OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [language/] [c/] [libm/] [v2_0/] [src/] [double/] [internal/] [k_tan.c] - Blame information for rev 174

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
//===========================================================================
2
//
3
//      k_tan.c
4
//
5
//      Part of the standard mathematical function library
6
//
7
//===========================================================================
8
//####ECOSGPLCOPYRIGHTBEGIN####
9
// -------------------------------------------
10
// This file is part of eCos, the Embedded Configurable Operating System.
11
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
12
//
13
// eCos is free software; you can redistribute it and/or modify it under
14
// the terms of the GNU General Public License as published by the Free
15
// Software Foundation; either version 2 or (at your option) any later version.
16
//
17
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
18
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
19
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
20
// for more details.
21
//
22
// You should have received a copy of the GNU General Public License along
23
// with eCos; if not, write to the Free Software Foundation, Inc.,
24
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25
//
26
// As a special exception, if other files instantiate templates or use macros
27
// or inline functions from this file, or you compile this file and link it
28
// with other works to produce a work based on this file, this file does not
29
// by itself cause the resulting work to be covered by the GNU General Public
30
// License. However the source code for this file must still be made available
31
// in accordance with section (3) of the GNU General Public License.
32
//
33
// This exception does not invalidate any other reasons why a work based on
34
// this file might be covered by the GNU General Public License.
35
//
36
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
37
// at http://sources.redhat.com/ecos/ecos-license/
38
// -------------------------------------------
39
//####ECOSGPLCOPYRIGHTEND####
40
//===========================================================================
41
//#####DESCRIPTIONBEGIN####
42
//
43
// Author(s):   jlarmour
44
// Contributors:  jlarmour
45
// Date:        1998-02-13
46
// Purpose:     
47
// Description: 
48
// Usage:       
49
//
50
//####DESCRIPTIONEND####
51
//
52
//===========================================================================
53
 
54
// CONFIGURATION
55
 
56
#include <pkgconf/libm.h>   // Configuration header
57
 
58
// Include the Math library?
59
#ifdef CYGPKG_LIBM     
60
 
61
// Derived from code with the following copyright
62
 
63
 
64
/* @(#)k_tan.c 1.3 95/01/18 */
65
/*
66
 * ====================================================
67
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
68
 *
69
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
70
 * Permission to use, copy, modify, and distribute this
71
 * software is freely granted, provided that this notice
72
 * is preserved.
73
 * ====================================================
74
 */
75
 
76
/* __kernel_tan( x, y, k )
77
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
78
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
79
 * Input y is the tail of x.
80
 * Input k indicates whether tan (if k=1) or
81
 * -1/tan (if k= -1) is returned.
82
 *
83
 * Algorithm
84
 *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
85
 *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
86
 *      3. tan(x) is approximated by a odd polynomial of degree 27 on
87
 *         [0,0.67434]
88
 *                               3             27
89
 *              tan(x) ~ x + T1*x + ... + T13*x
90
 *         where
91
 *
92
 *              |tan(x)         2     4            26   |     -59.2
93
 *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
94
 *              |  x                                    |
95
 *
96
 *         Note: tan(x+y) = tan(x) + tan'(x)*y
97
 *                        ~ tan(x) + (1+x*x)*y
98
 *         Therefore, for better accuracy in computing tan(x+y), let
99
 *                   3      2      2       2       2
100
 *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
101
 *         then
102
 *                                  3    2
103
 *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
104
 *
105
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
106
 *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
107
 *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
108
 */
109
 
110
#include "mathincl/fdlibm.h"
111
static const double
112
one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
113
pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
114
pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
115
T[] =  {
116
  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
117
  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
118
  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
119
  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
120
  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
121
  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
122
  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
123
  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
124
  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
125
  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
126
  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
127
 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
128
  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
129
};
130
 
131
        double __kernel_tan(double x, double y, int iy)
132
{
133
        double z,r,v,w,s;
134
        int ix,hx;
135
        hx = CYG_LIBM_HI(x);    /* high word of x */
136
        ix = hx&0x7fffffff;     /* high word of |x| */
137
        if(ix<0x3e300000)                       /* x < 2**-28 */
138
            {if((int)x==0) {                    /* generate inexact */
139
                if(((ix|CYG_LIBM_LO(x))|(iy+1))==0) return one/fabs(x);
140
                else return (iy==1)? x: -one/x;
141
            }
142
            }
143
        if(ix>=0x3FE59428) {                    /* |x|>=0.6744 */
144
            if(hx<0) {x = -x; y = -y;}
145
            z = pio4-x;
146
            w = pio4lo-y;
147
            x = z+w; y = 0.0;
148
        }
149
        z       =  x*x;
150
        w       =  z*z;
151
    /* Break x^5*(T[1]+x^2*T[2]+...) into
152
     *    x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
153
     *    x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
154
     */
155
        r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
156
        v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
157
        s = z*x;
158
        r = y + z*(s*(r+v)+y);
159
        r += T[0]*s;
160
        w = x+r;
161
        if(ix>=0x3FE59428) {
162
            v = (double)iy;
163
            return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
164
        }
165
        if(iy==1) return w;
166
        else {          /* if allow error up to 2 ulp,
167
                           simply return -1.0/(x+r) here */
168
     /*  compute -1.0/(x+r) accurately */
169
            double a,t;
170
            z  = w;
171
            CYG_LIBM_LO(z) = 0;
172
            v  = r-(z - x);     /* z+v = r+x */
173
            t = a  = -1.0/w;    /* a = -1.0/w */
174
            CYG_LIBM_LO(t) = 0;
175
            s  = 1.0+t*z;
176
            return t+a*(s+t*v);
177
        }
178
}
179
 
180
#endif // ifdef CYGPKG_LIBM     
181
 
182
// EOF k_tan.c

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.