1 |
27 |
unneback |
/*{{{ Banner */
|
2 |
|
|
|
3 |
|
|
/*=================================================================
|
4 |
|
|
//
|
5 |
|
|
// target.c
|
6 |
|
|
//
|
7 |
|
|
// USB testing - target-side
|
8 |
|
|
//
|
9 |
|
|
//==========================================================================
|
10 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
11 |
|
|
// -------------------------------------------
|
12 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
13 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
14 |
|
|
//
|
15 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
16 |
|
|
// the terms of the GNU General Public License as published by the Free
|
17 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
18 |
|
|
//
|
19 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
20 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
21 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
22 |
|
|
// for more details.
|
23 |
|
|
//
|
24 |
|
|
// You should have received a copy of the GNU General Public License along
|
25 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
26 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
27 |
|
|
//
|
28 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
29 |
|
|
// or inline functions from this file, or you compile this file and link it
|
30 |
|
|
// with other works to produce a work based on this file, this file does not
|
31 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
32 |
|
|
// License. However the source code for this file must still be made available
|
33 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
34 |
|
|
//
|
35 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
36 |
|
|
// this file might be covered by the GNU General Public License.
|
37 |
|
|
//
|
38 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
39 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
40 |
|
|
// -------------------------------------------
|
41 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
42 |
|
|
//==========================================================================
|
43 |
|
|
//#####DESCRIPTIONBEGIN####
|
44 |
|
|
//
|
45 |
|
|
// This program performs appropriate USB initialization and initializes
|
46 |
|
|
// itself as a specific type of USB peripheral, Red Hat eCos testing.
|
47 |
|
|
// There is no actual host-side device driver for this, instead there is
|
48 |
|
|
// a test application which performs ioctl's on /proc/bus/usb/... and
|
49 |
|
|
// makes appropriate functionality available to a Tcl script.
|
50 |
|
|
//
|
51 |
|
|
// Author(s): bartv
|
52 |
|
|
// Date: 2001-07-04
|
53 |
|
|
//####DESCRIPTIONEND####
|
54 |
|
|
//==========================================================================
|
55 |
|
|
*/
|
56 |
|
|
|
57 |
|
|
/*}}}*/
|
58 |
|
|
/*{{{ #include's */
|
59 |
|
|
|
60 |
|
|
#include <stdio.h>
|
61 |
|
|
#include <cyg/infra/cyg_ass.h>
|
62 |
|
|
#include <cyg/infra/diag.h>
|
63 |
|
|
#include <cyg/kernel/kapi.h>
|
64 |
|
|
#include <cyg/hal/hal_arch.h>
|
65 |
|
|
#include <cyg/io/io.h>
|
66 |
|
|
#include <cyg/io/usb/usbs.h>
|
67 |
|
|
#include <cyg/infra/testcase.h>
|
68 |
|
|
#include "protocol.h"
|
69 |
|
|
|
70 |
|
|
/*}}}*/
|
71 |
|
|
|
72 |
|
|
/*{{{ Statics */
|
73 |
|
|
|
74 |
|
|
// ----------------------------------------------------------------------------
|
75 |
|
|
// Statics.
|
76 |
|
|
|
77 |
|
|
// The number of endpoints supported by the device driver.
|
78 |
|
|
static int number_endpoints = 0;
|
79 |
|
|
|
80 |
|
|
// The control endpoint
|
81 |
|
|
static usbs_control_endpoint* control_endpoint = (usbs_control_endpoint*) 0;
|
82 |
|
|
|
83 |
|
|
// Buffers for incoming and outgoing data, and a length field.
|
84 |
|
|
static unsigned char class_request[USBTEST_MAX_CONTROL_DATA + 1];
|
85 |
|
|
static unsigned char class_reply[USBTEST_MAX_CONTROL_DATA + 1];
|
86 |
|
|
static int class_request_size = 0;
|
87 |
|
|
|
88 |
|
|
// This semaphore is used by DSRs to wake up the main thread when work has to
|
89 |
|
|
// be done at thread level.
|
90 |
|
|
static cyg_sem_t main_wakeup;
|
91 |
|
|
|
92 |
|
|
// And this function pointer identifies the work that has to be done.
|
93 |
|
|
static void (*main_thread_action)(void) = (void (*)(void)) 0;
|
94 |
|
|
|
95 |
|
|
// Is the system still busy processing a previous request? This variable is
|
96 |
|
|
// checked in response to the synch request. It may get updated in
|
97 |
|
|
// DSRs as well as at thread level, hence volatile.
|
98 |
|
|
static volatile int idle = 1;
|
99 |
|
|
|
100 |
|
|
// Are any tests currently running?
|
101 |
|
|
static int running = 0;
|
102 |
|
|
|
103 |
|
|
// Has the current batch of tests been terminated by the host? This
|
104 |
|
|
// flag is checked by the various test handlers at appropriate
|
105 |
|
|
// intervals, and helps to handle the case where one of the side has
|
106 |
|
|
// terminated early because an error has been detected.
|
107 |
|
|
static int current_tests_terminated = 0;
|
108 |
|
|
|
109 |
|
|
// A counter for the number of threads involved in the current batch of tests.
|
110 |
|
|
static int thread_counter = 0;
|
111 |
|
|
|
112 |
|
|
// An extra buffer for recovery operations, for example to accept and discard
|
113 |
|
|
// data which the host is still trying to send.
|
114 |
|
|
static unsigned char recovery_buffer[USBTEST_MAX_BULK_DATA + USBTEST_MAX_BULK_DATA_EXTRA];
|
115 |
|
|
|
116 |
|
|
/*}}}*/
|
117 |
|
|
/*{{{ Logging */
|
118 |
|
|
|
119 |
|
|
// ----------------------------------------------------------------------------
|
120 |
|
|
// The target-side code can provide various levels of run-time logging.
|
121 |
|
|
// Obviously the verbose flag cannot be controlled by a command-line
|
122 |
|
|
// argument, but it can be set from inside gdb or alternatively by
|
123 |
|
|
// a request from the host.
|
124 |
|
|
//
|
125 |
|
|
// NOTE: is printf() the best I/O routine to use here?
|
126 |
|
|
|
127 |
|
|
static int verbose = 0;
|
128 |
|
|
|
129 |
|
|
#define VERBOSE(_level_, _format_, _args_...) \
|
130 |
|
|
do { \
|
131 |
|
|
if (verbose >= _level_) { \
|
132 |
|
|
diag_printf(_format_, ## _args_); \
|
133 |
|
|
} \
|
134 |
|
|
} while (0);
|
135 |
|
|
|
136 |
|
|
/*}}}*/
|
137 |
|
|
/*{{{ Utilities */
|
138 |
|
|
|
139 |
|
|
// ----------------------------------------------------------------------------
|
140 |
|
|
// A reimplementation of nanosleep, to avoid having to pull in the
|
141 |
|
|
// POSIX compatibility testing for USB testing.
|
142 |
|
|
static void
|
143 |
|
|
usbs_nanosleep(int delay)
|
144 |
|
|
{
|
145 |
|
|
cyg_tick_count_t ticks;
|
146 |
|
|
cyg_resolution_t resolution = cyg_clock_get_resolution(cyg_real_time_clock());
|
147 |
|
|
|
148 |
|
|
// (resolution.dividend/resolution.divisor) == nanoseconds/tick
|
149 |
|
|
// e.g. 1000000000/100, i.e. 10000000 ns or 10 ms per tick
|
150 |
|
|
// So ticks = (delay * divisor) / dividend
|
151 |
|
|
// e.g. (10000000 * 100) / 1000000000
|
152 |
|
|
// with a likely value of 0 for delays of less than the clock resolution,
|
153 |
|
|
// so round those up to one tick.
|
154 |
|
|
|
155 |
|
|
cyg_uint64 tmp = (cyg_uint64) delay;
|
156 |
|
|
tmp *= (cyg_uint64) resolution.divisor;
|
157 |
|
|
tmp /= (cyg_uint64) resolution.dividend;
|
158 |
|
|
|
159 |
|
|
ticks = (int) tmp;
|
160 |
|
|
if (0 != ticks) {
|
161 |
|
|
cyg_thread_delay(ticks);
|
162 |
|
|
}
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
// ----------------------------------------------------------------------------
|
166 |
|
|
// Fix any problems in the driver-supplied endpoint data
|
167 |
|
|
//
|
168 |
|
|
// Maximum transfer sizes are limited not just by the capabilities
|
169 |
|
|
// of the driver but also by the testing code itself, since e.g.
|
170 |
|
|
// buffers for transfers are statically allocated.
|
171 |
|
|
static void
|
172 |
|
|
fix_driver_endpoint_data(void)
|
173 |
|
|
{
|
174 |
|
|
int i;
|
175 |
|
|
|
176 |
|
|
for (i = 0; !USBS_TESTING_ENDPOINTS_IS_TERMINATOR(usbs_testing_endpoints[i]); i++) {
|
177 |
|
|
if (USB_ENDPOINT_DESCRIPTOR_ATTR_BULK == usbs_testing_endpoints[i].endpoint_type) {
|
178 |
|
|
if ((-1 == usbs_testing_endpoints[i].max_size) ||
|
179 |
|
|
(usbs_testing_endpoints[i].max_size > USBTEST_MAX_BULK_DATA)) {
|
180 |
|
|
usbs_testing_endpoints[i].max_size = USBTEST_MAX_BULK_DATA;
|
181 |
|
|
}
|
182 |
|
|
}
|
183 |
|
|
}
|
184 |
|
|
}
|
185 |
|
|
|
186 |
|
|
// ----------------------------------------------------------------------------
|
187 |
|
|
// A heartbeat thread.
|
188 |
|
|
//
|
189 |
|
|
// USB tests can run for a long time with no traffic on the debug channel,
|
190 |
|
|
// which can cause problems. To avoid problems it is possible to have a
|
191 |
|
|
// heartbeat thread running in the background, sending output at one
|
192 |
|
|
// second intervals.
|
193 |
|
|
//
|
194 |
|
|
// Depending on the configuration the output may still be line-buffered,
|
195 |
|
|
// but that is still sufficient to keep things happy.
|
196 |
|
|
|
197 |
|
|
static cyg_bool heartbeat = false;
|
198 |
|
|
static cyg_thread heartbeat_data;
|
199 |
|
|
static cyg_handle_t heartbeat_handle;
|
200 |
|
|
static char heartbeat_stack[CYGNUM_HAL_STACK_SIZE_TYPICAL];
|
201 |
|
|
|
202 |
|
|
static void
|
203 |
|
|
heartbeat_function(cyg_addrword_t arg __attribute((unused)))
|
204 |
|
|
{
|
205 |
|
|
char* message = "alive\n";
|
206 |
|
|
int i;
|
207 |
|
|
|
208 |
|
|
for ( i = 0; ; i = (i + 1) % 6) {
|
209 |
|
|
usbs_nanosleep(1000000000);
|
210 |
|
|
if (heartbeat) {
|
211 |
|
|
diag_write_char(message[i]);
|
212 |
|
|
}
|
213 |
|
|
}
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
static void
|
217 |
|
|
start_heartbeat(void)
|
218 |
|
|
{
|
219 |
|
|
cyg_thread_create( 0, &heartbeat_function, 0,
|
220 |
|
|
"heartbeat", heartbeat_stack, CYGNUM_HAL_STACK_SIZE_TYPICAL,
|
221 |
|
|
&heartbeat_handle, &heartbeat_data);
|
222 |
|
|
cyg_thread_resume(heartbeat_handle);
|
223 |
|
|
}
|
224 |
|
|
|
225 |
|
|
|
226 |
|
|
/*}}}*/
|
227 |
|
|
/*{{{ Endpoint usage */
|
228 |
|
|
|
229 |
|
|
// ----------------------------------------------------------------------------
|
230 |
|
|
// It is important to keep track of which endpoints are currently in use,
|
231 |
|
|
// because the behaviour of the USB I/O routines is undefined if there are
|
232 |
|
|
// concurrent attempts to communicate on the same endpoint. Normally this is
|
233 |
|
|
// not a problem because the host will ensure that a given endpoint is used
|
234 |
|
|
// for only one endpoint at a time, but when performing recovery action it
|
235 |
|
|
// is important that the system is sure that a given endpoint can be accessed
|
236 |
|
|
// safely.
|
237 |
|
|
|
238 |
|
|
static cyg_bool in_endpoint_in_use[16];
|
239 |
|
|
static cyg_bool out_endpoint_in_use[16];
|
240 |
|
|
|
241 |
|
|
// Lock the given endpoint. In theory this is only ever accessed from a single
|
242 |
|
|
// test thread at a time, but just in case...
|
243 |
|
|
static void
|
244 |
|
|
lock_endpoint(int endpoint, int direction)
|
245 |
|
|
{
|
246 |
|
|
CYG_ASSERTC((endpoint >=0) && (endpoint < 16));
|
247 |
|
|
CYG_ASSERTC((USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN == direction) || (USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT == direction));
|
248 |
|
|
|
249 |
|
|
cyg_scheduler_lock();
|
250 |
|
|
if (0 == endpoint) {
|
251 |
|
|
// Comms traffic on endpoint 0 is implemented using reserved control messages.
|
252 |
|
|
// It is not really possible to have concurrent IN and OUT operations because
|
253 |
|
|
// the two would interfere with each other.
|
254 |
|
|
CYG_ASSERTC(!in_endpoint_in_use[0] && !out_endpoint_in_use[0]);
|
255 |
|
|
in_endpoint_in_use[0] = true;
|
256 |
|
|
out_endpoint_in_use[0] = true;
|
257 |
|
|
} else if (USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN == direction) {
|
258 |
|
|
CYG_ASSERTC(!in_endpoint_in_use[endpoint]);
|
259 |
|
|
in_endpoint_in_use[endpoint] = true;
|
260 |
|
|
} else {
|
261 |
|
|
CYG_ASSERTC(!out_endpoint_in_use[endpoint]);
|
262 |
|
|
out_endpoint_in_use[endpoint] = true;
|
263 |
|
|
}
|
264 |
|
|
cyg_scheduler_unlock();
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
static void
|
268 |
|
|
unlock_endpoint(int endpoint, int direction)
|
269 |
|
|
{
|
270 |
|
|
CYG_ASSERTC((endpoint >= 0) && (endpoint < 16));
|
271 |
|
|
CYG_ASSERTC((USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN == direction) || (USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT == direction));
|
272 |
|
|
|
273 |
|
|
if (0 == endpoint) {
|
274 |
|
|
CYG_ASSERTC(in_endpoint_in_use[0] && out_endpoint_in_use[0]);
|
275 |
|
|
in_endpoint_in_use[0] = false;
|
276 |
|
|
out_endpoint_in_use[0] = false;
|
277 |
|
|
} else if (USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN == direction) {
|
278 |
|
|
CYG_ASSERTC(in_endpoint_in_use[endpoint]);
|
279 |
|
|
in_endpoint_in_use[endpoint] = false;
|
280 |
|
|
} else {
|
281 |
|
|
CYG_ASSERTC(out_endpoint_in_use[endpoint]);
|
282 |
|
|
out_endpoint_in_use[endpoint] = false;
|
283 |
|
|
}
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
static cyg_bool
|
287 |
|
|
is_endpoint_locked(int endpoint, int direction)
|
288 |
|
|
{
|
289 |
|
|
cyg_bool result = false;
|
290 |
|
|
|
291 |
|
|
if (0 == endpoint) {
|
292 |
|
|
result = in_endpoint_in_use[0];
|
293 |
|
|
} else if (USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN == direction) {
|
294 |
|
|
result = in_endpoint_in_use[endpoint];
|
295 |
|
|
} else {
|
296 |
|
|
result = out_endpoint_in_use[endpoint];
|
297 |
|
|
}
|
298 |
|
|
return result;
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
// For a given endpoint number, direction and protocol, search through the table
|
302 |
|
|
// supplied by the device driver of all available endpoints. This can be used
|
303 |
|
|
// to e.g. get hold of the name of the devtab entry or a pointer to the endpoint
|
304 |
|
|
// data structure itself.
|
305 |
|
|
static int
|
306 |
|
|
lookup_endpoint(int endpoint_number, int direction, int protocol)
|
307 |
|
|
{
|
308 |
|
|
int result = -1;
|
309 |
|
|
int i;
|
310 |
|
|
|
311 |
|
|
for (i = 0; !USBS_TESTING_ENDPOINTS_IS_TERMINATOR(usbs_testing_endpoints[i]); i++) {
|
312 |
|
|
if ((usbs_testing_endpoints[i].endpoint_type == protocol) &&
|
313 |
|
|
(usbs_testing_endpoints[i].endpoint_number == endpoint_number) &&
|
314 |
|
|
(usbs_testing_endpoints[i].endpoint_direction == direction)) {
|
315 |
|
|
result = i;
|
316 |
|
|
break;
|
317 |
|
|
}
|
318 |
|
|
}
|
319 |
|
|
return result;
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
/*}}}*/
|
323 |
|
|
/*{{{ Enumeration data */
|
324 |
|
|
|
325 |
|
|
// ----------------------------------------------------------------------------
|
326 |
|
|
// The enumeration data.
|
327 |
|
|
//
|
328 |
|
|
// For simplicity this configuration involves just a single interface.
|
329 |
|
|
// The target has to list all the endpoints, or the Linux kernel will
|
330 |
|
|
// not allow application code to access them. Hence the information
|
331 |
|
|
// provided by the device drivers has to be turned into endpoint descriptors.
|
332 |
|
|
|
333 |
|
|
usb_configuration_descriptor usb_configuration = {
|
334 |
|
|
length: USB_CONFIGURATION_DESCRIPTOR_LENGTH,
|
335 |
|
|
type: USB_CONFIGURATION_DESCRIPTOR_TYPE,
|
336 |
|
|
total_length_lo: USB_CONFIGURATION_DESCRIPTOR_TOTAL_LENGTH_LO(1, 0),
|
337 |
|
|
total_length_hi: USB_CONFIGURATION_DESCRIPTOR_TOTAL_LENGTH_HI(1, 0),
|
338 |
|
|
number_interfaces: 1,
|
339 |
|
|
configuration_id: 1, // id 0 is special according to the spec
|
340 |
|
|
configuration_str: 0,
|
341 |
|
|
attributes: USB_CONFIGURATION_DESCRIPTOR_ATTR_REQUIRED |
|
342 |
|
|
USB_CONFIGURATION_DESCRIPTOR_ATTR_SELF_POWERED,
|
343 |
|
|
max_power: 50
|
344 |
|
|
};
|
345 |
|
|
|
346 |
|
|
usb_interface_descriptor usb_interface = {
|
347 |
|
|
length: USB_INTERFACE_DESCRIPTOR_LENGTH,
|
348 |
|
|
type: USB_INTERFACE_DESCRIPTOR_TYPE,
|
349 |
|
|
interface_id: 0,
|
350 |
|
|
alternate_setting: 0,
|
351 |
|
|
number_endpoints: 0,
|
352 |
|
|
interface_class: USB_INTERFACE_DESCRIPTOR_CLASS_VENDOR,
|
353 |
|
|
interface_subclass: USB_INTERFACE_DESCRIPTOR_SUBCLASS_VENDOR,
|
354 |
|
|
interface_protocol: USB_INTERFACE_DESCRIPTOR_PROTOCOL_VENDOR,
|
355 |
|
|
interface_str: 0
|
356 |
|
|
};
|
357 |
|
|
|
358 |
|
|
usb_endpoint_descriptor usb_endpoints[USBTEST_MAX_ENDPOINTS];
|
359 |
|
|
|
360 |
|
|
const unsigned char* usb_strings[] = {
|
361 |
|
|
"\004\003\011\004",
|
362 |
|
|
"\020\003R\000e\000d\000 \000H\000a\000t\000",
|
363 |
|
|
"\054\003R\000e\000d\000 \000H\000a\000t\000 \000e\000C\000o\000s\000 \000"
|
364 |
|
|
"U\000S\000B\000 \000t\000e\000s\000t\000"
|
365 |
|
|
};
|
366 |
|
|
|
367 |
|
|
usbs_enumeration_data usb_enum_data = {
|
368 |
|
|
{
|
369 |
|
|
length: USB_DEVICE_DESCRIPTOR_LENGTH,
|
370 |
|
|
type: USB_DEVICE_DESCRIPTOR_TYPE,
|
371 |
|
|
usb_spec_lo: USB_DEVICE_DESCRIPTOR_USB11_LO,
|
372 |
|
|
usb_spec_hi: USB_DEVICE_DESCRIPTOR_USB11_HI,
|
373 |
|
|
device_class: USB_DEVICE_DESCRIPTOR_CLASS_VENDOR,
|
374 |
|
|
device_subclass: USB_DEVICE_DESCRIPTOR_SUBCLASS_VENDOR,
|
375 |
|
|
device_protocol: USB_DEVICE_DESCRIPTOR_PROTOCOL_VENDOR,
|
376 |
|
|
max_packet_size: 8,
|
377 |
|
|
vendor_lo: 0x42, // Note: this is not an allocated vendor id
|
378 |
|
|
vendor_hi: 0x42,
|
379 |
|
|
product_lo: 0x00,
|
380 |
|
|
product_hi: 0x01,
|
381 |
|
|
device_lo: 0x00,
|
382 |
|
|
device_hi: 0x01,
|
383 |
|
|
manufacturer_str: 1,
|
384 |
|
|
product_str: 2,
|
385 |
|
|
serial_number_str: 0,
|
386 |
|
|
number_configurations: 1
|
387 |
|
|
},
|
388 |
|
|
total_number_interfaces: 1,
|
389 |
|
|
total_number_endpoints: 0,
|
390 |
|
|
total_number_strings: 3,
|
391 |
|
|
configurations: &usb_configuration,
|
392 |
|
|
interfaces: &usb_interface,
|
393 |
|
|
endpoints: usb_endpoints,
|
394 |
|
|
strings: usb_strings
|
395 |
|
|
};
|
396 |
|
|
|
397 |
|
|
static void
|
398 |
|
|
provide_endpoint_enumeration_data(void)
|
399 |
|
|
{
|
400 |
|
|
int enum_endpoint_count = 0;
|
401 |
|
|
int i;
|
402 |
|
|
|
403 |
|
|
for (i = 0; !USBS_TESTING_ENDPOINTS_IS_TERMINATOR(usbs_testing_endpoints[i]); i++) {
|
404 |
|
|
|
405 |
|
|
// The control endpoint need not appear in the enumeration data.
|
406 |
|
|
if (USB_ENDPOINT_DESCRIPTOR_ATTR_CONTROL == usbs_testing_endpoints[i].endpoint_type) {
|
407 |
|
|
continue;
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
usb_endpoints[enum_endpoint_count].length = USB_ENDPOINT_DESCRIPTOR_LENGTH;
|
411 |
|
|
usb_endpoints[enum_endpoint_count].type = USB_ENDPOINT_DESCRIPTOR_TYPE;
|
412 |
|
|
usb_endpoints[enum_endpoint_count].endpoint = usbs_testing_endpoints[i].endpoint_number |
|
413 |
|
|
usbs_testing_endpoints[i].endpoint_direction;
|
414 |
|
|
|
415 |
|
|
switch (usbs_testing_endpoints[i].endpoint_type) {
|
416 |
|
|
case USB_ENDPOINT_DESCRIPTOR_ATTR_BULK:
|
417 |
|
|
usb_endpoints[enum_endpoint_count].attributes = USB_ENDPOINT_DESCRIPTOR_ATTR_BULK;
|
418 |
|
|
usb_endpoints[enum_endpoint_count].max_packet_lo = 64;
|
419 |
|
|
usb_endpoints[enum_endpoint_count].max_packet_hi = 0;
|
420 |
|
|
usb_endpoints[enum_endpoint_count].interval = 0;
|
421 |
|
|
break;
|
422 |
|
|
|
423 |
|
|
case USB_ENDPOINT_DESCRIPTOR_ATTR_ISOCHRONOUS:
|
424 |
|
|
usb_endpoints[enum_endpoint_count].attributes = USB_ENDPOINT_DESCRIPTOR_ATTR_ISOCHRONOUS;
|
425 |
|
|
usb_endpoints[enum_endpoint_count].max_packet_lo = usbs_testing_endpoints[i].max_size & 0x0FF;
|
426 |
|
|
usb_endpoints[enum_endpoint_count].max_packet_hi = (usbs_testing_endpoints[i].max_size >> 8) & 0x0FF;
|
427 |
|
|
usb_endpoints[enum_endpoint_count].interval = 1;
|
428 |
|
|
break;
|
429 |
|
|
|
430 |
|
|
case USB_ENDPOINT_DESCRIPTOR_ATTR_INTERRUPT:
|
431 |
|
|
usb_endpoints[enum_endpoint_count].attributes = USB_ENDPOINT_DESCRIPTOR_ATTR_INTERRUPT;
|
432 |
|
|
usb_endpoints[enum_endpoint_count].max_packet_lo = (unsigned char) usbs_testing_endpoints[i].max_size;
|
433 |
|
|
usb_endpoints[enum_endpoint_count].max_packet_hi = 0;
|
434 |
|
|
usb_endpoints[enum_endpoint_count].interval = 1; // NOTE: possibly incorrect
|
435 |
|
|
break;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
enum_endpoint_count++;
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
usb_interface.number_endpoints = enum_endpoint_count;
|
442 |
|
|
usb_enum_data.total_number_endpoints = enum_endpoint_count;
|
443 |
|
|
usb_configuration.total_length_lo = USB_CONFIGURATION_DESCRIPTOR_TOTAL_LENGTH_LO(1, enum_endpoint_count);
|
444 |
|
|
usb_configuration.total_length_hi = USB_CONFIGURATION_DESCRIPTOR_TOTAL_LENGTH_HI(1, enum_endpoint_count);
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
/*}}}*/
|
448 |
|
|
/*{{{ Host/target common code */
|
449 |
|
|
|
450 |
|
|
#define TARGET
|
451 |
|
|
#include "common.c"
|
452 |
|
|
|
453 |
|
|
/*}}}*/
|
454 |
|
|
/*{{{ The tests */
|
455 |
|
|
|
456 |
|
|
/*{{{ UsbTest structure */
|
457 |
|
|
|
458 |
|
|
// ----------------------------------------------------------------------------
|
459 |
|
|
// All the information associated with a particular testcase. Much of this
|
460 |
|
|
// is identical to the equivalent host-side structure, but some additional
|
461 |
|
|
// information is needed so the structure and associated routines are not
|
462 |
|
|
// shared.
|
463 |
|
|
typedef struct UsbTest {
|
464 |
|
|
|
465 |
|
|
// A unique identifier to make verbose output easier to understand
|
466 |
|
|
int id;
|
467 |
|
|
|
468 |
|
|
// Which test should be run
|
469 |
|
|
usbtest which_test;
|
470 |
|
|
|
471 |
|
|
// Test-specific details.
|
472 |
|
|
union {
|
473 |
|
|
UsbTest_Bulk bulk;
|
474 |
|
|
UsbTest_ControlIn control_in;
|
475 |
|
|
} test_params;
|
476 |
|
|
|
477 |
|
|
// How to recover from any problems. Specifically, what kind of message
|
478 |
|
|
// could the target send or receive that would unlock the thread on this
|
479 |
|
|
// side.
|
480 |
|
|
UsbTest_Recovery recovery;
|
481 |
|
|
|
482 |
|
|
// The test result, to be collected and passed back to the host.
|
483 |
|
|
int result_pass;
|
484 |
|
|
char result_message[USBTEST_MAX_MESSAGE];
|
485 |
|
|
|
486 |
|
|
// Support for synchronization. This allows the UsbTest structure to be
|
487 |
|
|
// used as the callback data for low-level USB calls.
|
488 |
|
|
cyg_sem_t sem;
|
489 |
|
|
int transferred;
|
490 |
|
|
|
491 |
|
|
// Some tests may need extra cancellation support
|
492 |
|
|
void (*cancel_fn)(struct UsbTest*);
|
493 |
|
|
unsigned char buffer[USBTEST_MAX_BULK_DATA + USBTEST_MAX_BULK_DATA_EXTRA];
|
494 |
|
|
} UsbTest;
|
495 |
|
|
|
496 |
|
|
// Reset the information in a given test. This is used by the pool allocation
|
497 |
|
|
// code. The data union is left alone, filling in the appropriate union
|
498 |
|
|
// member is left to other code.
|
499 |
|
|
static void
|
500 |
|
|
reset_usbtest(UsbTest* test)
|
501 |
|
|
{
|
502 |
|
|
static int next_id = 1;
|
503 |
|
|
test->id = next_id++;
|
504 |
|
|
test->which_test = usbtest_invalid;
|
505 |
|
|
usbtest_recovery_reset(&(test->recovery));
|
506 |
|
|
test->result_pass = 0;
|
507 |
|
|
test->result_message[0] = '\0';
|
508 |
|
|
cyg_semaphore_init(&(test->sem), 0);
|
509 |
|
|
test->transferred = 0;
|
510 |
|
|
test->cancel_fn = (void (*)(UsbTest*)) 0;
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
// Forward declaration. The pool code depends on run_test(), setting up a test requires the pool.
|
514 |
|
|
static UsbTest* pool_allocate(void);
|
515 |
|
|
|
516 |
|
|
/*}}}*/
|
517 |
|
|
/*{{{ Bulk transfers */
|
518 |
|
|
|
519 |
|
|
/*{{{ handle_test_bulk() */
|
520 |
|
|
|
521 |
|
|
// Prepare for a bulk transfer test. This means allocating a thread to do
|
522 |
|
|
// the work, and extracting the test parameters from the current buffer.
|
523 |
|
|
// The thread allocation code does not require any locking since all worker
|
524 |
|
|
// threads should be idle when starting a new thread, so the work can be
|
525 |
|
|
// done entirely at DSR level and no synch is required.
|
526 |
|
|
static usbs_control_return
|
527 |
|
|
handle_test_bulk(usb_devreq* req)
|
528 |
|
|
{
|
529 |
|
|
UsbTest* test;
|
530 |
|
|
int index = 0;
|
531 |
|
|
|
532 |
|
|
test = pool_allocate();
|
533 |
|
|
unpack_usbtest_bulk(&(test->test_params.bulk), class_request, &index);
|
534 |
|
|
test->which_test = (USB_DEVREQ_DIRECTION_IN == (test->test_params.bulk.endpoint & USB_DEVREQ_DIRECTION_MASK)) ?
|
535 |
|
|
usbtest_bulk_in : usbtest_bulk_out;
|
536 |
|
|
|
537 |
|
|
VERBOSE(3, "Preparing USB bulk test on endpoint %d, direction %s, for %d packets\n", \
|
538 |
|
|
test->test_params.bulk.endpoint & ~USB_DEVREQ_DIRECTION_MASK, \
|
539 |
|
|
(usbtest_bulk_in == test->which_test) ? "IN" : "OUT", \
|
540 |
|
|
test->test_params.bulk.number_packets);
|
541 |
|
|
VERBOSE(3, " I/O mechanism is %s\n", \
|
542 |
|
|
(usb_io_mechanism_usb == test->test_params.bulk.io_mechanism) ? "low-level USB" : \
|
543 |
|
|
(usb_io_mechanism_dev == test->test_params.bulk.io_mechanism) ? "devtab" : "<invalid>");
|
544 |
|
|
VERBOSE(3, " Data format %s, data1 %d, data* %d, data+ %d, data1* %d, data1+ %d, data** %d, data*+ %d, data+* %d, data++ %d\n",\
|
545 |
|
|
(usbtestdata_none == test->test_params.bulk.data.format) ? "none" : \
|
546 |
|
|
(usbtestdata_bytefill == test->test_params.bulk.data.format) ? "bytefill" : \
|
547 |
|
|
(usbtestdata_wordfill == test->test_params.bulk.data.format) ? "wordfill" : \
|
548 |
|
|
(usbtestdata_byteseq == test->test_params.bulk.data.format) ? "byteseq" : \
|
549 |
|
|
(usbtestdata_wordseq == test->test_params.bulk.data.format) ? "wordseq" : "<invalid>", \
|
550 |
|
|
test->test_params.bulk.data.seed, \
|
551 |
|
|
test->test_params.bulk.data.multiplier, \
|
552 |
|
|
test->test_params.bulk.data.increment, \
|
553 |
|
|
test->test_params.bulk.data.transfer_seed_multiplier, \
|
554 |
|
|
test->test_params.bulk.data.transfer_seed_increment, \
|
555 |
|
|
test->test_params.bulk.data.transfer_multiplier_multiplier, \
|
556 |
|
|
test->test_params.bulk.data.transfer_multiplier_increment, \
|
557 |
|
|
test->test_params.bulk.data.transfer_increment_multiplier, \
|
558 |
|
|
test->test_params.bulk.data.transfer_increment_increment);
|
559 |
|
|
VERBOSE(3, " txsize1 %d, txsize>= %d, txsize<= %d, txsize* %d, txsize/ %d, txsize+ %d\n", \
|
560 |
|
|
test->test_params.bulk.tx_size, test->test_params.bulk.tx_size_min, \
|
561 |
|
|
test->test_params.bulk.tx_size_max, test->test_params.bulk.tx_size_multiplier, \
|
562 |
|
|
test->test_params.bulk.tx_size_divisor, test->test_params.bulk.tx_size_increment);
|
563 |
|
|
VERBOSE(3, " rxsize1 %d, rxsize>= %d, rxsize<= %d, rxsize* %d, rxsize/ %d, rxsize+ %d\n", \
|
564 |
|
|
test->test_params.bulk.rx_size, test->test_params.bulk.rx_size_min, \
|
565 |
|
|
test->test_params.bulk.rx_size_max, test->test_params.bulk.rx_size_multiplier, \
|
566 |
|
|
test->test_params.bulk.rx_size_divisor, test->test_params.bulk.rx_size_increment);
|
567 |
|
|
VERBOSE(3, " txdelay1 %d, txdelay>= %d, txdelay<= %d, txdelay* %d, txdelay/ %d, txdelay+ %d\n", \
|
568 |
|
|
test->test_params.bulk.tx_delay, test->test_params.bulk.tx_delay_min, \
|
569 |
|
|
test->test_params.bulk.tx_delay_max, test->test_params.bulk.tx_delay_multiplier, \
|
570 |
|
|
test->test_params.bulk.tx_delay_divisor, test->test_params.bulk.tx_delay_increment);
|
571 |
|
|
VERBOSE(3, " rxdelay1 %d, rxdelay>= %d, rxdelay<= %d, rxdelay* %d, rxdelay/ %d, rxdelay+ %d\n", \
|
572 |
|
|
test->test_params.bulk.rx_delay, test->test_params.bulk.rx_delay_min, \
|
573 |
|
|
test->test_params.bulk.rx_delay_max, test->test_params.bulk.rx_delay_multiplier, \
|
574 |
|
|
test->test_params.bulk.rx_delay_divisor, test->test_params.bulk.rx_delay_increment);
|
575 |
|
|
|
576 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
/*}}}*/
|
580 |
|
|
/*{{{ run_test_bulk_out() */
|
581 |
|
|
|
582 |
|
|
// The same callback can be used for IN and OUT transfers. Note that
|
583 |
|
|
// starting the next transfer is left to the thread, it is not done
|
584 |
|
|
// at DSR level.
|
585 |
|
|
static void
|
586 |
|
|
run_test_bulk_in_out_callback(void* callback_arg, int transferred)
|
587 |
|
|
{
|
588 |
|
|
UsbTest* test = (UsbTest*) callback_arg;
|
589 |
|
|
test->transferred = transferred;
|
590 |
|
|
cyg_semaphore_post(&(test->sem));
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
// OUT transfers, i.e. the host will be sending some number of
|
594 |
|
|
// packets. The I/O can happen in a number of different ways, e.g. via
|
595 |
|
|
// the low-level USB API or via devtab routines.
|
596 |
|
|
static void
|
597 |
|
|
run_test_bulk_out(UsbTest* test)
|
598 |
|
|
{
|
599 |
|
|
unsigned char* buf;
|
600 |
|
|
int endpoint_number = test->test_params.bulk.endpoint & ~USB_DEVREQ_DIRECTION_MASK;
|
601 |
|
|
int ep_index;
|
602 |
|
|
usbs_rx_endpoint* endpoint = 0;
|
603 |
|
|
cyg_io_handle_t io_handle = (cyg_io_handle_t)0;
|
604 |
|
|
int alignment;
|
605 |
|
|
int transferred;
|
606 |
|
|
int i;
|
607 |
|
|
|
608 |
|
|
VERBOSE(1, "Starting test %d, bulk out on endpoint %d\n", test->id, endpoint_number);
|
609 |
|
|
|
610 |
|
|
ep_index = lookup_endpoint(endpoint_number, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT, USB_ENDPOINT_DESCRIPTOR_ATTR_BULK);
|
611 |
|
|
if (ep_index == -1) {
|
612 |
|
|
test->result_pass = 0;
|
613 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
614 |
|
|
"Target, bulk OUT transfer on endpoint %d: no such bulk endpoint", endpoint_number);
|
615 |
|
|
return;
|
616 |
|
|
}
|
617 |
|
|
endpoint = (usbs_rx_endpoint*) usbs_testing_endpoints[ep_index].endpoint;
|
618 |
|
|
alignment = usbs_testing_endpoints[ep_index].alignment;
|
619 |
|
|
if (0 != alignment) {
|
620 |
|
|
buf = (unsigned char*) ((((cyg_uint32)test->buffer) + alignment - 1) & ~(alignment - 1));
|
621 |
|
|
} else {
|
622 |
|
|
buf = test->buffer;
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
CYG_ASSERTC((usb_io_mechanism_usb == test->test_params.bulk.io_mechanism) || \
|
626 |
|
|
(usb_io_mechanism_dev == test->test_params.bulk.io_mechanism));
|
627 |
|
|
if (usb_io_mechanism_dev == test->test_params.bulk.io_mechanism) {
|
628 |
|
|
if (((const char*)0 == usbs_testing_endpoints[ep_index].devtab_entry) ||
|
629 |
|
|
(0 != cyg_io_lookup(usbs_testing_endpoints[ep_index].devtab_entry, &io_handle))) {
|
630 |
|
|
|
631 |
|
|
test->result_pass = 0;
|
632 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
633 |
|
|
"Target, bulk OUT transfer on endpoint %d: no devtab entry", endpoint_number);
|
634 |
|
|
return;
|
635 |
|
|
}
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
// Make sure nobody else is using this endpoint
|
639 |
|
|
lock_endpoint(endpoint_number, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT);
|
640 |
|
|
|
641 |
|
|
for (i = 0; i < test->test_params.bulk.number_packets; i++) {
|
642 |
|
|
int rx_size = test->test_params.bulk.rx_size;
|
643 |
|
|
int tx_size = test->test_params.bulk.tx_size;
|
644 |
|
|
|
645 |
|
|
VERBOSE(2, "Bulk OUT test %d: iteration %d, rx size %d, tx size %d\n", test->id, i, rx_size, tx_size);
|
646 |
|
|
|
647 |
|
|
if (rx_size < tx_size) {
|
648 |
|
|
rx_size = tx_size;
|
649 |
|
|
VERBOSE(2, "Bulk OUT test %d: iteration %d, packet size reset to %d to match tx size\n",
|
650 |
|
|
test->id, i, rx_size);
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
test->recovery.endpoint = endpoint_number | USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT;
|
654 |
|
|
test->recovery.protocol = USB_ENDPOINT_DESCRIPTOR_ATTR_BULK;
|
655 |
|
|
test->recovery.size = rx_size;
|
656 |
|
|
|
657 |
|
|
// Make sure there is no old data lying around
|
658 |
|
|
if (usbtestdata_none != test->test_params.bulk.data.format) {
|
659 |
|
|
memset(buf, 0, rx_size);
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
// Do the actual transfer, using the I/O mechanism specified for this test.
|
663 |
|
|
switch (test->test_params.bulk.io_mechanism)
|
664 |
|
|
{
|
665 |
|
|
case usb_io_mechanism_usb :
|
666 |
|
|
{
|
667 |
|
|
test->transferred = 0;
|
668 |
|
|
usbs_start_rx_buffer(endpoint, buf, rx_size, &run_test_bulk_in_out_callback, (void*) test);
|
669 |
|
|
cyg_semaphore_wait(&(test->sem));
|
670 |
|
|
transferred = test->transferred;
|
671 |
|
|
break;
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
case usb_io_mechanism_dev :
|
675 |
|
|
{
|
676 |
|
|
int result;
|
677 |
|
|
transferred = rx_size;
|
678 |
|
|
result = cyg_io_read(io_handle, (void*) buf, &transferred);
|
679 |
|
|
if (result < 0) {
|
680 |
|
|
transferred = result;
|
681 |
|
|
}
|
682 |
|
|
break;
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
default:
|
686 |
|
|
CYG_FAIL("Invalid test mechanism specified");
|
687 |
|
|
break;
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
// Has this test been aborted for some reason?
|
691 |
|
|
if (current_tests_terminated) {
|
692 |
|
|
VERBOSE(2, "Bulk OUT test %d: iteration %d, termination detected\n", test->id, i);
|
693 |
|
|
test->result_pass = 0;
|
694 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
695 |
|
|
"Target, bulk OUT transfer on endpoint %d: transfer aborted after iteration %d", endpoint_number, i);
|
696 |
|
|
break;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
// If an error occurred, abort this run
|
700 |
|
|
if (transferred < 0) {
|
701 |
|
|
test->result_pass = 0;
|
702 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
703 |
|
|
"Target, bulk OUT transfer on endpoint %d: transfer failed with %d", endpoint_number, transferred);
|
704 |
|
|
VERBOSE(2, "Bulk OUT test %d: iteration %d, error:\n %s\n", test->id, i, test->result_message);
|
705 |
|
|
break;
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
// Did the host send the expected amount of data?
|
709 |
|
|
if (transferred < test->test_params.bulk.tx_size) {
|
710 |
|
|
test->result_pass = 0;
|
711 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
712 |
|
|
"Target, bulk OUT transfer on endpoint %d : the host only sent %d bytes when %d were expected",
|
713 |
|
|
endpoint_number, transferred, tx_size);
|
714 |
|
|
VERBOSE(2, "Bulk OUT test %d: iteration %d, error:\n %s\n", test->id, i, test->result_message);
|
715 |
|
|
break;
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
if (verbose >= 3) {
|
719 |
|
|
// Output the first 32 bytes of data
|
720 |
|
|
char msg[256];
|
721 |
|
|
int index;
|
722 |
|
|
int j;
|
723 |
|
|
index = snprintf(msg, 255, "Bulk OUT test %d: iteration %d, transferred %d\n Data %s:",
|
724 |
|
|
test->id, i, transferred,
|
725 |
|
|
(usbtestdata_none == test->test_params.bulk.data.format) ? "(uninitialized)" : "");
|
726 |
|
|
|
727 |
|
|
for (j = 0; ((j + 3) < transferred) && (j < 32); j+= 4) {
|
728 |
|
|
index += snprintf(msg+index, 255-index, " %02x%02x%02x%02x",
|
729 |
|
|
buf[j], buf[j+1], buf[j+2], buf[j+3]);
|
730 |
|
|
}
|
731 |
|
|
if (j < 32) {
|
732 |
|
|
index += snprintf(msg+index, 255-index, " ");
|
733 |
|
|
for ( ; j < transferred; j++) {
|
734 |
|
|
index += snprintf(msg+index, 255-index, "%02x", buf[j]);
|
735 |
|
|
}
|
736 |
|
|
|
737 |
|
|
}
|
738 |
|
|
VERBOSE(3, "%s\n", msg);
|
739 |
|
|
}
|
740 |
|
|
|
741 |
|
|
// Is the data correct?
|
742 |
|
|
if (!usbtest_check_buffer(&(test->test_params.bulk.data), buf, transferred)) {
|
743 |
|
|
test->result_pass = 0;
|
744 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
745 |
|
|
"Target, bulk OUT transfer on endpoint %d : mismatch between received and expected data", endpoint_number);
|
746 |
|
|
VERBOSE(2, "Bulk OUt test %d: iteration %d, error:\n %s\n", test->id, i, test->result_message);
|
747 |
|
|
break;
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
if (0 != test->test_params.bulk.rx_delay) {
|
751 |
|
|
VERBOSE(2, "Bulk OUT test %d: iteration %d, sleeping for %d nanoseconds\n", test->id, \
|
752 |
|
|
i, test->test_params.bulk.rx_delay);
|
753 |
|
|
usbs_nanosleep(test->test_params.bulk.rx_delay);
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
// Move on to the next transfer
|
757 |
|
|
USBTEST_BULK_NEXT(test->test_params.bulk);
|
758 |
|
|
}
|
759 |
|
|
|
760 |
|
|
// Always unlock the endpoint on completion
|
761 |
|
|
unlock_endpoint(endpoint_number, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT);
|
762 |
|
|
|
763 |
|
|
// If all the packets have been transferred this test has passed.
|
764 |
|
|
if (i >= test->test_params.bulk.number_packets) {
|
765 |
|
|
test->result_pass = 1;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
VERBOSE(1, "Test %d bulk OUT on endpoint %d, result %d\n", test->id, endpoint_number, test->result_pass);
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
/*}}}*/
|
772 |
|
|
/*{{{ run_test_bulk_in() */
|
773 |
|
|
|
774 |
|
|
// IN transfers, i.e. the host is expected to receive some data. These are slightly
|
775 |
|
|
// easier than OUT transfers because it is the host that will do the checking.
|
776 |
|
|
static void
|
777 |
|
|
run_test_bulk_in(UsbTest* test)
|
778 |
|
|
{
|
779 |
|
|
unsigned char* buf;
|
780 |
|
|
int endpoint_number = test->test_params.bulk.endpoint & ~USB_DEVREQ_DIRECTION_MASK;
|
781 |
|
|
int ep_index;
|
782 |
|
|
usbs_tx_endpoint* endpoint = 0;
|
783 |
|
|
cyg_io_handle_t io_handle = (cyg_io_handle_t)0;
|
784 |
|
|
int alignment;
|
785 |
|
|
int transferred;
|
786 |
|
|
int i;
|
787 |
|
|
|
788 |
|
|
VERBOSE(1, "Starting test %d, bulk IN on endpoint %d\n", test->id, endpoint_number);
|
789 |
|
|
|
790 |
|
|
ep_index = lookup_endpoint(endpoint_number, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN, USB_ENDPOINT_DESCRIPTOR_ATTR_BULK);
|
791 |
|
|
if (ep_index == -1) {
|
792 |
|
|
test->result_pass = 0;
|
793 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
794 |
|
|
"Target, bulk IN transfer on endpoint %d: no such bulk endpoint", endpoint_number);
|
795 |
|
|
return;
|
796 |
|
|
}
|
797 |
|
|
endpoint = (usbs_tx_endpoint*) usbs_testing_endpoints[ep_index].endpoint;
|
798 |
|
|
alignment = usbs_testing_endpoints[ep_index].alignment;
|
799 |
|
|
if (0 != alignment) {
|
800 |
|
|
buf = (unsigned char*) ((((cyg_uint32)test->buffer) + alignment - 1) & ~(alignment - 1));
|
801 |
|
|
} else {
|
802 |
|
|
buf = test->buffer;
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
CYG_ASSERTC((usb_io_mechanism_usb == test->test_params.bulk.io_mechanism) || \
|
806 |
|
|
(usb_io_mechanism_dev == test->test_params.bulk.io_mechanism));
|
807 |
|
|
if (usb_io_mechanism_dev == test->test_params.bulk.io_mechanism) {
|
808 |
|
|
if (((const char*)0 == usbs_testing_endpoints[ep_index].devtab_entry) ||
|
809 |
|
|
(0 != cyg_io_lookup(usbs_testing_endpoints[ep_index].devtab_entry, &io_handle))) {
|
810 |
|
|
|
811 |
|
|
test->result_pass = 0;
|
812 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
813 |
|
|
"Target, bulk IN transfer on endpoint %d: no devtab entry", endpoint_number);
|
814 |
|
|
return;
|
815 |
|
|
}
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
// Make sure nobody else is using this endpoint
|
819 |
|
|
lock_endpoint(endpoint_number, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN);
|
820 |
|
|
|
821 |
|
|
for (i = 0; i < test->test_params.bulk.number_packets; i++) {
|
822 |
|
|
int packet_size = test->test_params.bulk.tx_size;
|
823 |
|
|
|
824 |
|
|
test->recovery.endpoint = endpoint_number | USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN;
|
825 |
|
|
test->recovery.protocol = USB_ENDPOINT_DESCRIPTOR_ATTR_BULK;
|
826 |
|
|
test->recovery.size = packet_size + usbs_testing_endpoints[ep_index].max_in_padding;
|
827 |
|
|
|
828 |
|
|
// Make sure the buffer contains the data expected by the host
|
829 |
|
|
usbtest_fill_buffer(&(test->test_params.bulk.data), buf, packet_size);
|
830 |
|
|
|
831 |
|
|
if (verbose < 3) {
|
832 |
|
|
VERBOSE(2, "Bulk OUT test %d: iteration %d, packet size %d\n", test->id, i, packet_size);
|
833 |
|
|
} else {
|
834 |
|
|
// Output the first 32 bytes of data as well.
|
835 |
|
|
char msg[256];
|
836 |
|
|
int index;
|
837 |
|
|
int j;
|
838 |
|
|
index = snprintf(msg, 255, "Bulk IN test %d: iteration %d, packet size %d\n Data %s:",
|
839 |
|
|
test->id, i, packet_size,
|
840 |
|
|
(usbtestdata_none == test->test_params.bulk.data.format) ? "(uninitialized)" : "");
|
841 |
|
|
|
842 |
|
|
for (j = 0; ((j + 3) < packet_size) && (j < 32); j+= 4) {
|
843 |
|
|
index += snprintf(msg+index, 255-index, " %02x%02x%02x%02x",
|
844 |
|
|
buf[j], buf[j+1], buf[j+2], buf[j+3]);
|
845 |
|
|
}
|
846 |
|
|
if (j < 32) {
|
847 |
|
|
index += snprintf(msg+index, 255-index, " ");
|
848 |
|
|
for ( ; j < packet_size; j++) {
|
849 |
|
|
index += snprintf(msg+index, 255-index, "%02x", buf[j]);
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
}
|
853 |
|
|
VERBOSE(3, "%s\n", msg);
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
// Do the actual transfer, using the I/O mechanism specified for this test.
|
857 |
|
|
switch (test->test_params.bulk.io_mechanism)
|
858 |
|
|
{
|
859 |
|
|
case usb_io_mechanism_usb :
|
860 |
|
|
{
|
861 |
|
|
test->transferred = 0;
|
862 |
|
|
usbs_start_tx_buffer(endpoint, buf, packet_size, &run_test_bulk_in_out_callback, (void*) test);
|
863 |
|
|
cyg_semaphore_wait(&(test->sem));
|
864 |
|
|
transferred = test->transferred;
|
865 |
|
|
break;
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
case usb_io_mechanism_dev :
|
869 |
|
|
{
|
870 |
|
|
int result;
|
871 |
|
|
transferred = packet_size;
|
872 |
|
|
result = cyg_io_write(io_handle, (void*) buf, &transferred);
|
873 |
|
|
if (result < 0) {
|
874 |
|
|
transferred = result;
|
875 |
|
|
}
|
876 |
|
|
break;
|
877 |
|
|
}
|
878 |
|
|
|
879 |
|
|
default:
|
880 |
|
|
CYG_FAIL("Invalid test mechanism specified");
|
881 |
|
|
break;
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
// Has this test been aborted for some reason?
|
885 |
|
|
if (current_tests_terminated) {
|
886 |
|
|
VERBOSE(2, "Bulk IN test %d: iteration %d, termination detected\n", test->id, i);
|
887 |
|
|
test->result_pass = 0;
|
888 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
889 |
|
|
"Target, bulk IN transfer on endpoint %d : terminated on iteration %d, packet_size %d\n",
|
890 |
|
|
endpoint_number, i, packet_size);
|
891 |
|
|
break;
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
// If an error occurred, abort this run
|
895 |
|
|
if (transferred < 0) {
|
896 |
|
|
test->result_pass = 0;
|
897 |
|
|
snprintf(test->result_message, USBTEST_MAX_MESSAGE,
|
898 |
|
|
"Target, bulk IN transfer on endpoint %d: transfer failed with %d", endpoint_number, transferred);
|
899 |
|
|
VERBOSE(2, "Bulk IN test %d: iteration %d, error:\n %s\n", test->id, i, test->result_message);
|
900 |
|
|
break;
|
901 |
|
|
}
|
902 |
|
|
|
903 |
|
|
// No need to check the transfer size, the USB code is only
|
904 |
|
|
// allowed to send the exact amount of data requested.
|
905 |
|
|
|
906 |
|
|
if (0 != test->test_params.bulk.tx_delay) {
|
907 |
|
|
VERBOSE(2, "Bulk IN test %d: iteration %d, sleeping for %d nanoseconds\n", test->id, i, \
|
908 |
|
|
test->test_params.bulk.tx_delay);
|
909 |
|
|
usbs_nanosleep(test->test_params.bulk.tx_delay);
|
910 |
|
|
}
|
911 |
|
|
|
912 |
|
|
// Move on to the next transfer
|
913 |
|
|
USBTEST_BULK_NEXT(test->test_params.bulk);
|
914 |
|
|
}
|
915 |
|
|
|
916 |
|
|
// Always unlock the endpoint on completion
|
917 |
|
|
unlock_endpoint(endpoint_number, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN);
|
918 |
|
|
|
919 |
|
|
// If all the packets have been transferred this test has passed.
|
920 |
|
|
if (i >= test->test_params.bulk.number_packets) {
|
921 |
|
|
test->result_pass = 1;
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
VERBOSE(1, "Test %d bulk IN on endpoint %d, result %d\n", test->id, endpoint_number, test->result_pass);
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
/*}}}*/
|
928 |
|
|
|
929 |
|
|
/*}}}*/
|
930 |
|
|
/*{{{ Control IN transfers */
|
931 |
|
|
|
932 |
|
|
// Control-IN transfers. These have to be handled a little bit differently
|
933 |
|
|
// from bulk transfers. The target never actually initiates anything. Instead
|
934 |
|
|
// the host will send reserved control messages which are handled at DSR
|
935 |
|
|
// level and passed to handle_reserved_control_messages() below. Assuming
|
936 |
|
|
// a control-IN test is in progress, that will take appropriate action. The
|
937 |
|
|
// thread will be woken up only once all packets have been transferred, or
|
938 |
|
|
// on abnormal termination.
|
939 |
|
|
|
940 |
|
|
// Is a control-IN test currently in progress?
|
941 |
|
|
static UsbTest* control_in_test = 0;
|
942 |
|
|
|
943 |
|
|
// What is the expected packet size?
|
944 |
|
|
static int control_in_test_packet_size = 0;
|
945 |
|
|
|
946 |
|
|
// How many packets have been transferred so far?
|
947 |
|
|
static int control_in_packets_transferred = 0;
|
948 |
|
|
|
949 |
|
|
// Cancel a control-in test. handle_test_control_in() will have updated the static
|
950 |
|
|
// control_in_test so that handle_reserved_control_messages() knows what to do.
|
951 |
|
|
// If the test is not actually going to be run then system consistency demands
|
952 |
|
|
// that this update be undone. Also, the endpoint will have been locked to
|
953 |
|
|
// detect concurrent tests on the control endpoint.
|
954 |
|
|
static void
|
955 |
|
|
cancel_test_control_in(UsbTest* test)
|
956 |
|
|
{
|
957 |
|
|
CYG_ASSERTC(test == control_in_test);
|
958 |
|
|
control_in_test = (UsbTest*) 0;
|
959 |
|
|
control_in_test_packet_size = 0;
|
960 |
|
|
control_in_packets_transferred = 0;
|
961 |
|
|
unlock_endpoint(0, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN);
|
962 |
|
|
test->cancel_fn = (void (*)(UsbTest*)) 0;
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
// Prepare for a control-IN transfer test.
|
966 |
|
|
static usbs_control_return
|
967 |
|
|
handle_test_control_in(usb_devreq* req)
|
968 |
|
|
{
|
969 |
|
|
UsbTest* test;
|
970 |
|
|
int index = 0;
|
971 |
|
|
|
972 |
|
|
CYG_ASSERTC((UsbTest*)0 == control_in_test);
|
973 |
|
|
|
974 |
|
|
test = pool_allocate();
|
975 |
|
|
unpack_usbtest_control_in(&(test->test_params.control_in), class_request, &index);
|
976 |
|
|
|
977 |
|
|
lock_endpoint(0, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN);
|
978 |
|
|
test->which_test = usbtest_control_in;
|
979 |
|
|
test->recovery.endpoint = 0;
|
980 |
|
|
test->recovery.protocol = USB_ENDPOINT_DESCRIPTOR_ATTR_CONTROL;
|
981 |
|
|
test->recovery.size = 0; // Does not actually matter
|
982 |
|
|
test->cancel_fn = &cancel_test_control_in;
|
983 |
|
|
|
984 |
|
|
// Assume a pass. Failures are easy to detect.
|
985 |
|
|
test->result_pass = 1;
|
986 |
|
|
|
987 |
|
|
control_in_test = test;
|
988 |
|
|
control_in_test_packet_size = test->test_params.control_in.packet_size_initial;
|
989 |
|
|
control_in_packets_transferred = 0;
|
990 |
|
|
|
991 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
992 |
|
|
}
|
993 |
|
|
|
994 |
|
|
// The thread for a control-in test. Actually all the hard work is done at DSR
|
995 |
|
|
// level, so this thread serves simply to detect when the test has completed
|
996 |
|
|
// and to perform some clean-ups.
|
997 |
|
|
static void
|
998 |
|
|
run_test_control_in(UsbTest* test)
|
999 |
|
|
{
|
1000 |
|
|
CYG_ASSERTC(test == control_in_test);
|
1001 |
|
|
|
1002 |
|
|
cyg_semaphore_wait(&(test->sem));
|
1003 |
|
|
|
1004 |
|
|
// The DSR has detected that the test is complete.
|
1005 |
|
|
control_in_test = (UsbTest*) 0;
|
1006 |
|
|
control_in_test_packet_size = 0;
|
1007 |
|
|
control_in_packets_transferred = 0;
|
1008 |
|
|
test->cancel_fn = (void (*)(UsbTest*)) 0;
|
1009 |
|
|
unlock_endpoint(0, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN);
|
1010 |
|
|
}
|
1011 |
|
|
|
1012 |
|
|
// ----------------------------------------------------------------------------
|
1013 |
|
|
// This is installed from inside main() as the handler for reserved
|
1014 |
|
|
// control messages.
|
1015 |
|
|
static usbs_control_return
|
1016 |
|
|
handle_reserved_control_messages(usbs_control_endpoint* endpoint, void* data)
|
1017 |
|
|
{
|
1018 |
|
|
usb_devreq* req = (usb_devreq*) endpoint->control_buffer;
|
1019 |
|
|
usbs_control_return result;
|
1020 |
|
|
|
1021 |
|
|
CYG_ASSERT(endpoint == control_endpoint, "control endpoint mismatch");
|
1022 |
|
|
switch(req->request) {
|
1023 |
|
|
case USBTEST_RESERVED_CONTROL_IN:
|
1024 |
|
|
{
|
1025 |
|
|
unsigned char* buf;
|
1026 |
|
|
int len;
|
1027 |
|
|
|
1028 |
|
|
if ((UsbTest*)0 == control_in_test) {
|
1029 |
|
|
result = USBS_CONTROL_RETURN_STALL;
|
1030 |
|
|
break;
|
1031 |
|
|
}
|
1032 |
|
|
|
1033 |
|
|
// Is this test over? If so indicate a failure because we
|
1034 |
|
|
// cannot have received all the control packets.
|
1035 |
|
|
if (current_tests_terminated) {
|
1036 |
|
|
control_in_test->result_pass = 0;
|
1037 |
|
|
snprintf(control_in_test->result_message, USBTEST_MAX_MESSAGE,
|
1038 |
|
|
"Target, control IN transfer: not all packets received.");
|
1039 |
|
|
cyg_semaphore_post(&(control_in_test->sem));
|
1040 |
|
|
control_in_test = (UsbTest*) 0;
|
1041 |
|
|
result = USBS_CONTROL_RETURN_STALL;
|
1042 |
|
|
break;
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
// A control-IN test is indeed in progress, and the current state is
|
1046 |
|
|
// held in control_in_test and control_in_test_packet_size. Check that
|
1047 |
|
|
// the packet size matches up, i.e. that host and target are in sync.
|
1048 |
|
|
len = (req->length_hi << 8) || req->length_lo;
|
1049 |
|
|
if (control_in_test_packet_size != len) {
|
1050 |
|
|
control_in_test->result_pass = 0;
|
1051 |
|
|
snprintf(control_in_test->result_message, USBTEST_MAX_MESSAGE,
|
1052 |
|
|
"Target, control IN transfer on endpoint %d : the host only requested %d bytes instead of %d",
|
1053 |
|
|
len, control_in_test_packet_size);
|
1054 |
|
|
cyg_semaphore_post(&(control_in_test->sem));
|
1055 |
|
|
control_in_test = (UsbTest*) 0;
|
1056 |
|
|
result = USBS_CONTROL_RETURN_STALL;
|
1057 |
|
|
break;
|
1058 |
|
|
}
|
1059 |
|
|
|
1060 |
|
|
// Prepare a suitable reply buffer. This is happening at
|
1061 |
|
|
// DSR level so runtime is important, but with an upper
|
1062 |
|
|
// bound of 255 bytes the buffer should be small enough.
|
1063 |
|
|
buf = control_in_test->buffer;
|
1064 |
|
|
usbtest_fill_buffer(&(control_in_test->test_params.control_in.data), buf, control_in_test_packet_size);
|
1065 |
|
|
control_endpoint->buffer_size = control_in_test_packet_size;
|
1066 |
|
|
control_endpoint->buffer = buf;
|
1067 |
|
|
USBTEST_CONTROL_NEXT_PACKET_SIZE(control_in_test_packet_size, control_in_test->test_params.control_in);
|
1068 |
|
|
|
1069 |
|
|
// Have all the packets been transferred?
|
1070 |
|
|
control_in_packets_transferred++;
|
1071 |
|
|
if (control_in_packets_transferred == control_in_test->test_params.control_in.number_packets) {
|
1072 |
|
|
cyg_semaphore_post(&(control_in_test->sem));
|
1073 |
|
|
control_in_test = (UsbTest*) 0;
|
1074 |
|
|
}
|
1075 |
|
|
result = USBS_CONTROL_RETURN_HANDLED;
|
1076 |
|
|
break;
|
1077 |
|
|
}
|
1078 |
|
|
default:
|
1079 |
|
|
CYG_FAIL("Unexpected reserved control message");
|
1080 |
|
|
break;
|
1081 |
|
|
}
|
1082 |
|
|
|
1083 |
|
|
return result;
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
/*}}}*/
|
1087 |
|
|
|
1088 |
|
|
// FIXME: add more tests.
|
1089 |
|
|
|
1090 |
|
|
// This utility is invoked from a thread in the thread pool whenever there is
|
1091 |
|
|
// work to be done. It simply dispatches to the appropriate handler.
|
1092 |
|
|
static void
|
1093 |
|
|
run_test(UsbTest* test)
|
1094 |
|
|
{
|
1095 |
|
|
switch(test->which_test)
|
1096 |
|
|
{
|
1097 |
|
|
case usbtest_bulk_out : run_test_bulk_out(test); break;
|
1098 |
|
|
case usbtest_bulk_in : run_test_bulk_in(test); break;
|
1099 |
|
|
case usbtest_control_in: run_test_control_in(test); break;
|
1100 |
|
|
default:
|
1101 |
|
|
CYG_TEST_FAIL_EXIT("Internal error, attempt to run unknown test.\n");
|
1102 |
|
|
break;
|
1103 |
|
|
}
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
/*}}}*/
|
1107 |
|
|
/*{{{ The thread pool */
|
1108 |
|
|
|
1109 |
|
|
// ----------------------------------------------------------------------------
|
1110 |
|
|
// Just like on the host side, it is desirable to have a pool of
|
1111 |
|
|
// threads available to perform test operations. Strictly speaking
|
1112 |
|
|
// some tests will run without needing a separate thread, since many
|
1113 |
|
|
// operations can be performed at DSR level. However typical
|
1114 |
|
|
// application code will involve threads and it is desirable for test
|
1115 |
|
|
// code to behave the same way. Also, some operations like validating
|
1116 |
|
|
// the transferred data are expensive, and best done in thread context.
|
1117 |
|
|
|
1118 |
|
|
typedef struct PoolEntry {
|
1119 |
|
|
cyg_sem_t wakeup;
|
1120 |
|
|
cyg_thread thread_data;
|
1121 |
|
|
cyg_handle_t thread_handle;
|
1122 |
|
|
char thread_name[16];
|
1123 |
|
|
char thread_stack[2 * CYGNUM_HAL_STACK_SIZE_TYPICAL];
|
1124 |
|
|
cyg_bool in_use;
|
1125 |
|
|
cyg_bool running;
|
1126 |
|
|
UsbTest test;
|
1127 |
|
|
} PoolEntry;
|
1128 |
|
|
|
1129 |
|
|
// This array must be uninitialized, or the executable size would
|
1130 |
|
|
// be ludicrous.
|
1131 |
|
|
PoolEntry pool[USBTEST_MAX_CONCURRENT_TESTS];
|
1132 |
|
|
|
1133 |
|
|
// The entry point for every thread in the pool. It just loops forever,
|
1134 |
|
|
// waiting until it is supposed to run a test.
|
1135 |
|
|
static void
|
1136 |
|
|
pool_thread_function(cyg_addrword_t arg)
|
1137 |
|
|
{
|
1138 |
|
|
PoolEntry* pool_entry = (PoolEntry*) arg;
|
1139 |
|
|
|
1140 |
|
|
for ( ; ; ) {
|
1141 |
|
|
cyg_semaphore_wait(&(pool_entry->wakeup));
|
1142 |
|
|
run_test(&(pool_entry->test));
|
1143 |
|
|
pool_entry->running = 0;
|
1144 |
|
|
}
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
// Initialize all threads in the pool.
|
1148 |
|
|
static void
|
1149 |
|
|
pool_initialize(void)
|
1150 |
|
|
{
|
1151 |
|
|
int i;
|
1152 |
|
|
for (i = 0; i < USBTEST_MAX_CONCURRENT_TESTS; i++) {
|
1153 |
|
|
cyg_semaphore_init(&(pool[i].wakeup), 0);
|
1154 |
|
|
pool[i].in_use = 0;
|
1155 |
|
|
pool[i].running = 0;
|
1156 |
|
|
sprintf(pool[i].thread_name, "worker%d", i);
|
1157 |
|
|
cyg_thread_create( 0, &pool_thread_function, (cyg_addrword_t) &(pool[i]),
|
1158 |
|
|
pool[i].thread_name, pool[i].thread_stack, 2 * CYGNUM_HAL_STACK_SIZE_TYPICAL,
|
1159 |
|
|
&(pool[i].thread_handle), &(pool[i].thread_data));
|
1160 |
|
|
cyg_thread_resume(pool[i].thread_handle);
|
1161 |
|
|
}
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
// Allocate a single entry in the thread pool
|
1165 |
|
|
static UsbTest*
|
1166 |
|
|
pool_allocate(void)
|
1167 |
|
|
{
|
1168 |
|
|
UsbTest* result = (UsbTest*) 0;
|
1169 |
|
|
|
1170 |
|
|
if (thread_counter == USBTEST_MAX_CONCURRENT_TESTS) {
|
1171 |
|
|
CYG_TEST_FAIL_EXIT("Internal error, thread resources exhaused.\n");
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
result = &(pool[thread_counter].test);
|
1175 |
|
|
thread_counter++;
|
1176 |
|
|
reset_usbtest(result);
|
1177 |
|
|
return result;
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
// Start all the threads that are supposed to be running tests.
|
1181 |
|
|
static void
|
1182 |
|
|
pool_start(void)
|
1183 |
|
|
{
|
1184 |
|
|
int i;
|
1185 |
|
|
for (i = 0; i < thread_counter; i++) {
|
1186 |
|
|
pool[i].running = 1;
|
1187 |
|
|
cyg_semaphore_post(&(pool[i].wakeup));
|
1188 |
|
|
}
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
/*}}}*/
|
1192 |
|
|
/*{{{ Class control messages */
|
1193 |
|
|
|
1194 |
|
|
// ----------------------------------------------------------------------------
|
1195 |
|
|
// Handle class control messages. These provide the primary form of
|
1196 |
|
|
// communication between host and target. There are requests to find out
|
1197 |
|
|
// the number of endpoints, details of each endpoint, prepare a test run,
|
1198 |
|
|
// abort a test run, get status, terminate the target-side, and so on.
|
1199 |
|
|
// The handlers for starting specific test cases are kept alongside
|
1200 |
|
|
// the test cases themselves.
|
1201 |
|
|
//
|
1202 |
|
|
// Note that these handlers will typically be invoked from DSR context
|
1203 |
|
|
// and hence they are subject to the usual DSR restrictions.
|
1204 |
|
|
//
|
1205 |
|
|
// Problems have been experienced in some hosts sending control messages
|
1206 |
|
|
// that involve additional host->target data. An ugly workaround is
|
1207 |
|
|
// in place whereby any such data is sent in advance using separate
|
1208 |
|
|
// control messages.
|
1209 |
|
|
|
1210 |
|
|
/*{{{ endpoint count */
|
1211 |
|
|
|
1212 |
|
|
// How many endpoints are supported by this device? That information is
|
1213 |
|
|
// determined during initialization.
|
1214 |
|
|
static usbs_control_return
|
1215 |
|
|
handle_endpoint_count(usb_devreq* req)
|
1216 |
|
|
{
|
1217 |
|
|
CYG_ASSERTC((1 == req->length_lo) && (0 == req->length_hi) && \
|
1218 |
|
|
((req->type & USB_DEVREQ_DIRECTION_MASK) == USB_DEVREQ_DIRECTION_IN));
|
1219 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1220 |
|
|
|
1221 |
|
|
class_reply[0] = (unsigned char) number_endpoints;
|
1222 |
|
|
control_endpoint->buffer = class_reply;
|
1223 |
|
|
control_endpoint->buffer_size = 1;
|
1224 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
/*}}}*/
|
1228 |
|
|
/*{{{ endpoint details */
|
1229 |
|
|
|
1230 |
|
|
// The host wants to know the details of a specific USB endpoint.
|
1231 |
|
|
// The format is specified in protocol.h
|
1232 |
|
|
static usbs_control_return
|
1233 |
|
|
handle_endpoint_details(usb_devreq* req)
|
1234 |
|
|
{
|
1235 |
|
|
int buf_index;
|
1236 |
|
|
|
1237 |
|
|
CYG_ASSERTC((req->type & USB_DEVREQ_DIRECTION_MASK) == USB_DEVREQ_DIRECTION_IN);
|
1238 |
|
|
CYG_ASSERTC((USBTEST_MAX_CONTROL_DATA == req->length_lo) && (0 == req->length_hi));
|
1239 |
|
|
CYG_ASSERTC(req->index_lo < number_endpoints);
|
1240 |
|
|
CYG_ASSERTC((0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1241 |
|
|
|
1242 |
|
|
class_reply[0] = (unsigned char) usbs_testing_endpoints[req->index_lo].endpoint_type;
|
1243 |
|
|
class_reply[1] = (unsigned char) usbs_testing_endpoints[req->index_lo].endpoint_number;
|
1244 |
|
|
class_reply[2] = (unsigned char) usbs_testing_endpoints[req->index_lo].endpoint_direction;
|
1245 |
|
|
class_reply[3] = (unsigned char) usbs_testing_endpoints[req->index_lo].max_in_padding;
|
1246 |
|
|
buf_index = 4;
|
1247 |
|
|
pack_int(usbs_testing_endpoints[req->index_lo].min_size, class_reply, &buf_index);
|
1248 |
|
|
pack_int(usbs_testing_endpoints[req->index_lo].max_size, class_reply, &buf_index);
|
1249 |
|
|
if (NULL == usbs_testing_endpoints[req->index_lo].devtab_entry) {
|
1250 |
|
|
class_reply[buf_index] = '\0';
|
1251 |
|
|
control_endpoint->buffer_size = buf_index + 1;
|
1252 |
|
|
} else {
|
1253 |
|
|
int len = strlen(usbs_testing_endpoints[req->index_lo].devtab_entry) + buf_index + 1;
|
1254 |
|
|
if (len > USBTEST_MAX_CONTROL_DATA) {
|
1255 |
|
|
return USBS_CONTROL_RETURN_STALL;
|
1256 |
|
|
} else {
|
1257 |
|
|
strcpy(&(class_reply[buf_index]), usbs_testing_endpoints[req->index_lo].devtab_entry);
|
1258 |
|
|
control_endpoint->buffer_size = len;
|
1259 |
|
|
}
|
1260 |
|
|
}
|
1261 |
|
|
control_endpoint->buffer = class_reply;
|
1262 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
/*}}}*/
|
1266 |
|
|
/*{{{ sync */
|
1267 |
|
|
|
1268 |
|
|
// The host wants to know whether or not the target is currently busy doing
|
1269 |
|
|
// stuff. This information is held in a static.
|
1270 |
|
|
static usbs_control_return
|
1271 |
|
|
handle_sync(usb_devreq* req)
|
1272 |
|
|
{
|
1273 |
|
|
CYG_ASSERTC((1 == req->length_lo) && (0 == req->length_hi) && \
|
1274 |
|
|
((req->type & USB_DEVREQ_DIRECTION_MASK) == USB_DEVREQ_DIRECTION_IN));
|
1275 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1276 |
|
|
CYG_ASSERT(0 == class_request_size, "A sync operation should not involve any data");
|
1277 |
|
|
|
1278 |
|
|
class_reply[0] = (unsigned char) idle;
|
1279 |
|
|
control_endpoint->buffer = class_reply;
|
1280 |
|
|
control_endpoint->buffer_size = 1;
|
1281 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
/*}}}*/
|
1285 |
|
|
/*{{{ pass/fail */
|
1286 |
|
|
|
1287 |
|
|
// Allow the host to generate some pass or fail messages, and
|
1288 |
|
|
// optionally terminate the test. These are synchronous requests
|
1289 |
|
|
// so the data can be left in class_request.
|
1290 |
|
|
|
1291 |
|
|
static int passfail_request = 0;
|
1292 |
|
|
|
1293 |
|
|
// Invoked from thread context
|
1294 |
|
|
static void
|
1295 |
|
|
handle_passfail_action(void)
|
1296 |
|
|
{
|
1297 |
|
|
switch (passfail_request) {
|
1298 |
|
|
case USBTEST_PASS:
|
1299 |
|
|
CYG_TEST_PASS(class_request);
|
1300 |
|
|
break;
|
1301 |
|
|
case USBTEST_PASS_EXIT:
|
1302 |
|
|
CYG_TEST_PASS(class_request);
|
1303 |
|
|
CYG_TEST_EXIT("Exiting normally as requested by the host");
|
1304 |
|
|
break;
|
1305 |
|
|
case USBTEST_FAIL:
|
1306 |
|
|
CYG_TEST_FAIL(class_request);
|
1307 |
|
|
break;
|
1308 |
|
|
case USBTEST_FAIL_EXIT:
|
1309 |
|
|
CYG_TEST_FAIL(class_request);
|
1310 |
|
|
CYG_TEST_EXIT("Exiting normally as requested by the host");
|
1311 |
|
|
break;
|
1312 |
|
|
default:
|
1313 |
|
|
CYG_FAIL("Bogus invocation of usbtest_main_passfail");
|
1314 |
|
|
break;
|
1315 |
|
|
}
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
// Invoked from DSR context
|
1319 |
|
|
static usbs_control_return
|
1320 |
|
|
handle_passfail(usb_devreq* req)
|
1321 |
|
|
{
|
1322 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1323 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1324 |
|
|
CYG_ASSERT(class_request_size > 0, "A pass/fail message should be supplied");
|
1325 |
|
|
CYG_ASSERT(idle, "Pass/fail messages are only allowed when idle");
|
1326 |
|
|
CYG_ASSERT((void (*)(void))0 == main_thread_action, "No thread operation should be pending.");
|
1327 |
|
|
|
1328 |
|
|
passfail_request = req->request;
|
1329 |
|
|
idle = false;
|
1330 |
|
|
main_thread_action = &handle_passfail_action;
|
1331 |
|
|
cyg_semaphore_post(&main_wakeup);
|
1332 |
|
|
|
1333 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1334 |
|
|
}
|
1335 |
|
|
|
1336 |
|
|
/*}}}*/
|
1337 |
|
|
/*{{{ abort */
|
1338 |
|
|
|
1339 |
|
|
// The host has concluded that there is no easy way to get both target and
|
1340 |
|
|
// host back to a sensible state. For example there may be a thread that
|
1341 |
|
|
// is blocked waiting for some I/O that is not going to complete. The abort
|
1342 |
|
|
// should be handled at thread level, not DSR level, so that the host
|
1343 |
|
|
// still sees the low-level USB handshake.
|
1344 |
|
|
|
1345 |
|
|
static void
|
1346 |
|
|
handle_abort_action(void)
|
1347 |
|
|
{
|
1348 |
|
|
CYG_TEST_FAIL_EXIT("Test abort requested by host application");
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
static usbs_control_return
|
1352 |
|
|
handle_abort(usb_devreq* req)
|
1353 |
|
|
{
|
1354 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1355 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1356 |
|
|
CYG_ASSERT(idle, "Abort messages are only allowed when idle");
|
1357 |
|
|
CYG_ASSERT((void (*)(void))0 == main_thread_action, "No thread operation should be pending.");
|
1358 |
|
|
|
1359 |
|
|
idle = false;
|
1360 |
|
|
main_thread_action = &handle_abort_action;
|
1361 |
|
|
cyg_semaphore_post(&main_wakeup);
|
1362 |
|
|
|
1363 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1364 |
|
|
}
|
1365 |
|
|
|
1366 |
|
|
/*}}}*/
|
1367 |
|
|
/*{{{ cancel */
|
1368 |
|
|
|
1369 |
|
|
// Invoked from thread context
|
1370 |
|
|
// Cancelling pending test cases simply involves iterating over the allocated
|
1371 |
|
|
// entries in the pool, invoking any cancellation functions that have been
|
1372 |
|
|
// defined, and then resetting the tread count. The actual tests have not
|
1373 |
|
|
// yet started so none of the threads will be active.
|
1374 |
|
|
static void
|
1375 |
|
|
handle_cancel_action(void)
|
1376 |
|
|
{
|
1377 |
|
|
int i;
|
1378 |
|
|
for (i = 0; i < thread_counter; i++) {
|
1379 |
|
|
if ((void (*)(UsbTest*))0 != pool[i].test.cancel_fn) {
|
1380 |
|
|
(*(pool[i].test.cancel_fn))(&(pool[i].test));
|
1381 |
|
|
pool[i].test.cancel_fn = (void (*)(UsbTest*)) 0;
|
1382 |
|
|
}
|
1383 |
|
|
}
|
1384 |
|
|
thread_counter = 0;
|
1385 |
|
|
}
|
1386 |
|
|
|
1387 |
|
|
// Invoked from DSR context
|
1388 |
|
|
static usbs_control_return
|
1389 |
|
|
handle_cancel(usb_devreq* req)
|
1390 |
|
|
{
|
1391 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1392 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1393 |
|
|
CYG_ASSERT(0 == class_request_size, "A cancel operation should not involve any data");
|
1394 |
|
|
CYG_ASSERT(idle, "Cancel requests are only allowed when idle");
|
1395 |
|
|
CYG_ASSERT(!running, "Cancel requests cannot be sent once the system is running");
|
1396 |
|
|
CYG_ASSERT((void (*)(void))0 == main_thread_action, "No thread operation should be pending.");
|
1397 |
|
|
|
1398 |
|
|
idle = false;
|
1399 |
|
|
main_thread_action = &handle_cancel_action;
|
1400 |
|
|
cyg_semaphore_post(&main_wakeup);
|
1401 |
|
|
|
1402 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1403 |
|
|
}
|
1404 |
|
|
|
1405 |
|
|
/*}}}*/
|
1406 |
|
|
/*{{{ start */
|
1407 |
|
|
|
1408 |
|
|
// Start the tests running. This just involves waking up the pool threads
|
1409 |
|
|
// and setting the running flag, with the latter serving primarily for
|
1410 |
|
|
// assertions.
|
1411 |
|
|
|
1412 |
|
|
static usbs_control_return
|
1413 |
|
|
handle_start(usb_devreq* req)
|
1414 |
|
|
{
|
1415 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1416 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1417 |
|
|
CYG_ASSERT(0 == class_request_size, "A start operation should not involve any data");
|
1418 |
|
|
CYG_ASSERT(!running, "Start requests cannot be sent if the system is already running");
|
1419 |
|
|
|
1420 |
|
|
current_tests_terminated = false;
|
1421 |
|
|
running = true;
|
1422 |
|
|
pool_start();
|
1423 |
|
|
|
1424 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
/*}}}*/
|
1428 |
|
|
/*{{{ finished */
|
1429 |
|
|
|
1430 |
|
|
// Have all the tests finished? This involves checking all the threads
|
1431 |
|
|
// involved in the current batch of tests and seeing whether or not
|
1432 |
|
|
// their running flag is still set.
|
1433 |
|
|
|
1434 |
|
|
static usbs_control_return
|
1435 |
|
|
handle_finished(usb_devreq* req)
|
1436 |
|
|
{
|
1437 |
|
|
int i;
|
1438 |
|
|
int result = 1;
|
1439 |
|
|
|
1440 |
|
|
CYG_ASSERTC((1 == req->length_lo) && (0 == req->length_hi) && \
|
1441 |
|
|
((req->type & USB_DEVREQ_DIRECTION_MASK) == USB_DEVREQ_DIRECTION_IN));
|
1442 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1443 |
|
|
CYG_ASSERT(0 == class_request_size, "A finished operation should not involve any data");
|
1444 |
|
|
CYG_ASSERT(running, "Finished requests can only be sent if the system is already running");
|
1445 |
|
|
|
1446 |
|
|
for (i = 0; i < thread_counter; i++) {
|
1447 |
|
|
if (pool[i].running) {
|
1448 |
|
|
result = 0;
|
1449 |
|
|
break;
|
1450 |
|
|
}
|
1451 |
|
|
}
|
1452 |
|
|
class_reply[0] = (unsigned char) result;
|
1453 |
|
|
control_endpoint->buffer = class_reply;
|
1454 |
|
|
control_endpoint->buffer_size = 1;
|
1455 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1456 |
|
|
}
|
1457 |
|
|
|
1458 |
|
|
/*}}}*/
|
1459 |
|
|
/*{{{ set terminated */
|
1460 |
|
|
|
1461 |
|
|
// A timeout has occurred, or there is some other failure. The first step
|
1462 |
|
|
// in recovery is to set the terminated flag so that as recovery action
|
1463 |
|
|
// takes place and the threads wake up they make no attempt to continue
|
1464 |
|
|
// doing more transfers.
|
1465 |
|
|
|
1466 |
|
|
static usbs_control_return
|
1467 |
|
|
handle_set_terminated(usb_devreq* req)
|
1468 |
|
|
{
|
1469 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1470 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1471 |
|
|
CYG_ASSERT(0 == class_request_size, "A set-terminated operation should not involve any data");
|
1472 |
|
|
CYG_ASSERT(running, "The terminated flag can only be set when there are running tests");
|
1473 |
|
|
|
1474 |
|
|
current_tests_terminated = 1;
|
1475 |
|
|
|
1476 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1477 |
|
|
}
|
1478 |
|
|
|
1479 |
|
|
/*}}}*/
|
1480 |
|
|
/*{{{ get recovery */
|
1481 |
|
|
|
1482 |
|
|
// Return the recovery information for one of the threads involved in the
|
1483 |
|
|
// current batch of tests, so that the host can perform a USB operation
|
1484 |
|
|
// that will sort out that thread.
|
1485 |
|
|
static usbs_control_return
|
1486 |
|
|
handle_get_recovery(usb_devreq* req)
|
1487 |
|
|
{
|
1488 |
|
|
int buffer_index;
|
1489 |
|
|
|
1490 |
|
|
CYG_ASSERT(current_tests_terminated, "Recovery should only be attempted when the terminated flag is set");
|
1491 |
|
|
CYG_ASSERT(running, "If there are no tests running then recovery is impossible");
|
1492 |
|
|
CYG_ASSERTC((12 == req->length_lo) && (0 == req->length_hi) && \
|
1493 |
|
|
((req->type & USB_DEVREQ_DIRECTION_MASK) == USB_DEVREQ_DIRECTION_IN));
|
1494 |
|
|
CYG_ASSERTC(req->index_lo <= thread_counter);
|
1495 |
|
|
CYG_ASSERTC((0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1496 |
|
|
CYG_ASSERT(0 == class_request_size, "A get-recovery operation should not involve any data");
|
1497 |
|
|
|
1498 |
|
|
control_endpoint->buffer = class_reply;
|
1499 |
|
|
if (!pool[req->index_lo].running) {
|
1500 |
|
|
// Actually, this particular thread has terminated so no recovery is needed.
|
1501 |
|
|
control_endpoint->buffer_size = 0;
|
1502 |
|
|
} else {
|
1503 |
|
|
buffer_index = 0;
|
1504 |
|
|
pack_usbtest_recovery(&(pool[req->index_lo].test.recovery), class_reply, &buffer_index);
|
1505 |
|
|
control_endpoint->buffer_size = buffer_index;
|
1506 |
|
|
}
|
1507 |
|
|
|
1508 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1509 |
|
|
}
|
1510 |
|
|
|
1511 |
|
|
/*}}}*/
|
1512 |
|
|
/*{{{ perform recovery */
|
1513 |
|
|
|
1514 |
|
|
// The host has identified a course of action that could unlock a thread
|
1515 |
|
|
// on the host-side that is currently blocked performing a USB operation.
|
1516 |
|
|
// Typically this involves either sending or accepting some data. If the
|
1517 |
|
|
// endpoint is still locked, in other words if there is a still a local
|
1518 |
|
|
// thread attempting to communicate on the specified endpoint, then
|
1519 |
|
|
// things are messed up: both sides are trying to communicate, but nothing
|
1520 |
|
|
// is happening. The eCos USB API is such that attempting multiple
|
1521 |
|
|
// concurrent operations on a single endpoint is disallowed, so
|
1522 |
|
|
// the recovery request has to be ignored. If things do not sort themselves
|
1523 |
|
|
// out then the whole test run will have to be aborted.
|
1524 |
|
|
|
1525 |
|
|
// A dummy completion function for when a recovery operation has completed.
|
1526 |
|
|
static void
|
1527 |
|
|
recovery_callback(void* callback_arg, int transferred)
|
1528 |
|
|
{
|
1529 |
|
|
CYG_UNUSED_PARAM(void*, callback_arg);
|
1530 |
|
|
CYG_UNUSED_PARAM(int, transferred);
|
1531 |
|
|
}
|
1532 |
|
|
|
1533 |
|
|
static usbs_control_return
|
1534 |
|
|
handle_perform_recovery(usb_devreq* req)
|
1535 |
|
|
{
|
1536 |
|
|
int buffer_index;
|
1537 |
|
|
int endpoint_number;
|
1538 |
|
|
int endpoint_direction;
|
1539 |
|
|
UsbTest_Recovery recovery;
|
1540 |
|
|
|
1541 |
|
|
CYG_ASSERT(current_tests_terminated, "Recovery should only be attempted when the terminated flag is set");
|
1542 |
|
|
CYG_ASSERT(running, "If there are no tests running then recovery is impossible");
|
1543 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1544 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1545 |
|
|
CYG_ASSERT(12 == class_request_size, "A perform-recovery operation requires recovery data");
|
1546 |
|
|
|
1547 |
|
|
buffer_index = 0;
|
1548 |
|
|
unpack_usbtest_recovery(&recovery, class_request, &buffer_index);
|
1549 |
|
|
endpoint_number = recovery.endpoint & ~USB_DEVREQ_DIRECTION_MASK;
|
1550 |
|
|
endpoint_direction = recovery.endpoint & USB_DEVREQ_DIRECTION_MASK;
|
1551 |
|
|
|
1552 |
|
|
if (!is_endpoint_locked(endpoint_number, endpoint_direction)) {
|
1553 |
|
|
// Locking the endpoint here would be good, but the endpoint would then
|
1554 |
|
|
// have to be unlocked again - probably in the recovery callback.
|
1555 |
|
|
// This complication is ignored for now.
|
1556 |
|
|
|
1557 |
|
|
if (USB_ENDPOINT_DESCRIPTOR_ATTR_BULK == recovery.protocol) {
|
1558 |
|
|
int ep_index = lookup_endpoint(endpoint_number, endpoint_direction, USB_ENDPOINT_DESCRIPTOR_ATTR_BULK);
|
1559 |
|
|
CYG_ASSERTC(-1 != ep_index);
|
1560 |
|
|
|
1561 |
|
|
if (USB_DEVREQ_DIRECTION_IN == endpoint_direction) {
|
1562 |
|
|
// The host wants some data. Supply it. A single byte will do fine to
|
1563 |
|
|
// complete the transfer.
|
1564 |
|
|
usbs_start_tx_buffer((usbs_tx_endpoint*) usbs_testing_endpoints[ep_index].endpoint,
|
1565 |
|
|
recovery_buffer, 1, &recovery_callback, (void*) 0);
|
1566 |
|
|
} else {
|
1567 |
|
|
// The host is trying to send some data. Accept all of it.
|
1568 |
|
|
usbs_start_rx_buffer((usbs_rx_endpoint*) usbs_testing_endpoints[ep_index].endpoint,
|
1569 |
|
|
recovery_buffer, recovery.size, &recovery_callback, (void*) 0);
|
1570 |
|
|
}
|
1571 |
|
|
}
|
1572 |
|
|
|
1573 |
|
|
// No support for isochronous or interrupt transfers yet.
|
1574 |
|
|
// handle_reserved_control_messages() should generate stalls which
|
1575 |
|
|
// have the desired effect.
|
1576 |
|
|
}
|
1577 |
|
|
|
1578 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
/*}}}*/
|
1582 |
|
|
/*{{{ get result */
|
1583 |
|
|
|
1584 |
|
|
// Return the result of one the tests. This can be a single byte for
|
1585 |
|
|
// a pass, or a single byte plus a message for a failure.
|
1586 |
|
|
|
1587 |
|
|
static usbs_control_return
|
1588 |
|
|
handle_get_result(usb_devreq* req)
|
1589 |
|
|
{
|
1590 |
|
|
CYG_ASSERTC((USBTEST_MAX_CONTROL_DATA == req->length_lo) && (0 == req->length_hi) && \
|
1591 |
|
|
((req->type & USB_DEVREQ_DIRECTION_MASK) == USB_DEVREQ_DIRECTION_IN));
|
1592 |
|
|
CYG_ASSERTC(req->index_lo <= thread_counter);
|
1593 |
|
|
CYG_ASSERTC((0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1594 |
|
|
CYG_ASSERT(0 == class_request_size, "A get-result operation should not involve any data");
|
1595 |
|
|
CYG_ASSERT(running, "Results can only be sent if a run is in progress");
|
1596 |
|
|
CYG_ASSERT(!pool[req->index_lo].running, "Cannot request results for a test that has not completed");
|
1597 |
|
|
|
1598 |
|
|
class_reply[0] = pool[req->index_lo].test.result_pass;
|
1599 |
|
|
if (class_reply[0]) {
|
1600 |
|
|
control_endpoint->buffer_size = 1;
|
1601 |
|
|
} else {
|
1602 |
|
|
strncpy(&(class_reply[1]), pool[req->index_lo].test.result_message, USBTEST_MAX_CONTROL_DATA - 2);
|
1603 |
|
|
class_reply[USBTEST_MAX_CONTROL_DATA - 1] = '\0';
|
1604 |
|
|
control_endpoint->buffer_size = 1 + strlen(&(class_reply[1])) + 1;
|
1605 |
|
|
}
|
1606 |
|
|
control_endpoint->buffer = class_reply;
|
1607 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
/*}}}*/
|
1611 |
|
|
/*{{{ batch done */
|
1612 |
|
|
|
1613 |
|
|
// A batch of test has been completed - at least, the host thinks so.
|
1614 |
|
|
// If the host is correct then all that is required here is to reset
|
1615 |
|
|
// the thread pool and clear the global running flag - that is sufficient
|
1616 |
|
|
// to allow a new batch of tests to be started.
|
1617 |
|
|
|
1618 |
|
|
static usbs_control_return
|
1619 |
|
|
handle_batch_done(usb_devreq* req)
|
1620 |
|
|
{
|
1621 |
|
|
int i;
|
1622 |
|
|
|
1623 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1624 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi) && (0 == req->value_lo) && (0 == req->value_hi));
|
1625 |
|
|
CYG_ASSERT(0 == class_request_size, "A batch-done operation should not involve any data");
|
1626 |
|
|
CYG_ASSERT(running, "There must be a current batch of tests");
|
1627 |
|
|
|
1628 |
|
|
for (i = 0; i < thread_counter; i++) {
|
1629 |
|
|
CYG_ASSERTC(!pool[i].running);
|
1630 |
|
|
}
|
1631 |
|
|
thread_counter = 0;
|
1632 |
|
|
running = false;
|
1633 |
|
|
|
1634 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1635 |
|
|
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
/*}}}*/
|
1639 |
|
|
/*{{{ verbosity */
|
1640 |
|
|
|
1641 |
|
|
static usbs_control_return
|
1642 |
|
|
handle_verbose(usb_devreq* req)
|
1643 |
|
|
{
|
1644 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1645 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi));
|
1646 |
|
|
CYG_ASSERT(0 == class_request_size, "A set-verbosity operation should not involve any data");
|
1647 |
|
|
|
1648 |
|
|
verbose = (req->value_hi << 8) + req->value_lo;
|
1649 |
|
|
|
1650 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1651 |
|
|
}
|
1652 |
|
|
|
1653 |
|
|
/*}}}*/
|
1654 |
|
|
/*{{{ initialise bulk out endpoint */
|
1655 |
|
|
|
1656 |
|
|
// ----------------------------------------------------------------------------
|
1657 |
|
|
// Accept an initial endpoint on a bulk endpoint. This avoids problems
|
1658 |
|
|
// on some hardware such as the SA11x0 which can start to accept data
|
1659 |
|
|
// before the software is ready for it.
|
1660 |
|
|
|
1661 |
|
|
static void handle_init_callback(void* arg, int result)
|
1662 |
|
|
{
|
1663 |
|
|
idle = true;
|
1664 |
|
|
}
|
1665 |
|
|
|
1666 |
|
|
static usbs_control_return
|
1667 |
|
|
handle_init_bulk_out(usb_devreq* req)
|
1668 |
|
|
{
|
1669 |
|
|
static char buf[64];
|
1670 |
|
|
int ep_index;
|
1671 |
|
|
usbs_rx_endpoint* endpoint;
|
1672 |
|
|
|
1673 |
|
|
CYG_ASSERTC((0 == req->length_lo) && (0 == req->length_hi));
|
1674 |
|
|
CYG_ASSERTC((0 == req->index_lo) && (0 == req->index_hi));
|
1675 |
|
|
CYG_ASSERTC((0 == req->value_hi) && (0 < req->value_lo) && (req->value_lo < 16));
|
1676 |
|
|
CYG_ASSERT(0 == class_request_size, "An init_bulk_out operation should not involve any data");
|
1677 |
|
|
|
1678 |
|
|
ep_index = lookup_endpoint(req->value_lo, USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT, USB_ENDPOINT_DESCRIPTOR_ATTR_BULK);
|
1679 |
|
|
CYG_ASSERTC(-1 != ep_index);
|
1680 |
|
|
endpoint = (usbs_rx_endpoint*) usbs_testing_endpoints[ep_index].endpoint;
|
1681 |
|
|
|
1682 |
|
|
idle = false;
|
1683 |
|
|
usbs_start_rx_buffer(endpoint, buf, 64, &handle_init_callback, (void*) 0);
|
1684 |
|
|
|
1685 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1686 |
|
|
}
|
1687 |
|
|
|
1688 |
|
|
/*}}}*/
|
1689 |
|
|
/*{{{ additional control data */
|
1690 |
|
|
|
1691 |
|
|
// Accumulate some more data in the control buffer, ahead of an upcoming
|
1692 |
|
|
// request.
|
1693 |
|
|
static usbs_control_return
|
1694 |
|
|
handle_control_data(usb_devreq* req)
|
1695 |
|
|
{
|
1696 |
|
|
class_request[class_request_size + 0] = req->value_hi;
|
1697 |
|
|
class_request[class_request_size + 1] = req->value_lo;
|
1698 |
|
|
class_request[class_request_size + 2] = req->index_hi;
|
1699 |
|
|
class_request[class_request_size + 3] = req->index_lo;
|
1700 |
|
|
|
1701 |
|
|
switch(req->request) {
|
1702 |
|
|
case USBTEST_CONTROL_DATA1 : class_request_size += 1; break;
|
1703 |
|
|
case USBTEST_CONTROL_DATA2 : class_request_size += 2; break;
|
1704 |
|
|
case USBTEST_CONTROL_DATA3 : class_request_size += 3; break;
|
1705 |
|
|
case USBTEST_CONTROL_DATA4 : class_request_size += 4; break;
|
1706 |
|
|
}
|
1707 |
|
|
|
1708 |
|
|
return USBS_CONTROL_RETURN_HANDLED;
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
/*}}}*/
|
1712 |
|
|
|
1713 |
|
|
typedef struct class_handler {
|
1714 |
|
|
int request;
|
1715 |
|
|
usbs_control_return (*handler)(usb_devreq*);
|
1716 |
|
|
} class_handler;
|
1717 |
|
|
static class_handler class_handlers[] = {
|
1718 |
|
|
{ USBTEST_ENDPOINT_COUNT, &handle_endpoint_count },
|
1719 |
|
|
{ USBTEST_ENDPOINT_DETAILS, &handle_endpoint_details },
|
1720 |
|
|
{ USBTEST_PASS, &handle_passfail },
|
1721 |
|
|
{ USBTEST_PASS_EXIT, &handle_passfail },
|
1722 |
|
|
{ USBTEST_FAIL, &handle_passfail },
|
1723 |
|
|
{ USBTEST_FAIL_EXIT, &handle_passfail },
|
1724 |
|
|
{ USBTEST_SYNCH, &handle_sync },
|
1725 |
|
|
{ USBTEST_ABORT, &handle_abort },
|
1726 |
|
|
{ USBTEST_CANCEL, &handle_cancel },
|
1727 |
|
|
{ USBTEST_START, &handle_start },
|
1728 |
|
|
{ USBTEST_FINISHED, &handle_finished },
|
1729 |
|
|
{ USBTEST_SET_TERMINATED, &handle_set_terminated },
|
1730 |
|
|
{ USBTEST_GET_RECOVERY, &handle_get_recovery },
|
1731 |
|
|
{ USBTEST_PERFORM_RECOVERY, &handle_perform_recovery },
|
1732 |
|
|
{ USBTEST_GET_RESULT, &handle_get_result },
|
1733 |
|
|
{ USBTEST_BATCH_DONE, &handle_batch_done },
|
1734 |
|
|
{ USBTEST_VERBOSE, &handle_verbose },
|
1735 |
|
|
{ USBTEST_INIT_BULK_OUT, &handle_init_bulk_out },
|
1736 |
|
|
{ USBTEST_TEST_BULK, &handle_test_bulk },
|
1737 |
|
|
{ USBTEST_TEST_CONTROL_IN, &handle_test_control_in },
|
1738 |
|
|
{ USBTEST_CONTROL_DATA1, &handle_control_data },
|
1739 |
|
|
{ USBTEST_CONTROL_DATA2, &handle_control_data },
|
1740 |
|
|
{ USBTEST_CONTROL_DATA3, &handle_control_data },
|
1741 |
|
|
{ USBTEST_CONTROL_DATA4, &handle_control_data },
|
1742 |
|
|
{ -1, (usbs_control_return (*)(usb_devreq*)) 0 }
|
1743 |
|
|
};
|
1744 |
|
|
|
1745 |
|
|
static usbs_control_return
|
1746 |
|
|
handle_class_control_messages(usbs_control_endpoint* endpoint, void* data)
|
1747 |
|
|
{
|
1748 |
|
|
usb_devreq* req = (usb_devreq*) endpoint->control_buffer;
|
1749 |
|
|
int request = req->request;
|
1750 |
|
|
usbs_control_return result;
|
1751 |
|
|
int i;
|
1752 |
|
|
|
1753 |
|
|
VERBOSE(3, "Received control message %02x\n", request);
|
1754 |
|
|
|
1755 |
|
|
CYG_ASSERT(endpoint == control_endpoint, "control endpoint mismatch");
|
1756 |
|
|
result = USBS_CONTROL_RETURN_UNKNOWN;
|
1757 |
|
|
for (i = 0; (usbs_control_return (*)(usb_devreq*))0 != class_handlers[i].handler; i++) {
|
1758 |
|
|
if (request == class_handlers[i].request) {
|
1759 |
|
|
result = (*(class_handlers[i].handler))(req);
|
1760 |
|
|
if ((USBTEST_CONTROL_DATA1 != request) &&
|
1761 |
|
|
(USBTEST_CONTROL_DATA2 != request) &&
|
1762 |
|
|
(USBTEST_CONTROL_DATA3 != request) &&
|
1763 |
|
|
(USBTEST_CONTROL_DATA4 != request)) {
|
1764 |
|
|
// Reset the request data buffer after all normal requests.
|
1765 |
|
|
class_request_size = 0;
|
1766 |
|
|
}
|
1767 |
|
|
break;
|
1768 |
|
|
}
|
1769 |
|
|
}
|
1770 |
|
|
CYG_UNUSED_PARAM(void*, data);
|
1771 |
|
|
if (USBS_CONTROL_RETURN_HANDLED != result) {
|
1772 |
|
|
VERBOSE(1, "Control message %02x not handled\n", request);
|
1773 |
|
|
}
|
1774 |
|
|
|
1775 |
|
|
return result;
|
1776 |
|
|
}
|
1777 |
|
|
|
1778 |
|
|
/*}}}*/
|
1779 |
|
|
/*{{{ main() */
|
1780 |
|
|
|
1781 |
|
|
// ----------------------------------------------------------------------------
|
1782 |
|
|
// Initialization.
|
1783 |
|
|
int
|
1784 |
|
|
main(int argc, char** argv)
|
1785 |
|
|
{
|
1786 |
|
|
int i;
|
1787 |
|
|
|
1788 |
|
|
CYG_TEST_INIT();
|
1789 |
|
|
|
1790 |
|
|
// The USB device driver should have provided an array of endpoint
|
1791 |
|
|
// descriptors, usbs_testing_endpoints(). One entry in this array
|
1792 |
|
|
// should be a control endpoint, which is needed for initialization.
|
1793 |
|
|
// It is also useful to know how many endpoints there are.
|
1794 |
|
|
for (i = 0; !USBS_TESTING_ENDPOINTS_IS_TERMINATOR(usbs_testing_endpoints[i]); i++) {
|
1795 |
|
|
if ((0 == usbs_testing_endpoints[i].endpoint_number) &&
|
1796 |
|
|
(USB_ENDPOINT_DESCRIPTOR_ATTR_CONTROL== usbs_testing_endpoints[i].endpoint_type)) {
|
1797 |
|
|
CYG_ASSERT((usbs_control_endpoint*)0 == control_endpoint, "There should be only one control endpoint");
|
1798 |
|
|
control_endpoint = (usbs_control_endpoint*) usbs_testing_endpoints[i].endpoint;
|
1799 |
|
|
}
|
1800 |
|
|
}
|
1801 |
|
|
if ((usbs_control_endpoint*)0 == control_endpoint) {
|
1802 |
|
|
CYG_TEST_FAIL_EXIT("Unable to find a USB control endpoint");
|
1803 |
|
|
}
|
1804 |
|
|
number_endpoints = i;
|
1805 |
|
|
CYG_ASSERT(number_endpoints <= USBTEST_MAX_ENDPOINTS, "impossible number of endpoints");
|
1806 |
|
|
|
1807 |
|
|
// Some of the information provided may not match the actual capabilities
|
1808 |
|
|
// of the testing code, e.g. max_size limits.
|
1809 |
|
|
fix_driver_endpoint_data();
|
1810 |
|
|
|
1811 |
|
|
// This semaphore is used for communication between the DSRs that process control
|
1812 |
|
|
// messages and the main thread
|
1813 |
|
|
cyg_semaphore_init(&main_wakeup, 0);
|
1814 |
|
|
|
1815 |
|
|
// Take care of the pool of threads and related data.
|
1816 |
|
|
pool_initialize();
|
1817 |
|
|
|
1818 |
|
|
// Start the heartbeat thread, to make sure that the gdb session stays
|
1819 |
|
|
// alive.
|
1820 |
|
|
start_heartbeat();
|
1821 |
|
|
|
1822 |
|
|
// Now it is possible to start up the USB device driver. The host can detect
|
1823 |
|
|
// this, connect, get the enumeration data, and then testing will proceed
|
1824 |
|
|
// in response to class control messages.
|
1825 |
|
|
provide_endpoint_enumeration_data();
|
1826 |
|
|
control_endpoint->enumeration_data = &usb_enum_data;
|
1827 |
|
|
control_endpoint->class_control_fn = &handle_class_control_messages;
|
1828 |
|
|
control_endpoint->reserved_control_fn = &handle_reserved_control_messages;
|
1829 |
|
|
usbs_start(control_endpoint);
|
1830 |
|
|
|
1831 |
|
|
// Now it is over to the host to detect this target and start performing tests.
|
1832 |
|
|
// Much of this is handled at DSR level, in response to USB control messages.
|
1833 |
|
|
// Some of those control messages require action at thread level, and that is
|
1834 |
|
|
// achieved by signalling a semaphore and waking up this thread. A static
|
1835 |
|
|
// function pointer is used to keep track of what operation is actually required.
|
1836 |
|
|
for (;;) {
|
1837 |
|
|
void (*handler)(void);
|
1838 |
|
|
|
1839 |
|
|
cyg_semaphore_wait(&main_wakeup);
|
1840 |
|
|
handler = main_thread_action;
|
1841 |
|
|
main_thread_action = 0;
|
1842 |
|
|
CYG_CHECK_FUNC_PTR(handler, "Main thread woken up when there is nothing to be done");
|
1843 |
|
|
(*handler)();
|
1844 |
|
|
idle = true;
|
1845 |
|
|
}
|
1846 |
|
|
}
|
1847 |
|
|
|
1848 |
|
|
/*}}}*/
|