
|
|
274 |
|
|
struct eth_drv_sc* sc = (struct eth_drv_sc*) callback_data;
|
275 |
|
|
CYG_ASSERT( eth == (usbs_eth*)(sc->driver_private), "USB and TCP/IP worlds need to be consistent");
|
276 |
|
|
|
277 |
|
|
INCR_STAT(eth->interrupts);
|
278 |
|
|
if (!eth->ecos_up) {
|
279 |
|
|
// This message should just be discarded since the eCos TCP/IP
|
280 |
|
|
// stack is not expecting anything from this interface.
|
281 |
|
|
// Reception will resume when the interface comes back up.
|
282 |
|
|
eth->rx_active = false;
|
283 |
|
|
resubmit = false;
|
284 |
|
|
} else if (size < 0) {
|
285 |
|
|
// An error has occurred. The likely possibilities are:
|
286 |
|
|
// -EPIPE: connection to the host has been broken
|
287 |
|
|
// -EAGAIN: the endpoint is haltedn
|
288 |
|
|
// -EMSGSIZE: bogus message from host
|
289 |
|
|
// -EIO: other
|
290 |
|
|
|
291 |
|
|
if (-EAGAIN == size) {
|
292 |
|
|
// EAGAIN should be handled by waiting for the endpoint to be reset.
|
293 |
|
|
resubmit = false;
|
294 |
|
|
usbs_start_rx_endpoint_wait(eth->rx_endpoint, &usbs_ethdrv_halted_callback, (void*) sc);
|
295 |
|
|
} else if (-EMSGSIZE == size) {
|
296 |
|
|
// Do nothing for now
|
297 |
|
|
} else {
|
298 |
|
|
// EPIPE should be resubmitted, the usbseth.c will use the
|
299 |
|
|
// pending rx support. EIO could mean anything.
|
300 |
|
|
}
|
301 |
|
|
} else if (0 == size) {
|
302 |
|
|
// The endpoint is no longer halted. Just do the resubmit at
|
303 |
|
|
// the end.
|
304 |
|
|
} else {
|
305 |
|
|
// A packet has been received. Now do a size sanity check
|
306 |
|
|
// based on the first two bytes.
|
307 |
|
|
int real_size = eth->rx_bufptr[0] + (eth->rx_bufptr[1] << 8);
|
308 |
|
|
if (real_size < CYGNUM_USBS_ETH_MIN_FRAME_SIZE) {
|
309 |
|
|
INCR_STAT(eth->rx_short_frames);
|
310 |
|
|
} else if (real_size > CYGNUM_USBS_ETH_MAX_FRAME_SIZE) {
|
311 |
|
|
INCR_STAT(eth->rx_too_long_frames);
|
312 |
|
|
} else {
|
313 |
|
|
// The packet appears to be valid. Inform higher level
|
314 |
|
|
// code and mark the buffer as in use.
|
315 |
|
|
resubmit = false;
|
316 |
|
|
eth->rx_buffer_full = true;
|
317 |
|
|
eth->rx_active = false;
|
318 |
|
|
eth_drv_dsr(0, 0, (cyg_addrword_t) sc);
|
319 |
|
|
}
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
if (resubmit) {
|
323 |
|
|
eth->rx_active = true;
|
324 |
|
|
usbs_eth_start_rx(eth, eth->rx_bufptr, &usbs_ethdrv_recv_callback, callback_data);
|
325 |
|
|
}
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
// Another callback, used to wait while an endpoint is halted.
|
329 |
|
|
static void
|
330 |
|
|
usbs_ethdrv_halted_callback(void* callback_data, int size)
|
331 |
|
|
{
|
332 |
|
|
struct eth_drv_sc* sc = (struct eth_drv_sc*) callback_data;
|
333 |
|
|
usbs_ethdrv_recv_callback((usbs_eth*) sc->driver_private, callback_data, 0);
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
// Start a receive operation. It is not possible to abort an existing
|
337 |
|
|
// rx operation, so a valid sequence of events is: start, rx ongoing,
|
338 |
|
|
// stop, restart. The rx_active field is used to keep track of whether
|
339 |
|
|
// or not there is still a receive in progress. The receive callback
|
340 |
|
|
// will just discard incoming data if the eCos stack is not currently
|
341 |
|
|
// running.
|
342 |
|
|
static void
|
343 |
|
|
usbs_ethdrv_start_recv(struct eth_drv_sc* sc, usbs_eth* eth)
|
344 |
|
|
{
|
345 |
|
|
cyg_drv_dsr_lock();
|
346 |
|
|
if (!eth->rx_active) {
|
347 |
|
|
eth->rx_active = true;
|
348 |
|
|
usbs_eth_start_rx(eth, eth->rx_bufptr, &usbs_ethdrv_recv_callback, (void*) sc);
|
349 |
|
|
}
|
350 |
|
|
cyg_drv_dsr_unlock();
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
// This is invoked from the delivery thread when a valid buffer
|
354 |
|
|
// has been received. The buffer should be scattered into the
|
355 |
|
|
// supplied list, then another receive should be started.
|
356 |
|
|
|
357 |
|
|
static void
|
358 |
|
|
usbs_ethdrv_recv(struct eth_drv_sc* sc,
|
359 |
|
|
struct eth_drv_sg* sg_list, int sg_len)
|
360 |
|
|
{
|
361 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
362 |
|
|
|
363 |
|
|
CYG_ASSERT( eth->rx_buffer_full, "This function should only be called when there is a buffer available");
|
364 |
|
|
(void) scatter(eth->rx_bufptr, sg_list, sg_len);
|
365 |
|
|
eth->rx_buffer_full = false;
|
366 |
|
|
eth->rx_active = true;
|
367 |
|
|
usbs_eth_start_rx(eth, eth->rx_bufptr, &usbs_ethdrv_recv_callback, (void*) sc);
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
// ----------------------------------------------------------------------------
|
371 |
|
|
// Now for the transmit process.
|
372 |
|
|
//
|
373 |
|
|
// When an application thread writes down a socket the data gets moved
|
374 |
|
|
// into mbufs, and then passed to the appropriate device driver - which
|
375 |
|
|
// may or may not be able to process it immediately. There is also a
|
376 |
|
|
// timeout thread within the TCP/IP to handle retransmits etc.
|
377 |
|
|
//
|
378 |
|
|
// The stack will start by calling usbs_ethdrv_can_send() to determine
|
379 |
|
|
// whether or not the driver can accept the packet. For the purposes
|
380 |
|
|
// of the USB-ethernet driver this is true provided both host
|
381 |
|
|
// and target are up and there is a spare buffer available.
|
382 |
|
|
//
|
383 |
|
|
// If the usbs_eth_can_send() returns true then there will be a call
|
384 |
|
|
// to usbs_ethdrv_send(). This gathers the data into a single
|
385 |
|
|
// buffer. If there is no transmit in progress yet then one is started.
|
386 |
|
|
//
|
387 |
|
|
// At some point the packet will have been transmitted and a callback
|
388 |
|
|
// gets invoked. This needs to call eth_drv_dsr(), waking up the
|
389 |
|
|
// delivery thread. The deliver() function can then check which
|
390 |
|
|
// transmissions have completed and inform the higher level code
|
391 |
|
|
// via sc->funs->eth_drv->tx_done(). The buffer can be re-used at
|
392 |
|
|
// that point.
|
393 |
|
|
|
394 |
|
|
static void
|
395 |
|
|
usbs_ethdrv_send_callback(usbs_eth* eth, void* callback_data, int size)
|
396 |
|
|
{
|
397 |
|
|
struct eth_drv_sc* sc = (struct eth_drv_sc*) callback_data;
|
398 |
|
|
CYG_ASSERT( eth == (usbs_eth*)(sc->driver_private), "USB and TCP/IP worlds need to be consistent");
|
399 |
|
|
|
400 |
|
|
INCR_STAT(eth->interrupts);
|
401 |
|
|
|
402 |
|
|
// There are a variety of possible error codes. -EAGAIN indicates
|
403 |
|
|
// that the endpoint is stalled. -EPIPE indicates that the
|
404 |
|
|
// connection to the host has been lost. These are not really
|
405 |
|
|
// particularly interesting. Whatever happens the buffer
|
406 |
|
|
// must be cleared and higher-level code informed so that
|
407 |
|
|
// the mbufs can be released.
|
408 |
|
|
if (size > 0) {
|
409 |
|
|
INCR_STAT(eth->tx_count);
|
410 |
|
|
}
|
411 |
|
|
eth->tx_done = true;
|
412 |
|
|
eth_drv_dsr(0, 0, (cyg_addrword_t) sc);
|
413 |
|
|
}
|
414 |
|
|
|
415 |
|
|
// Is it possible to send an ethernet frame? This requires
|
416 |
|
|
// an empty buffer, i.e. there should be no existing
|
417 |
|
|
// transmit in progress. It also requires that the host
|
418 |
|
|
// is connected and that the endpoint is not currently halted.
|
419 |
|
|
static int
|
420 |
|
|
usbs_ethdrv_can_send(struct eth_drv_sc* sc)
|
421 |
|
|
{
|
422 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
423 |
|
|
return eth->host_up && !eth->tx_buffer_full && !eth->tx_endpoint->halted;
|
424 |
|
|
}
|
425 |
|
|
|
426 |
|
|
// Actually start a packet transmission. This means collecting
|
427 |
|
|
// all the data into a single buffer and then invoking the
|
428 |
|
|
// lower-level code. The latter may discard the packet immediately
|
429 |
|
|
// if the MAC is not appropriate: it would be more efficient to
|
430 |
|
|
// catch that here, especially for large packets, but the check
|
431 |
|
|
// has to happen inside the lower-level code anyway in case
|
432 |
|
|
// that is being invoked directly rather than via the driver.
|
433 |
|
|
//
|
434 |
|
|
// There is a possible recursion problem,
|
435 |
|
|
// send->start_tx->tx_done->can_send->send, which is guarded
|
436 |
|
|
// against using the tx_in_send flag.
|
437 |
|
|
|
438 |
|
|
static void
|
439 |
|
|
usbs_ethdrv_send(struct eth_drv_sc* sc,
|
440 |
|
|
struct eth_drv_sg* sgl_list, int sg_len, int total_len,
|
441 |
|
|
unsigned long key)
|
442 |
|
|
{
|
443 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
444 |
|
|
|
445 |
|
|
CYG_ASSERT( 0 == eth->tx_in_send, "send() should not be invoked recursively");
|
446 |
|
|
CYG_ASSERT( total_len <= CYGNUM_USBS_ETH_MAX_FRAME_SIZE, "ethernet maximum frame size should be observed");
|
447 |
|
|
CYG_ASSERT( CYGNUM_USBS_ETH_MIN_FRAME_SIZE <= total_len, "ethernet minimum frame size should be observed");
|
448 |
|
|
|
449 |
|
|
eth->tx_in_send = true;
|
450 |
|
|
CYG_ASSERT( !eth->tx_buffer_full, "the transmit buffer should be empty");
|
451 |
|
|
gather(eth->tx_buffer, CYGNUM_USBS_ETH_MAX_FRAME_SIZE, sgl_list, sg_len);
|
452 |
|
|
eth->tx_buffer_full = true;
|
453 |
|
|
eth->tx_done = false;
|
454 |
|
|
eth->tx_key = key;
|
455 |
|
|
usbs_eth_start_tx(eth, eth->tx_buffer, &usbs_ethdrv_send_callback, (void*) sc);
|
456 |
|
|
eth->tx_in_send = false;
|
457 |
|
|
}
|
458 |
|
|
|
459 |
|
|
// ----------------------------------------------------------------------------
|
460 |
|
|
// Deliver needs to take into account both receive and transmit buffers.
|
461 |
|
|
|
462 |
|
|
static void
|
463 |
|
|
usbs_ethdrv_deliver(struct eth_drv_sc* sc)
|
464 |
|
|
{
|
465 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
466 |
|
|
|
467 |
|
|
if (eth->rx_buffer_full) {
|
468 |
|
|
int size = eth->rx_bufptr[0] + (eth->rx_bufptr[1] << 8);
|
469 |
|
|
(*sc->funs->eth_drv->recv)(sc, size);
|
470 |
|
|
}
|
471 |
|
|
if (eth->tx_done) {
|
472 |
|
|
unsigned long key = eth->tx_key;
|
473 |
|
|
eth->tx_buffer_full = false;
|
474 |
|
|
eth->tx_done = false;
|
475 |
|
|
(*sc->funs->eth_drv->tx_done)(sc, key, 1);
|
476 |
|
|
}
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
// ----------------------------------------------------------------------------
|
480 |
|
|
// usbs_ethdrv_start()
|
481 |
|
|
//
|
482 |
|
|
// This gets called by the TCP/IP stack later on during
|
483 |
|
|
// initialization, when the stack is ready to send and receive
|
484 |
|
|
// packets. It may get called multiple times while the stack
|
485 |
|
|
// is running, with different flags values.
|
486 |
|
|
//
|
487 |
|
|
// As far as transmits are concerned, nothing needs to be done. If no
|
488 |
|
|
// transmit is in progress then everything is fine anyway. If a
|
489 |
|
|
// transmit is already in progress then it must be allowed to complete
|
490 |
|
|
// via the usual route. Receives should however be restarted, the
|
491 |
|
|
// start function has appropriate safeguards.
|
492 |
|
|
//
|
493 |
|
|
// Invoked in: thread context only
|
494 |
|
|
// ----------------------------------------------------------------------------
|
495 |
|
|
|
496 |
|
|
static void
|
497 |
|
|
usbs_ethdrv_start(struct eth_drv_sc* sc, unsigned char* enaddr, int flags)
|
498 |
|
|
{
|
499 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
500 |
|
|
if (!eth->ecos_up) {
|
501 |
|
|
eth->ecos_up = true;
|
502 |
|
|
usbs_ethdrv_start_recv(sc, eth);
|
503 |
|
|
}
|
504 |
|
|
}
|
505 |
|
|
|
506 |
|
|
// ----------------------------------------------------------------------------
|
507 |
|
|
// usbs_ethdrv_stop()
|
508 |
|
|
//
|
509 |
|
|
// Similarly this gets called by the TCP/IP stack to bring the network
|
510 |
|
|
// interface down. Nothing should happen for any packets currently
|
511 |
|
|
// being transmitted or received, that would cause confusion everywhere.
|
512 |
|
|
// The receive callback checks the ecos_up flag and does the right
|
513 |
|
|
// thing. The TCP/IP stack should not call can_send() after taking
|
514 |
|
|
// the interface down so no new transmits will be initiated.
|
515 |
|
|
//
|
516 |
|
|
// Invoked in: thread context only
|
517 |
|
|
// ----------------------------------------------------------------------------
|
518 |
|
|
|
519 |
|
|
static void
|
520 |
|
|
usbs_ethdrv_stop(struct eth_drv_sc* sc)
|
521 |
|
|
{
|
522 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
523 |
|
|
eth->ecos_up = false;
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
// ----------------------------------------------------------------------------
|
527 |
|
|
// usbs_eth_ioctl()
|
528 |
|
|
//
|
529 |
|
|
// The operations to worry about here are:
|
530 |
|
|
//
|
531 |
|
|
// SET_MAC_ADDRESS,via the SIOCSIFHWADDR ioctl
|
532 |
|
|
//
|
533 |
|
|
// GET_IF_STATS and GET_IF_STATS_UD, to report gathered statistics.
|
534 |
|
|
//
|
535 |
|
|
// Invoked in: thread context only
|
536 |
|
|
// ----------------------------------------------------------------------------
|
537 |
|
|
|
538 |
|
|
static int
|
539 |
|
|
usbs_ethdrv_ioctl(struct eth_drv_sc* sc, unsigned long key, void* data, int data_length)
|
540 |
|
|
{
|
541 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
542 |
|
|
int result = EINVAL;
|
543 |
|
|
|
544 |
|
|
switch(key) {
|
545 |
|
|
case ETH_DRV_SET_MAC_ADDRESS:
|
546 |
|
|
{
|
547 |
|
|
if (6 == data_length) {
|
548 |
|
|
memcpy(eth->ecos_MAC, data, 6);
|
549 |
|
|
result = 0;
|
550 |
|
|
}
|
551 |
|
|
}
|
552 |
|
|
break;
|
553 |
|
|
#if defined(CYGFUN_USBS_ETHDRV_STATISTICS) && defined(ETH_DRV_GET_IF_STATS_UD)
|
554 |
|
|
case ETH_DRV_GET_IF_STATS_UD:
|
555 |
|
|
case ETH_DRV_GET_IF_STATS:
|
556 |
|
|
{
|
557 |
|
|
static unsigned char my_chipset[] = { 0, 0 };
|
558 |
|
|
struct ether_drv_stats *p = (struct ether_drv_stats*) data;
|
559 |
|
|
int i;
|
560 |
|
|
strcpy(p->description, CYGDAT_USBS_ETHDRV_DESCRIPTION);
|
561 |
|
|
for ( i = 0; i < SNMP_CHIPSET_LEN; i++ ) {
|
562 |
|
|
if ( 0 == (p->snmp_chipset[i] = my_chipset[i]) ) {
|
563 |
|
|
break;
|
564 |
|
|
}
|
565 |
|
|
}
|
566 |
|
|
p->duplex = 3; // 3 == duplex
|
567 |
|
|
p->operational = (eth->host_up && eth->ecos_up) ? 3 : 2; // 3 == up, 2 == down
|
568 |
|
|
p->speed = 10 * 1000000;
|
569 |
|
|
p->supports_dot3 = 1;
|
570 |
|
|
p->rx_too_long_frames = eth->rx_too_long_frames;
|
571 |
|
|
p->rx_short_frames = eth->rx_short_frames;
|
572 |
|
|
p->interrupts = eth->interrupts;
|
573 |
|
|
p->rx_count = eth->rx_count;
|
574 |
|
|
p->tx_count = eth->tx_count;
|
575 |
|
|
p->tx_queue_len = 1;
|
576 |
|
|
}
|
577 |
|
|
break;
|
578 |
|
|
#endif
|
579 |
|
|
|
580 |
|
|
default:
|
581 |
|
|
break;
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
return result;
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
|
588 |
|
|
// ----------------------------------------------------------------------------
|
589 |
|
|
// usbs_ethdrv_poll()
|
590 |
|
|
//
|
591 |
|
|
// On real ethernet hardware this is used by RedBoot once the
|
592 |
|
|
// application has started running, so that the network device can be
|
593 |
|
|
// used for debugging purposes as well as for the application's own
|
594 |
|
|
// needs. The lower-level USB device may supply a poll function as well.
|
595 |
|
|
// ----------------------------------------------------------------------------
|
596 |
|
|
static void
|
597 |
|
|
usbs_ethdrv_poll(struct eth_drv_sc* sc)
|
598 |
|
|
{
|
599 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
600 |
|
|
(*eth->control_endpoint->poll_fn)(eth->control_endpoint);
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
// ----------------------------------------------------------------------------
|
604 |
|
|
// usbs_ethdrv_intvector()
|
605 |
|
|
//
|
606 |
|
|
// See usbs_eth_poll().
|
607 |
|
|
// ----------------------------------------------------------------------------
|
608 |
|
|
|
609 |
|
|
static int
|
610 |
|
|
usbs_ethdrv_intvector(struct eth_drv_sc* sc)
|
611 |
|
|
{
|
612 |
|
|
usbs_eth* eth = (usbs_eth*)(sc->driver_private);
|
613 |
|
|
return eth->control_endpoint->interrupt_vector;
|
614 |
|
|
}
|
615 |
|
|
|
616 |
|
|
|