OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [language/] [c/] [libm/] [v2_0/] [src/] [double/] [ieee754-core/] [e_jn.c] - Blame information for rev 174

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
//===========================================================================
2
//
3
//      e_jn.c
4
//
5
//      Part of the standard mathematical function library
6
//
7
//===========================================================================
8
//####ECOSGPLCOPYRIGHTBEGIN####
9
// -------------------------------------------
10
// This file is part of eCos, the Embedded Configurable Operating System.
11
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
12
//
13
// eCos is free software; you can redistribute it and/or modify it under
14
// the terms of the GNU General Public License as published by the Free
15
// Software Foundation; either version 2 or (at your option) any later version.
16
//
17
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
18
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
19
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
20
// for more details.
21
//
22
// You should have received a copy of the GNU General Public License along
23
// with eCos; if not, write to the Free Software Foundation, Inc.,
24
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25
//
26
// As a special exception, if other files instantiate templates or use macros
27
// or inline functions from this file, or you compile this file and link it
28
// with other works to produce a work based on this file, this file does not
29
// by itself cause the resulting work to be covered by the GNU General Public
30
// License. However the source code for this file must still be made available
31
// in accordance with section (3) of the GNU General Public License.
32
//
33
// This exception does not invalidate any other reasons why a work based on
34
// this file might be covered by the GNU General Public License.
35
//
36
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
37
// at http://sources.redhat.com/ecos/ecos-license/
38
// -------------------------------------------
39
//####ECOSGPLCOPYRIGHTEND####
40
//===========================================================================
41
//#####DESCRIPTIONBEGIN####
42
//
43
// Author(s):   jlarmour
44
// Contributors:  jlarmour
45
// Date:        1998-02-13
46
// Purpose:     
47
// Description: 
48
// Usage:       
49
//
50
//####DESCRIPTIONEND####
51
//
52
//===========================================================================
53
 
54
// CONFIGURATION
55
 
56
#include <pkgconf/libm.h>   // Configuration header
57
 
58
// Include the Math library?
59
#ifdef CYGPKG_LIBM     
60
 
61
// Derived from code with the following copyright
62
 
63
 
64
/* @(#)e_jn.c 1.4 95/01/18 */
65
/*
66
 * ====================================================
67
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
68
 *
69
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
70
 * Permission to use, copy, modify, and distribute this
71
 * software is freely granted, provided that this notice
72
 * is preserved.
73
 * ====================================================
74
 */
75
 
76
/*
77
 * __ieee754_jn(n, x), __ieee754_yn(n, x)
78
 * floating point Bessel's function of the 1st and 2nd kind
79
 * of order n
80
 *
81
 * Special cases:
82
 *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
83
 *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
84
 * Note 2. About jn(n,x), yn(n,x)
85
 *      For n=0, j0(x) is called,
86
 *      for n=1, j1(x) is called,
87
 *      for n<x, forward recursion us used starting
88
 *      from values of j0(x) and j1(x).
89
 *      for n>x, a continued fraction approximation to
90
 *      j(n,x)/j(n-1,x) is evaluated and then backward
91
 *      recursion is used starting from a supposed value
92
 *      for j(n,x). The resulting value of j(0,x) is
93
 *      compared with the actual value to correct the
94
 *      supposed value of j(n,x).
95
 *
96
 *      yn(n,x) is similar in all respects, except
97
 *      that forward recursion is used for all
98
 *      values of n>1.
99
 *
100
 */
101
 
102
#include "mathincl/fdlibm.h"
103
 
104
static const double
105
invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
106
two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
107
one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
108
 
109
static double zero  =  0.00000000000000000000e+00;
110
 
111
        double __ieee754_jn(int n, double x)
112
{
113
        int i,hx,ix,lx, sgn;
114
        double a, b, temp, di;
115
        double z, w;
116
 
117
    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
118
     * Thus, J(-n,x) = J(n,-x)
119
     */
120
        hx = CYG_LIBM_HI(x);
121
        ix = 0x7fffffff&hx;
122
        lx = CYG_LIBM_LO(x);
123
    /* if J(n,NaN) is NaN */
124
        if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
125
        if(n<0){
126
                n = -n;
127
                x = -x;
128
                hx ^= 0x80000000;
129
        }
130
        if(n==0) return(__ieee754_j0(x));
131
        if(n==1) return(__ieee754_j1(x));
132
        sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
133
        x = fabs(x);
134
        if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
135
            b = zero;
136
        else if((double)n<=x) {
137
                /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
138
            if(ix>=0x52D00000) { /* x > 2**302 */
139
    /* (x >> n**2)
140
     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
141
     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
142
     *      Let s=sin(x), c=cos(x),
143
     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
144
     *
145
     *             n    sin(xn)*sqt2    cos(xn)*sqt2
146
     *          ----------------------------------
147
     *             0     s-c             c+s
148
     *             1    -s-c            -c+s
149
     *             2    -s+c            -c-s
150
     *             3     s+c             c-s
151
     */
152
                switch(n&3) {
153
                    case 0: temp =  cos(x)+sin(x); break;
154
                    case 1: temp = -cos(x)+sin(x); break;
155
                    case 2: temp = -cos(x)-sin(x); break;
156
                    case 3: temp =  cos(x)-sin(x); break;
157
                    default: temp = 0.0; break; /* not used - purely to
158
                                                 * placate compiler */
159
                }
160
                b = invsqrtpi*temp/sqrt(x);
161
            } else {
162
                a = __ieee754_j0(x);
163
                b = __ieee754_j1(x);
164
                for(i=1;i<n;i++){
165
                    temp = b;
166
                    b = b*((double)(i+i)/x) - a; /* avoid underflow */
167
                    a = temp;
168
                }
169
            }
170
        } else {
171
            if(ix<0x3e100000) { /* x < 2**-29 */
172
    /* x is tiny, return the first Taylor expansion of J(n,x)
173
     * J(n,x) = 1/n!*(x/2)^n  - ...
174
     */
175
                if(n>33)        /* underflow */
176
                    b = zero;
177
                else {
178
                    temp = x*0.5; b = temp;
179
                    for (a=one,i=2;i<=n;i++) {
180
                        a *= (double)i;         /* a = n! */
181
                        b *= temp;              /* b = (x/2)^n */
182
                    }
183
                    b = b/a;
184
                }
185
            } else {
186
                /* use backward recurrence */
187
                /*                      x      x^2      x^2
188
                 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
189
                 *                      2n  - 2(n+1) - 2(n+2)
190
                 *
191
                 *                      1      1        1
192
                 *  (for large x)   =  ----  ------   ------   .....
193
                 *                      2n   2(n+1)   2(n+2)
194
                 *                      -- - ------ - ------ -
195
                 *                       x     x         x
196
                 *
197
                 * Let w = 2n/x and h=2/x, then the above quotient
198
                 * is equal to the continued fraction:
199
                 *                  1
200
                 *      = -----------------------
201
                 *                     1
202
                 *         w - -----------------
203
                 *                        1
204
                 *              w+h - ---------
205
                 *                     w+2h - ...
206
                 *
207
                 * To determine how many terms needed, let
208
                 * Q(0) = w, Q(1) = w(w+h) - 1,
209
                 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
210
                 * When Q(k) > 1e4      good for single
211
                 * When Q(k) > 1e9      good for double
212
                 * When Q(k) > 1e17     good for quadruple
213
                 */
214
            /* determine k */
215
                double t,v;
216
                double q0,q1,h,tmp; int k,m;
217
                w  = (n+n)/(double)x; h = 2.0/(double)x;
218
                q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
219
                while(q1<1.0e9) {
220
                        k += 1; z += h;
221
                        tmp = z*q1 - q0;
222
                        q0 = q1;
223
                        q1 = tmp;
224
                }
225
                m = n+n;
226
                for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
227
                a = t;
228
                b = one;
229
                /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
230
                 *  Hence, if n*(log(2n/x)) > ...
231
                 *  single 8.8722839355e+01
232
                 *  double 7.09782712893383973096e+02
233
                 *  long double 1.1356523406294143949491931077970765006170e+04
234
                 *  then recurrent value may overflow and the result is
235
                 *  likely underflow to zero
236
                 */
237
                tmp = n;
238
                v = two/x;
239
                tmp = tmp*__ieee754_log(fabs(v*tmp));
240
                if(tmp<7.09782712893383973096e+02) {
241
                    for(i=n-1,di=(double)(i+i);i>0;i--){
242
                        temp = b;
243
                        b *= di;
244
                        b  = b/x - a;
245
                        a = temp;
246
                        di -= two;
247
                    }
248
                } else {
249
                    for(i=n-1,di=(double)(i+i);i>0;i--){
250
                        temp = b;
251
                        b *= di;
252
                        b  = b/x - a;
253
                        a = temp;
254
                        di -= two;
255
                    /* scale b to avoid spurious overflow */
256
                        if(b>1e100) {
257
                            a /= b;
258
                            t /= b;
259
                            b  = one;
260
                        }
261
                    }
262
                }
263
                b = (t*__ieee754_j0(x)/b);
264
            }
265
        }
266
        if(sgn==1) return -b; else return b;
267
}
268
 
269
        double __ieee754_yn(int n, double x)
270
{
271
        int i,hx,ix,lx;
272
        int sign;
273
        double a, b, temp;
274
 
275
        hx = CYG_LIBM_HI(x);
276
        ix = 0x7fffffff&hx;
277
        lx = CYG_LIBM_LO(x);
278
    /* if Y(n,NaN) is NaN */
279
        if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
280
        if((ix|lx)==0) return -one/zero;
281
        if(hx<0) return zero/zero;
282
        sign = 1;
283
        if(n<0){
284
                n = -n;
285
                sign = 1 - ((n&1)<<1);
286
        }
287
        if(n==0) return(__ieee754_y0(x));
288
        if(n==1) return(sign*__ieee754_y1(x));
289
        if(ix==0x7ff00000) return zero;
290
        if(ix>=0x52D00000) { /* x > 2**302 */
291
    /* (x >> n**2)
292
     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
293
     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
294
     *      Let s=sin(x), c=cos(x),
295
     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
296
     *
297
     *             n    sin(xn)*sqt2    cos(xn)*sqt2
298
     *          ----------------------------------
299
     *             0     s-c             c+s
300
     *             1    -s-c            -c+s
301
     *             2    -s+c            -c-s
302
     *             3     s+c             c-s
303
     */
304
                switch(n&3) {
305
                    case 0: temp =  sin(x)-cos(x); break;
306
                    case 1: temp = -sin(x)-cos(x); break;
307
                    case 2: temp = -sin(x)+cos(x); break;
308
                    case 3: temp =  sin(x)+cos(x); break;
309
                    default: temp = 0.0; break; /* not used - purely to
310
                                                 * placate compiler */
311
                }
312
                b = invsqrtpi*temp/sqrt(x);
313
        } else {
314
            a = __ieee754_y0(x);
315
            b = __ieee754_y1(x);
316
        /* quit if b is -inf */
317
            for(i=1;i<n&&((unsigned)CYG_LIBM_HI(b) != 0xfff00000);i++){
318
                temp = b;
319
                b = ((double)(i+i)/x)*b - a;
320
                a = temp;
321
            }
322
        }
323
        if(sign>0) return b; else return -b;
324
}
325
 
326
#endif // ifdef CYGPKG_LIBM     
327
 
328
// EOF e_jn.c

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.