1 |
27 |
unneback |
//==========================================================================
|
2 |
|
|
//
|
3 |
|
|
// stress_threads.cxx
|
4 |
|
|
//
|
5 |
|
|
// Basic thread stress test
|
6 |
|
|
//
|
7 |
|
|
//==========================================================================
|
8 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
9 |
|
|
// -------------------------------------------
|
10 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
11 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
12 |
|
|
//
|
13 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
14 |
|
|
// the terms of the GNU General Public License as published by the Free
|
15 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
16 |
|
|
//
|
17 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
18 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
19 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
20 |
|
|
// for more details.
|
21 |
|
|
//
|
22 |
|
|
// You should have received a copy of the GNU General Public License along
|
23 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
24 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
25 |
|
|
//
|
26 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
27 |
|
|
// or inline functions from this file, or you compile this file and link it
|
28 |
|
|
// with other works to produce a work based on this file, this file does not
|
29 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
30 |
|
|
// License. However the source code for this file must still be made available
|
31 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
32 |
|
|
//
|
33 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
34 |
|
|
// this file might be covered by the GNU General Public License.
|
35 |
|
|
//
|
36 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
37 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
38 |
|
|
// -------------------------------------------
|
39 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
40 |
|
|
//==========================================================================
|
41 |
|
|
//#####DESCRIPTIONBEGIN####
|
42 |
|
|
//
|
43 |
|
|
// Author(s): rosalia
|
44 |
|
|
// Contributors: rosalia, jskov
|
45 |
|
|
// Date: 1999-04-13
|
46 |
|
|
// Description: Very simple thread stress test, with some memory
|
47 |
|
|
// allocation and alarm handling.
|
48 |
|
|
//
|
49 |
|
|
// Notes:
|
50 |
|
|
// If client_makes_request is big, it means that there are made many more
|
51 |
|
|
// client requests than can be serviced. Consequently, clients are wasting
|
52 |
|
|
// CPU time and should be sleeping more.
|
53 |
|
|
//
|
54 |
|
|
// The list of handler invocations show how many threads are running
|
55 |
|
|
// at the same time. The more powerful the CPU, the more the numbers
|
56 |
|
|
// should spread out.
|
57 |
|
|
//####DESCRIPTIONEND####
|
58 |
|
|
|
59 |
|
|
#include <pkgconf/system.h>
|
60 |
|
|
#include <cyg/infra/testcase.h>
|
61 |
|
|
|
62 |
|
|
#include <cyg/hal/hal_arch.h>
|
63 |
|
|
|
64 |
|
|
#if defined(CYGPKG_KERNEL) && defined(CYGPKG_IO) && defined(CYGPKG_ISOINFRA)
|
65 |
|
|
|
66 |
|
|
#include <pkgconf/kernel.h>
|
67 |
|
|
#include <pkgconf/isoinfra.h>
|
68 |
|
|
#include CYGHWR_MEMORY_LAYOUT_H
|
69 |
|
|
|
70 |
|
|
#if defined(CYGFUN_KERNEL_API_C)
|
71 |
|
|
|
72 |
|
|
#include <cyg/kernel/kapi.h>
|
73 |
|
|
|
74 |
|
|
#ifdef CYGINT_ISO_STDIO_FORMATTED_IO
|
75 |
|
|
|
76 |
|
|
#include <stdio.h>
|
77 |
|
|
#include <stdlib.h>
|
78 |
|
|
|
79 |
|
|
#if defined(CYGPKG_LIBM)
|
80 |
|
|
|
81 |
|
|
#include <math.h>
|
82 |
|
|
#include <assert.h>
|
83 |
|
|
|
84 |
|
|
#include <cyg/kernel/test/stackmon.h>
|
85 |
|
|
|
86 |
|
|
#if defined(CYGFUN_KERNEL_THREADS_TIMER)
|
87 |
|
|
#if CYGINT_ISO_MALLOC
|
88 |
|
|
|
89 |
|
|
/* if TIME_LIMIT is defined, it represents the number of seconds this
|
90 |
|
|
test should last; if it is undefined the test will go forever */
|
91 |
|
|
#define DEATH_TIME_LIMIT 20
|
92 |
|
|
/* #undef DEATH_TIME_LIMIT */
|
93 |
|
|
|
94 |
|
|
// STACK_SIZE is typical +2kB for printf family calls which use big
|
95 |
|
|
// auto variables. Add more for handler which calls perform_stressful_tasks()
|
96 |
|
|
#define STACK_SIZE (2*1024 + CYGNUM_HAL_STACK_SIZE_TYPICAL)
|
97 |
|
|
#define STACK_SIZE_HANDLER (STACK_SIZE + 30*CYGNUM_HAL_STACK_FRAME_SIZE)
|
98 |
|
|
|
99 |
|
|
#define N_MAIN 1
|
100 |
|
|
|
101 |
|
|
// If we have instrumentation enabled, make the execution time in the
|
102 |
|
|
// simulator even shorter that we were going to anyway.
|
103 |
|
|
#ifdef CYGPKG_KERNEL_INSTRUMENT
|
104 |
|
|
#define SIM_DELAY_DIVISOR 100
|
105 |
|
|
#else
|
106 |
|
|
#define SIM_DELAY_DIVISOR 10
|
107 |
|
|
#endif
|
108 |
|
|
|
109 |
|
|
//-----------------------------------------------------------------------
|
110 |
|
|
// Some targets need to define a smaller number of handlers due to
|
111 |
|
|
// memory restrictions.
|
112 |
|
|
#if defined(CYGMEM_REGION_ram_SIZE) && (CYGMEM_REGION_ram_SIZE < 0x80000)
|
113 |
|
|
#define MAX_HANDLERS 4
|
114 |
|
|
#define N_LISTENERS 1
|
115 |
|
|
#define N_CLIENTS 1
|
116 |
|
|
|
117 |
|
|
#undef STACK_SIZE
|
118 |
|
|
#undef STACK_SIZE_HANDLER
|
119 |
|
|
#define STACK_SIZE (1024 + CYGNUM_HAL_STACK_SIZE_TYPICAL)
|
120 |
|
|
#define STACK_SIZE_HANDLER (STACK_SIZE + 10*CYGNUM_HAL_STACK_FRAME_SIZE)
|
121 |
|
|
#endif
|
122 |
|
|
|
123 |
|
|
//-----------------------------------------------------------------------
|
124 |
|
|
// If no target specific definitions, use defaults
|
125 |
|
|
#ifndef MAX_HANDLERS
|
126 |
|
|
#define MAX_HANDLERS 19
|
127 |
|
|
#define N_LISTENERS 4
|
128 |
|
|
#define N_CLIENTS 4
|
129 |
|
|
#endif
|
130 |
|
|
|
131 |
|
|
/* Allocate priorities in this order. This ensures that handlers
|
132 |
|
|
(which are the ones using the CPU) get enough CPU time to actually
|
133 |
|
|
complete their tasks.
|
134 |
|
|
|
135 |
|
|
The empty space ensures that if libc main() thread should happen to
|
136 |
|
|
be in the priority range of the handlers, no handlers are
|
137 |
|
|
accidently reduced so much in priority to get below
|
138 |
|
|
listeners/clients. */
|
139 |
|
|
|
140 |
|
|
#define P_MAIN_PROGRAM 1
|
141 |
|
|
#define P_MAIN_PROGRAM_E (P_MAIN_PROGRAM+N_MAIN)
|
142 |
|
|
|
143 |
|
|
#define P_BASE_HANDLER (P_MAIN_PROGRAM_E)
|
144 |
|
|
#define P_BASE_HANDLER_E (P_BASE_HANDLER+MAX_HANDLERS)
|
145 |
|
|
|
146 |
|
|
#define P_BASE_EMPTY (P_BASE_HANDLER_E)
|
147 |
|
|
#define P_BASE_EMPTY_E (P_BASE_EMPTY+2)
|
148 |
|
|
|
149 |
|
|
#define P_BASE_LISTENER (P_BASE_EMPTY_E)
|
150 |
|
|
#define P_BASE_LISTENER_E (P_BASE_LISTENER+N_LISTENERS)
|
151 |
|
|
|
152 |
|
|
#define P_BASE_CLIENT (P_BASE_LISTENER_E)
|
153 |
|
|
#define P_BASE_CLIENT_E (P_BASE_CLIENT+N_CLIENTS)
|
154 |
|
|
|
155 |
|
|
#define P_MAX (P_BASE_CLIENT_E)
|
156 |
|
|
|
157 |
|
|
/* Ensure there's room for what we request */
|
158 |
|
|
#if (CYGNUM_KERNEL_SCHED_PRIORITIES >= P_MAX)
|
159 |
|
|
|
160 |
|
|
/* if we use the bitmap scheduler we must make sure we don't use the
|
161 |
|
|
same priority more than once, so we must store those already in use */
|
162 |
|
|
static volatile char priority_in_use[P_MAX];
|
163 |
|
|
|
164 |
|
|
/* We may not get the priority we ask for (scheduler may decide to ignore
|
165 |
|
|
schedule hint). So keep a table of priorities actually assigned to
|
166 |
|
|
the threads. This information may come in handy for debugging - it's
|
167 |
|
|
not actively used by the code. */
|
168 |
|
|
static volatile int priority_translation[P_MAX];
|
169 |
|
|
|
170 |
|
|
/* now declare (and allocate space for) some kernel objects, like the
|
171 |
|
|
threads we will use */
|
172 |
|
|
cyg_thread main_thread_s;
|
173 |
|
|
cyg_thread handler_thread_s[MAX_HANDLERS];
|
174 |
|
|
cyg_thread listener_thread_s[N_LISTENERS];
|
175 |
|
|
cyg_thread client_thread_s[N_CLIENTS];
|
176 |
|
|
|
177 |
|
|
/* space for stacks for all threads */
|
178 |
|
|
char main_stack[STACK_SIZE];
|
179 |
|
|
char handler_stack[MAX_HANDLERS][STACK_SIZE_HANDLER];
|
180 |
|
|
char listener_stack[N_LISTENERS][STACK_SIZE];
|
181 |
|
|
char client_stack[N_CLIENTS][STACK_SIZE];
|
182 |
|
|
|
183 |
|
|
/* now the handles for the threads */
|
184 |
|
|
cyg_handle_t mainH;
|
185 |
|
|
cyg_handle_t handlerH[MAX_HANDLERS];
|
186 |
|
|
cyg_handle_t listenerH[N_LISTENERS];
|
187 |
|
|
cyg_handle_t clientH[N_CLIENTS];
|
188 |
|
|
|
189 |
|
|
/* space for thread names */
|
190 |
|
|
char thread_name[P_MAX][20];
|
191 |
|
|
|
192 |
|
|
/* and now variables for the procedure which is the thread */
|
193 |
|
|
cyg_thread_entry_t main_program, client_program, listener_program,
|
194 |
|
|
handler_program;
|
195 |
|
|
|
196 |
|
|
/* a few mutexes used in the code */
|
197 |
|
|
cyg_mutex_t client_request_lock, handler_slot_lock, statistics_print_lock,
|
198 |
|
|
free_handler_lock;
|
199 |
|
|
|
200 |
|
|
/* global variables with which the handler IDs and thread priorities
|
201 |
|
|
to free are communicated from handlers to main_program. Access to
|
202 |
|
|
these are protected by free_handler_lock. An id of -1 means the
|
203 |
|
|
that the variables are empty. */
|
204 |
|
|
volatile int free_handler_pri = 0;
|
205 |
|
|
volatile int free_handler_id = -1;
|
206 |
|
|
|
207 |
|
|
/* a global variable with which the client and server coordinate */
|
208 |
|
|
volatile int client_makes_request = 0;
|
209 |
|
|
|
210 |
|
|
/* if this is true, clients will not make requests */
|
211 |
|
|
volatile int clients_paused = 0;
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
/* indicates that it's time to print out a report */
|
215 |
|
|
volatile int time_to_report = 0;
|
216 |
|
|
/* print status after a delay of this many secs. */
|
217 |
|
|
int time_report_delay;
|
218 |
|
|
|
219 |
|
|
/*** now application-specific variables ***/
|
220 |
|
|
/* an array that stores whether the handler threads are in use */
|
221 |
|
|
volatile int handler_thread_in_use[MAX_HANDLERS];
|
222 |
|
|
/* total count of active handlers */
|
223 |
|
|
volatile int handler_thread_in_use_count;
|
224 |
|
|
|
225 |
|
|
|
226 |
|
|
/***** statistics-gathering variables *****/
|
227 |
|
|
struct s_statistics {
|
228 |
|
|
/* store the number of times each handler has been invoked */
|
229 |
|
|
unsigned long handler_invocation_histogram[MAX_HANDLERS];
|
230 |
|
|
|
231 |
|
|
/* store how many times malloc has been attempted and how many times
|
232 |
|
|
it has failed */
|
233 |
|
|
unsigned long malloc_tries, malloc_failures;
|
234 |
|
|
|
235 |
|
|
/* how many threads have been created */
|
236 |
|
|
unsigned long thread_creations, thread_exits;
|
237 |
|
|
};
|
238 |
|
|
|
239 |
|
|
struct s_statistics statistics;
|
240 |
|
|
|
241 |
|
|
/* some function prototypes; those with the sc_ prefix are
|
242 |
|
|
"statistics-collecting" versions of the cyg_ primitives */
|
243 |
|
|
cyg_addrword_t sc_thread_create(
|
244 |
|
|
cyg_addrword_t sched_info, /* scheduling info (eg pri) */
|
245 |
|
|
cyg_thread_entry_t *entry, /* entry point function */
|
246 |
|
|
cyg_addrword_t entry_data, /* entry data */
|
247 |
|
|
char *name, /* optional thread name */
|
248 |
|
|
void *stack_base, /* stack base, NULL = alloc */
|
249 |
|
|
cyg_ucount32 stack_size, /* stack size, 0 = default */
|
250 |
|
|
cyg_handle_t *handle, /* returned thread handle */
|
251 |
|
|
cyg_thread *thread /* put thread here */
|
252 |
|
|
);
|
253 |
|
|
|
254 |
|
|
void start_handler(void);
|
255 |
|
|
void stop_handler(int handler_id, int handler_pri);
|
256 |
|
|
void perform_stressful_tasks(void);
|
257 |
|
|
void permute_array(char a[], int size, int seed);
|
258 |
|
|
void setup_death_alarm(cyg_addrword_t data, cyg_handle_t *deathHp,
|
259 |
|
|
cyg_alarm *death_alarm_p, int *killed_p);
|
260 |
|
|
void print_statistics(int print_full);
|
261 |
|
|
|
262 |
|
|
/* we need to declare the alarm handling function (which is defined
|
263 |
|
|
below), so that we can pass it to cyg_alarm_initialize() */
|
264 |
|
|
cyg_alarm_t report_alarm_func, death_alarm_func;
|
265 |
|
|
|
266 |
|
|
/* handle and alarm for the report alarm */
|
267 |
|
|
cyg_handle_t report_alarmH, counterH, system_clockH;
|
268 |
|
|
cyg_alarm report_alarm;
|
269 |
|
|
|
270 |
|
|
/* main launches all the threads of the test */
|
271 |
|
|
int
|
272 |
|
|
main(void)
|
273 |
|
|
{
|
274 |
|
|
int i;
|
275 |
|
|
|
276 |
|
|
CYG_TEST_INIT();
|
277 |
|
|
CYG_TEST_INFO("Stress threads test compiled on " __DATE__);
|
278 |
|
|
|
279 |
|
|
cyg_mutex_init(&client_request_lock);
|
280 |
|
|
cyg_mutex_init(&statistics_print_lock);
|
281 |
|
|
cyg_mutex_init(&free_handler_lock);
|
282 |
|
|
|
283 |
|
|
/* initialize statistics */
|
284 |
|
|
memset(&statistics, 0, sizeof(statistics));
|
285 |
|
|
|
286 |
|
|
/* clear priority table */
|
287 |
|
|
for (i = 0; i < sizeof(priority_in_use); i++)
|
288 |
|
|
priority_in_use[i] = 0;
|
289 |
|
|
|
290 |
|
|
/* initialize main thread */
|
291 |
|
|
{
|
292 |
|
|
priority_translation[P_MAIN_PROGRAM] =
|
293 |
|
|
sc_thread_create(P_MAIN_PROGRAM, main_program, (cyg_addrword_t) 0,
|
294 |
|
|
"main_program", (void *) main_stack, STACK_SIZE,
|
295 |
|
|
&mainH, &main_thread_s);
|
296 |
|
|
priority_in_use[P_MAIN_PROGRAM]++;
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
/* initialize all handler threads to not be in use */
|
300 |
|
|
for (i = 0; i < MAX_HANDLERS; ++i) {
|
301 |
|
|
handler_thread_in_use[i] = 0;
|
302 |
|
|
}
|
303 |
|
|
handler_thread_in_use_count = 0;
|
304 |
|
|
for (i = 0; i < N_LISTENERS; ++i) {
|
305 |
|
|
int prio = P_BASE_LISTENER + i;
|
306 |
|
|
char* name = &thread_name[prio][0];
|
307 |
|
|
sprintf(name, "listener-%02d", i);
|
308 |
|
|
priority_translation[prio] =
|
309 |
|
|
sc_thread_create(prio, listener_program, (cyg_addrword_t) i,
|
310 |
|
|
name, (void *) listener_stack[i], STACK_SIZE,
|
311 |
|
|
&listenerH[i], &listener_thread_s[i]);
|
312 |
|
|
CYG_ASSERT(0 == priority_in_use[prio], "Priority already in use!");
|
313 |
|
|
priority_in_use[prio]++;
|
314 |
|
|
}
|
315 |
|
|
for (i = 0; i < N_CLIENTS; ++i) {
|
316 |
|
|
int prio = P_BASE_CLIENT + i;
|
317 |
|
|
char* name = &thread_name[prio][0];
|
318 |
|
|
sprintf(name, "client-%02d", i);
|
319 |
|
|
priority_translation[prio] =
|
320 |
|
|
sc_thread_create(prio, client_program, (cyg_addrword_t) i,
|
321 |
|
|
name, (void *) client_stack[i], STACK_SIZE,
|
322 |
|
|
&(clientH[i]), &client_thread_s[i]);
|
323 |
|
|
CYG_ASSERT(0 == priority_in_use[prio], "Priority already in use!");
|
324 |
|
|
priority_in_use[prio]++;
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
cyg_thread_resume(mainH);
|
328 |
|
|
for (i = 0; i < N_CLIENTS; ++i) {
|
329 |
|
|
cyg_thread_resume(clientH[i]);
|
330 |
|
|
}
|
331 |
|
|
for (i = 0; i < N_LISTENERS; ++i) {
|
332 |
|
|
cyg_thread_resume(listenerH[i]);
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
/* set up the alarm which gives periodic wakeups to say "time to
|
336 |
|
|
print a report */
|
337 |
|
|
system_clockH = cyg_real_time_clock();
|
338 |
|
|
cyg_clock_to_counter(system_clockH, &counterH);
|
339 |
|
|
|
340 |
|
|
cyg_alarm_create(counterH, report_alarm_func,
|
341 |
|
|
(cyg_addrword_t) 4000,
|
342 |
|
|
&report_alarmH, &report_alarm);
|
343 |
|
|
if (cyg_test_is_simulator) {
|
344 |
|
|
time_report_delay = 2;
|
345 |
|
|
} else {
|
346 |
|
|
time_report_delay = 60;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
cyg_alarm_initialize(report_alarmH, cyg_current_time()+200,
|
350 |
|
|
time_report_delay*100);
|
351 |
|
|
|
352 |
|
|
return 0;
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
/* main_program() -- frees resources and prints status. */
|
356 |
|
|
void main_program(cyg_addrword_t data)
|
357 |
|
|
{
|
358 |
|
|
#ifdef DEATH_TIME_LIMIT
|
359 |
|
|
cyg_handle_t deathH;
|
360 |
|
|
cyg_alarm death_alarm;
|
361 |
|
|
int is_dead = 0;
|
362 |
|
|
|
363 |
|
|
setup_death_alarm(0, &deathH, &death_alarm, &is_dead);
|
364 |
|
|
#endif /* DEATH_TIME_LIMIT */
|
365 |
|
|
|
366 |
|
|
for (;;) {
|
367 |
|
|
int handler_id = -1;
|
368 |
|
|
int handler_pri = 0;
|
369 |
|
|
|
370 |
|
|
cyg_mutex_lock(&free_handler_lock); {
|
371 |
|
|
// If any handler has left its ID, copy the ID and
|
372 |
|
|
// priority values to local variables, and free up the
|
373 |
|
|
// global communication variables again.
|
374 |
|
|
if (-1 != free_handler_id) {
|
375 |
|
|
handler_id = free_handler_id;
|
376 |
|
|
handler_pri = free_handler_pri;
|
377 |
|
|
free_handler_id = -1;
|
378 |
|
|
}
|
379 |
|
|
} cyg_mutex_unlock(&free_handler_lock);
|
380 |
|
|
|
381 |
|
|
if (-1 != handler_id) {
|
382 |
|
|
stop_handler(handler_id, handler_pri);
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
// If it's time to report status or quit, set pause flag and
|
386 |
|
|
// keep looping until all handlers have stopped.
|
387 |
|
|
if (time_to_report) {
|
388 |
|
|
// Pause clients
|
389 |
|
|
cyg_mutex_lock(&client_request_lock); {
|
390 |
|
|
clients_paused = 1;
|
391 |
|
|
} cyg_mutex_unlock(&client_request_lock);
|
392 |
|
|
|
393 |
|
|
// When all handlers have stopped, we can print statistics
|
394 |
|
|
// knowing that all (handler allocated) resources should have
|
395 |
|
|
// been freed. That is, we should be able to determine leaks.
|
396 |
|
|
if (0 == handler_thread_in_use_count) {
|
397 |
|
|
print_statistics(0);
|
398 |
|
|
|
399 |
|
|
// We've done the printing now. Resume the system.
|
400 |
|
|
time_to_report = 0;
|
401 |
|
|
cyg_mutex_lock(&client_request_lock); {
|
402 |
|
|
clients_paused = 0;
|
403 |
|
|
} cyg_mutex_unlock(&client_request_lock);
|
404 |
|
|
}
|
405 |
|
|
}
|
406 |
|
|
|
407 |
|
|
#ifdef DEATH_TIME_LIMIT
|
408 |
|
|
// Stop test if time.
|
409 |
|
|
if (is_dead) {
|
410 |
|
|
// Pause clients
|
411 |
|
|
cyg_mutex_lock(&client_request_lock); {
|
412 |
|
|
clients_paused = 1;
|
413 |
|
|
} cyg_mutex_unlock(&client_request_lock);
|
414 |
|
|
|
415 |
|
|
// When all handlers have stopped, we can print statistics
|
416 |
|
|
// knowing that all (handler allocated) resources should have
|
417 |
|
|
// been freed. That is, we should be able to determine leaks.
|
418 |
|
|
if (0 == handler_thread_in_use_count) {
|
419 |
|
|
print_statistics(1);
|
420 |
|
|
CYG_TEST_PASS_FINISH("Kernel thread stress test OK");
|
421 |
|
|
}
|
422 |
|
|
}
|
423 |
|
|
#endif /* DEATH_TIME_LIMIT */
|
424 |
|
|
|
425 |
|
|
cyg_thread_delay(3);
|
426 |
|
|
}
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
/* client_program() -- an obnoxious client which makes a lot of requests */
|
430 |
|
|
void client_program(cyg_addrword_t data)
|
431 |
|
|
{
|
432 |
|
|
int delay;
|
433 |
|
|
|
434 |
|
|
system_clockH = cyg_real_time_clock();
|
435 |
|
|
cyg_clock_to_counter(system_clockH, &counterH);
|
436 |
|
|
|
437 |
|
|
for (;;) {
|
438 |
|
|
delay = (rand() % 20);
|
439 |
|
|
|
440 |
|
|
/* now send a request to the server */
|
441 |
|
|
cyg_mutex_lock(&client_request_lock); {
|
442 |
|
|
if (0 == clients_paused)
|
443 |
|
|
client_makes_request++;
|
444 |
|
|
} cyg_mutex_unlock(&client_request_lock);
|
445 |
|
|
|
446 |
|
|
cyg_thread_delay(10+delay);
|
447 |
|
|
}
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
/* listener_program() -- listens for a request and spawns a handler to
|
451 |
|
|
take care of the request */
|
452 |
|
|
void listener_program(cyg_addrword_t data)
|
453 |
|
|
{
|
454 |
|
|
for (;;) {
|
455 |
|
|
int make_request = 0;
|
456 |
|
|
cyg_mutex_lock(&client_request_lock); {
|
457 |
|
|
if (client_makes_request > 0) {
|
458 |
|
|
--client_makes_request;
|
459 |
|
|
make_request = 1;
|
460 |
|
|
}
|
461 |
|
|
} cyg_mutex_unlock(&client_request_lock);
|
462 |
|
|
|
463 |
|
|
if (make_request)
|
464 |
|
|
start_handler();
|
465 |
|
|
|
466 |
|
|
cyg_thread_delay(2 + (rand() % 10));
|
467 |
|
|
}
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
/* handler_program() -- is spawned to handle each incoming request */
|
471 |
|
|
void handler_program(cyg_addrword_t data)
|
472 |
|
|
{
|
473 |
|
|
/* here is where we perform specific stressful tasks */
|
474 |
|
|
perform_stressful_tasks();
|
475 |
|
|
|
476 |
|
|
cyg_thread_delay(4 + (int) (0.5*log(1.0 + fabs((rand() % 1000000)))));
|
477 |
|
|
|
478 |
|
|
{
|
479 |
|
|
// Loop until the handler id and priority can be communicated to
|
480 |
|
|
// the main_program.
|
481 |
|
|
int freed = 0;
|
482 |
|
|
do {
|
483 |
|
|
cyg_mutex_lock(&free_handler_lock); {
|
484 |
|
|
if (-1 == free_handler_id) {
|
485 |
|
|
free_handler_id = data;
|
486 |
|
|
free_handler_pri = P_BASE_HANDLER+(int) data;
|
487 |
|
|
freed = 1;
|
488 |
|
|
}
|
489 |
|
|
} cyg_mutex_unlock(&free_handler_lock);
|
490 |
|
|
if (!freed)
|
491 |
|
|
cyg_thread_delay(2);
|
492 |
|
|
} while (!freed);
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
// Then exit.
|
496 |
|
|
cyg_thread_exit();
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
/* start a new handler */
|
500 |
|
|
void start_handler(void)
|
501 |
|
|
{
|
502 |
|
|
int prio;
|
503 |
|
|
char* name;
|
504 |
|
|
int handler_slot = 0;
|
505 |
|
|
int found = 0;
|
506 |
|
|
|
507 |
|
|
while (!found) {
|
508 |
|
|
cyg_mutex_lock(&handler_slot_lock); {
|
509 |
|
|
for (handler_slot = 0; handler_slot < MAX_HANDLERS;++handler_slot){
|
510 |
|
|
if (!handler_thread_in_use[handler_slot]) {
|
511 |
|
|
found = 1;
|
512 |
|
|
handler_thread_in_use[handler_slot]++;
|
513 |
|
|
handler_thread_in_use_count++;
|
514 |
|
|
break;
|
515 |
|
|
}
|
516 |
|
|
}
|
517 |
|
|
} cyg_mutex_unlock(&handler_slot_lock);
|
518 |
|
|
if (!found)
|
519 |
|
|
cyg_thread_delay(1);
|
520 |
|
|
}
|
521 |
|
|
|
522 |
|
|
CYG_ASSERT(1 == handler_thread_in_use[handler_slot],
|
523 |
|
|
"Handler usage count wrong!");
|
524 |
|
|
|
525 |
|
|
prio = P_BASE_HANDLER+handler_slot;
|
526 |
|
|
CYG_ASSERT(0 == priority_in_use[prio], "Priority already in use!");
|
527 |
|
|
priority_in_use[prio]++;
|
528 |
|
|
|
529 |
|
|
name = &thread_name[prio][0];
|
530 |
|
|
sprintf(name, "handler-%02d/%02d", handler_slot, prio);
|
531 |
|
|
|
532 |
|
|
priority_translation[prio] =
|
533 |
|
|
sc_thread_create(prio, handler_program,
|
534 |
|
|
(cyg_addrword_t) handler_slot,
|
535 |
|
|
name, (void *) handler_stack[handler_slot],
|
536 |
|
|
STACK_SIZE_HANDLER, &handlerH[handler_slot],
|
537 |
|
|
&handler_thread_s[handler_slot]);
|
538 |
|
|
cyg_thread_resume(handlerH[handler_slot]);
|
539 |
|
|
++statistics.handler_invocation_histogram[handler_slot];
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
/* free a locked handler thread */
|
543 |
|
|
void stop_handler(int handler_id, int handler_pri)
|
544 |
|
|
{
|
545 |
|
|
// Finally delete the handler thread. This must be done in a
|
546 |
|
|
// loop, waiting for the call to return true. If it returns
|
547 |
|
|
// false, go to sleep for a bit, so the killed thread gets a
|
548 |
|
|
// chance to run and complete its business.
|
549 |
|
|
while (!cyg_thread_delete(handlerH[handler_id])) {
|
550 |
|
|
cyg_thread_delay(1);
|
551 |
|
|
}
|
552 |
|
|
++statistics.thread_exits;
|
553 |
|
|
|
554 |
|
|
// Free the handler resources.
|
555 |
|
|
cyg_mutex_lock(&handler_slot_lock); {
|
556 |
|
|
handler_thread_in_use[handler_id]--;
|
557 |
|
|
handler_thread_in_use_count--;
|
558 |
|
|
priority_in_use[handler_pri]--;
|
559 |
|
|
CYG_ASSERT(0 == priority_in_use[handler_pri],
|
560 |
|
|
"Priority not in use!");
|
561 |
|
|
CYG_ASSERT(0 == handler_thread_in_use[handler_id],
|
562 |
|
|
"Handler not in use!");
|
563 |
|
|
CYG_ASSERT(0 <= handler_thread_in_use_count,
|
564 |
|
|
"Stopped more handlers than was started!");
|
565 |
|
|
} cyg_mutex_unlock(&handler_slot_lock);
|
566 |
|
|
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
|
570 |
|
|
/* do things which will stress the system */
|
571 |
|
|
void perform_stressful_tasks()
|
572 |
|
|
{
|
573 |
|
|
#define MAX_MALLOCED_SPACES 100 /* do this many mallocs at most */
|
574 |
|
|
#define MALLOCED_BASE_SIZE 1 /* basic size in bytes */
|
575 |
|
|
char *spaces[MAX_MALLOCED_SPACES];
|
576 |
|
|
int sizes[MAX_MALLOCED_SPACES];
|
577 |
|
|
unsigned int i, j, size;
|
578 |
|
|
|
579 |
|
|
cyg_uint8 pool_space[10][100];
|
580 |
|
|
cyg_handle_t mempool_handles[10];
|
581 |
|
|
cyg_mempool_fix mempool_objects[10];
|
582 |
|
|
|
583 |
|
|
/* here I use malloc, which uses the kernel's variable memory pools.
|
584 |
|
|
note that malloc/free is a bit simple-minded here: it does not
|
585 |
|
|
try to really fragment things, and it does not try to make the
|
586 |
|
|
allocation/deallocation concurrent with other thread execution
|
587 |
|
|
(although I'm about to throw in a yield()) */
|
588 |
|
|
for (i = 0; i < MAX_MALLOCED_SPACES; ++i) {
|
589 |
|
|
++statistics.malloc_tries;
|
590 |
|
|
size = (i*2+1)*MALLOCED_BASE_SIZE;
|
591 |
|
|
spaces[i] = (char *) malloc(size);
|
592 |
|
|
sizes[i] = size;
|
593 |
|
|
|
594 |
|
|
if (spaces[i] != NULL) {
|
595 |
|
|
// Fill with a known value (differs between chunk).
|
596 |
|
|
for (j = 0; j < size; ++j) {
|
597 |
|
|
spaces[i][j] = 0x50 | ((j+i) & 0x0f);
|
598 |
|
|
}
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
if (i % (MAX_MALLOCED_SPACES/10) == 0) {
|
602 |
|
|
cyg_thread_yield();
|
603 |
|
|
}
|
604 |
|
|
if (i % (MAX_MALLOCED_SPACES/15) == 0) {
|
605 |
|
|
cyg_thread_delay(i % 5);
|
606 |
|
|
}
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
cyg_thread_delay(5);
|
610 |
|
|
|
611 |
|
|
/* now free it all up */
|
612 |
|
|
for (i = 0; i < MAX_MALLOCED_SPACES; ++i) {
|
613 |
|
|
if (spaces[i] != NULL) {
|
614 |
|
|
size = sizes[i];
|
615 |
|
|
for (j = 0; j < size; ++j) {
|
616 |
|
|
// Validate chunk data.
|
617 |
|
|
if ((0x50 | ((j+i) & 0x0f)) != spaces[i][j]) {
|
618 |
|
|
printf("Bad byte in chunk\n");
|
619 |
|
|
}
|
620 |
|
|
spaces[i][j] = 0xAA; /* write a bit pattern */
|
621 |
|
|
}
|
622 |
|
|
free(spaces[i]);
|
623 |
|
|
} else {
|
624 |
|
|
++statistics.malloc_failures;
|
625 |
|
|
}
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
/* now allocate and then free some fixed-size memory pools; for
|
629 |
|
|
now this is simple-minded because it does not have many threads
|
630 |
|
|
sharing the memory pools and racing for memory. */
|
631 |
|
|
for (i = 0; i < 10; ++i) {
|
632 |
|
|
cyg_mempool_fix_create(pool_space[i], 100, (i+1)*3,
|
633 |
|
|
&mempool_handles[i], &mempool_objects[i]);
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
for (i = 0; i < 10; ++i) {
|
637 |
|
|
spaces[i] = cyg_mempool_fix_try_alloc(mempool_handles[i]);
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
for (i = 0; i < 10; ++i) {
|
641 |
|
|
if (spaces[i]) {
|
642 |
|
|
cyg_mempool_fix_delete(mempool_handles[i]);
|
643 |
|
|
}
|
644 |
|
|
}
|
645 |
|
|
}
|
646 |
|
|
|
647 |
|
|
/* report_alarm_func() is invoked as an alarm handler, so it should be
|
648 |
|
|
quick and simple. in this case it sets a global flag which is
|
649 |
|
|
checked by main_program. */
|
650 |
|
|
void report_alarm_func(cyg_handle_t alarmH, cyg_addrword_t data)
|
651 |
|
|
{
|
652 |
|
|
time_to_report = 1;
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
#ifdef DEATH_TIME_LIMIT
|
656 |
|
|
/* this sets up death alarms. it gets the handle and alarm from the
|
657 |
|
|
caller, since they must persist for the life of the alarm */
|
658 |
|
|
void setup_death_alarm(cyg_addrword_t data, cyg_handle_t *deathHp,
|
659 |
|
|
cyg_alarm *death_alarm_p, int *killed_p)
|
660 |
|
|
{
|
661 |
|
|
cyg_handle_t system_clockH, counterH;
|
662 |
|
|
cyg_resolution_t rtc_res;
|
663 |
|
|
|
664 |
|
|
system_clockH = cyg_real_time_clock();
|
665 |
|
|
cyg_clock_to_counter(system_clockH, &counterH);
|
666 |
|
|
|
667 |
|
|
cyg_alarm_create(counterH, death_alarm_func,
|
668 |
|
|
(cyg_addrword_t) killed_p,
|
669 |
|
|
deathHp, death_alarm_p);
|
670 |
|
|
rtc_res = cyg_clock_get_resolution(system_clockH);
|
671 |
|
|
{
|
672 |
|
|
cyg_tick_count_t tick_delay;
|
673 |
|
|
tick_delay = (long long)
|
674 |
|
|
((1000000000.0*rtc_res.divisor)
|
675 |
|
|
*((double)DEATH_TIME_LIMIT)/((double)rtc_res.dividend));
|
676 |
|
|
if ( cyg_test_is_simulator )
|
677 |
|
|
tick_delay /= SIM_DELAY_DIVISOR;
|
678 |
|
|
#ifdef CYGPKG_HAL_SYNTH
|
679 |
|
|
// 20 seconds is a long time compared to the run time of other tests.
|
680 |
|
|
// Reduce to 10 seconds, allowing more tests to get run.
|
681 |
|
|
tick_delay /= 2;
|
682 |
|
|
#endif
|
683 |
|
|
|
684 |
|
|
cyg_alarm_initialize(*deathHp, cyg_current_time() + tick_delay, 0);
|
685 |
|
|
}
|
686 |
|
|
}
|
687 |
|
|
#endif
|
688 |
|
|
|
689 |
|
|
/* death_alarm_func() is the alarm handler that kills the current
|
690 |
|
|
thread after a specified timeout. It does so by setting a flag the
|
691 |
|
|
thread is constantly checking. */
|
692 |
|
|
void death_alarm_func(cyg_handle_t alarmH, cyg_addrword_t data)
|
693 |
|
|
{
|
694 |
|
|
int *killed_p;
|
695 |
|
|
killed_p = (int *) data;
|
696 |
|
|
*killed_p = 1;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* now I write the sc_ versions of the cyg_functions */
|
700 |
|
|
cyg_addrword_t sc_thread_create(
|
701 |
|
|
cyg_addrword_t sched_info, /* scheduling info (eg pri) */
|
702 |
|
|
cyg_thread_entry_t *entry, /* entry point function */
|
703 |
|
|
cyg_addrword_t entry_data, /* entry data */
|
704 |
|
|
char *name, /* optional thread name */
|
705 |
|
|
void *stack_base, /* stack base, NULL = alloc */
|
706 |
|
|
cyg_ucount32 stack_size, /* stack size, 0 = default */
|
707 |
|
|
cyg_handle_t *handle, /* returned thread handle */
|
708 |
|
|
cyg_thread *thread /* put thread here */
|
709 |
|
|
)
|
710 |
|
|
{
|
711 |
|
|
++statistics.thread_creations;
|
712 |
|
|
|
713 |
|
|
cyg_thread_create(sched_info, entry, entry_data, name,
|
714 |
|
|
stack_base, stack_size, handle, thread);
|
715 |
|
|
|
716 |
|
|
return cyg_thread_get_priority(*handle);
|
717 |
|
|
}
|
718 |
|
|
|
719 |
|
|
|
720 |
|
|
#define MINS_HOUR (60)
|
721 |
|
|
#define MINS_DAY (60*24)
|
722 |
|
|
|
723 |
|
|
void print_statistics(int print_full)
|
724 |
|
|
{
|
725 |
|
|
int i;
|
726 |
|
|
static int stat_dumps = 0;
|
727 |
|
|
static int print_count = 0;
|
728 |
|
|
static int shift_count = 0;
|
729 |
|
|
int minutes;
|
730 |
|
|
|
731 |
|
|
stat_dumps++;
|
732 |
|
|
|
733 |
|
|
// Find number of minutes.
|
734 |
|
|
minutes = time_report_delay*stat_dumps / 60;
|
735 |
|
|
|
736 |
|
|
if (!print_full) {
|
737 |
|
|
// Return if time/minutes not integer.
|
738 |
|
|
if ((time_report_delay*stat_dumps % 60) != 0)
|
739 |
|
|
return;
|
740 |
|
|
|
741 |
|
|
// After the first day, only dump stat once per day. Do print
|
742 |
|
|
// a . on the hour though.
|
743 |
|
|
if ((minutes > MINS_DAY) && ((minutes % MINS_DAY) != 0)) {
|
744 |
|
|
if ((minutes % MINS_HOUR) == 0) {
|
745 |
|
|
printf(".");
|
746 |
|
|
fflush(stdout);
|
747 |
|
|
}
|
748 |
|
|
return;
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
// After the first hour of the first day, only dump stat once
|
752 |
|
|
// per hour. Do print . each minute though.
|
753 |
|
|
if ((minutes < MINS_DAY) && (minutes > MINS_HOUR)
|
754 |
|
|
&& ((minutes % MINS_HOUR) != 0)) {
|
755 |
|
|
printf(".");
|
756 |
|
|
fflush(stdout);
|
757 |
|
|
return;
|
758 |
|
|
}
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
printf("\nState dump %d (%d hours, %d minutes) [numbers >>%d]\n",
|
762 |
|
|
++print_count, minutes / MINS_HOUR, minutes % MINS_HOUR,
|
763 |
|
|
shift_count);
|
764 |
|
|
|
765 |
|
|
cyg_mutex_lock(&statistics_print_lock); {
|
766 |
|
|
//--------------------------------
|
767 |
|
|
// Information private to this test:
|
768 |
|
|
printf(" Handler-invocations: ");
|
769 |
|
|
for (i = 0; i < MAX_HANDLERS; ++i) {
|
770 |
|
|
printf("%4lu ", statistics.handler_invocation_histogram[i]);
|
771 |
|
|
}
|
772 |
|
|
printf("\n");
|
773 |
|
|
printf(" malloc()-tries/failures: -- %7lu %7lu\n",
|
774 |
|
|
statistics.malloc_tries, statistics.malloc_failures);
|
775 |
|
|
printf(" client_makes_request: %d\n", client_makes_request);
|
776 |
|
|
|
777 |
|
|
// Check for big numbers and reduce if getting close to overflow
|
778 |
|
|
if (statistics.malloc_tries > 0x40000000) {
|
779 |
|
|
shift_count++;
|
780 |
|
|
for (i = 0; i < MAX_HANDLERS; ++i) {
|
781 |
|
|
statistics.handler_invocation_histogram[i] >>= 1;
|
782 |
|
|
}
|
783 |
|
|
statistics.malloc_tries >>= 1;
|
784 |
|
|
statistics.malloc_failures >>= 1;
|
785 |
|
|
}
|
786 |
|
|
} cyg_mutex_unlock(&statistics_print_lock);
|
787 |
|
|
|
788 |
|
|
#if CYGINT_ISO_MALLINFO
|
789 |
|
|
//--------------------------------
|
790 |
|
|
// System information
|
791 |
|
|
{
|
792 |
|
|
struct mallinfo mem_info;
|
793 |
|
|
|
794 |
|
|
mem_info = mallinfo();
|
795 |
|
|
|
796 |
|
|
printf(" Memory system: Total=0x%08x Free=0x%08x Max=0x%08x\n",
|
797 |
|
|
mem_info.arena, mem_info.fordblks, mem_info.maxfree);
|
798 |
|
|
}
|
799 |
|
|
#endif
|
800 |
|
|
|
801 |
|
|
// Dump stack status
|
802 |
|
|
printf(" Stack usage:\n");
|
803 |
|
|
cyg_test_dump_interrupt_stack_stats( " Interrupt" );
|
804 |
|
|
cyg_test_dump_idlethread_stack_stats( " Idle" );
|
805 |
|
|
|
806 |
|
|
cyg_test_dump_stack_stats(" Main", main_stack,
|
807 |
|
|
main_stack + sizeof(main_stack));
|
808 |
|
|
for (i = 0; i < MAX_HANDLERS; i++) {
|
809 |
|
|
cyg_test_dump_stack_stats(" Handler", handler_stack[i],
|
810 |
|
|
handler_stack[i] + sizeof(handler_stack[i]));
|
811 |
|
|
}
|
812 |
|
|
for (i = 0; i < N_LISTENERS; i++) {
|
813 |
|
|
cyg_test_dump_stack_stats(" Listener", listener_stack[i],
|
814 |
|
|
listener_stack[i] + sizeof(listener_stack[i]));
|
815 |
|
|
}
|
816 |
|
|
for (i = 0; i < N_CLIENTS; i++) {
|
817 |
|
|
cyg_test_dump_stack_stats(" Client", client_stack[i],
|
818 |
|
|
client_stack[i] + sizeof(client_stack[i]));
|
819 |
|
|
}
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
#else /* (CYGNUM_KERNEL_SCHED_PRIORITIES >= */
|
823 |
|
|
/* (N_MAIN+N_CLIENTS+N_LISTENERS+MAX_HANDLERS)) */
|
824 |
|
|
#define N_A_MSG "not enough priorities available"
|
825 |
|
|
#endif /* (CYGNUM_KERNEL_SCHED_PRIORITIES >= */
|
826 |
|
|
/* (N_MAIN+N_CLIENTS+N_LISTENERS+MAX_HANDLERS)) */
|
827 |
|
|
|
828 |
|
|
#else /* CYGINT_ISO_MALLOC */
|
829 |
|
|
# define N_A_MSG "this test needs malloc"
|
830 |
|
|
#endif /* CYGINT_ISO_MALLOC */
|
831 |
|
|
|
832 |
|
|
#else /* CYGFUN_KERNEL_THREADS_TIMER */
|
833 |
|
|
# define N_A_MSG "this test needs kernel threads timer"
|
834 |
|
|
#endif /* CYGFUN_KERNEL_THREADS_TIMER */
|
835 |
|
|
|
836 |
|
|
#else /* CYGPKG_LIBM */
|
837 |
|
|
# define N_A_MSG "this test needs libm"
|
838 |
|
|
#endif /* CYGPKG_LIBM */
|
839 |
|
|
|
840 |
|
|
#else /* CYGINT_ISO_STDIO_FORMATTED_IO */
|
841 |
|
|
# define N_A_MSG "this test needs stdio formatted I/O"
|
842 |
|
|
#endif /* CYGINT_ISO_STDIO_FORMATTED_IO */
|
843 |
|
|
|
844 |
|
|
#else // def CYGFUN_KERNEL_API_C
|
845 |
|
|
# define N_A_MSG "this test needs Kernel C API"
|
846 |
|
|
#endif
|
847 |
|
|
|
848 |
|
|
#else // def CYGPKG_KERNEL && CYGPKG_IO && CYGPKG_ISOINFRA
|
849 |
|
|
# define N_A_MSG "this tests needs Kernel, isoinfra and IO"
|
850 |
|
|
#endif
|
851 |
|
|
|
852 |
|
|
#ifdef N_A_MSG
|
853 |
|
|
externC void
|
854 |
|
|
cyg_start( void )
|
855 |
|
|
{
|
856 |
|
|
CYG_TEST_INIT();
|
857 |
|
|
CYG_TEST_NA( N_A_MSG);
|
858 |
|
|
}
|
859 |
|
|
#endif // N_A_MSG
|