1 |
27 |
unneback |
//===========================================================================
|
2 |
|
|
//
|
3 |
|
|
// k_tan.c
|
4 |
|
|
//
|
5 |
|
|
// Part of the standard mathematical function library
|
6 |
|
|
//
|
7 |
|
|
//===========================================================================
|
8 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
9 |
|
|
// -------------------------------------------
|
10 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
11 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
12 |
|
|
//
|
13 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
14 |
|
|
// the terms of the GNU General Public License as published by the Free
|
15 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
16 |
|
|
//
|
17 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
18 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
19 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
20 |
|
|
// for more details.
|
21 |
|
|
//
|
22 |
|
|
// You should have received a copy of the GNU General Public License along
|
23 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
24 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
25 |
|
|
//
|
26 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
27 |
|
|
// or inline functions from this file, or you compile this file and link it
|
28 |
|
|
// with other works to produce a work based on this file, this file does not
|
29 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
30 |
|
|
// License. However the source code for this file must still be made available
|
31 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
32 |
|
|
//
|
33 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
34 |
|
|
// this file might be covered by the GNU General Public License.
|
35 |
|
|
//
|
36 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
37 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
38 |
|
|
// -------------------------------------------
|
39 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
40 |
|
|
//===========================================================================
|
41 |
|
|
//#####DESCRIPTIONBEGIN####
|
42 |
|
|
//
|
43 |
|
|
// Author(s): jlarmour
|
44 |
|
|
// Contributors: jlarmour
|
45 |
|
|
// Date: 1998-02-13
|
46 |
|
|
// Purpose:
|
47 |
|
|
// Description:
|
48 |
|
|
// Usage:
|
49 |
|
|
//
|
50 |
|
|
//####DESCRIPTIONEND####
|
51 |
|
|
//
|
52 |
|
|
//===========================================================================
|
53 |
|
|
|
54 |
|
|
// CONFIGURATION
|
55 |
|
|
|
56 |
|
|
#include <pkgconf/libm.h> // Configuration header
|
57 |
|
|
|
58 |
|
|
// Include the Math library?
|
59 |
|
|
#ifdef CYGPKG_LIBM
|
60 |
|
|
|
61 |
|
|
// Derived from code with the following copyright
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
/* @(#)k_tan.c 1.3 95/01/18 */
|
65 |
|
|
/*
|
66 |
|
|
* ====================================================
|
67 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
68 |
|
|
*
|
69 |
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
70 |
|
|
* Permission to use, copy, modify, and distribute this
|
71 |
|
|
* software is freely granted, provided that this notice
|
72 |
|
|
* is preserved.
|
73 |
|
|
* ====================================================
|
74 |
|
|
*/
|
75 |
|
|
|
76 |
|
|
/* __kernel_tan( x, y, k )
|
77 |
|
|
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
78 |
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
79 |
|
|
* Input y is the tail of x.
|
80 |
|
|
* Input k indicates whether tan (if k=1) or
|
81 |
|
|
* -1/tan (if k= -1) is returned.
|
82 |
|
|
*
|
83 |
|
|
* Algorithm
|
84 |
|
|
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
85 |
|
|
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
86 |
|
|
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
87 |
|
|
* [0,0.67434]
|
88 |
|
|
* 3 27
|
89 |
|
|
* tan(x) ~ x + T1*x + ... + T13*x
|
90 |
|
|
* where
|
91 |
|
|
*
|
92 |
|
|
* |tan(x) 2 4 26 | -59.2
|
93 |
|
|
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
94 |
|
|
* | x |
|
95 |
|
|
*
|
96 |
|
|
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
97 |
|
|
* ~ tan(x) + (1+x*x)*y
|
98 |
|
|
* Therefore, for better accuracy in computing tan(x+y), let
|
99 |
|
|
* 3 2 2 2 2
|
100 |
|
|
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
101 |
|
|
* then
|
102 |
|
|
* 3 2
|
103 |
|
|
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
104 |
|
|
*
|
105 |
|
|
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
106 |
|
|
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
107 |
|
|
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
108 |
|
|
*/
|
109 |
|
|
|
110 |
|
|
#include "mathincl/fdlibm.h"
|
111 |
|
|
static const double
|
112 |
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
113 |
|
|
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
114 |
|
|
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
|
115 |
|
|
T[] = {
|
116 |
|
|
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
|
117 |
|
|
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
|
118 |
|
|
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
|
119 |
|
|
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
|
120 |
|
|
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
|
121 |
|
|
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
|
122 |
|
|
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
|
123 |
|
|
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
|
124 |
|
|
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
|
125 |
|
|
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
|
126 |
|
|
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
|
127 |
|
|
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
|
128 |
|
|
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
|
129 |
|
|
};
|
130 |
|
|
|
131 |
|
|
double __kernel_tan(double x, double y, int iy)
|
132 |
|
|
{
|
133 |
|
|
double z,r,v,w,s;
|
134 |
|
|
int ix,hx;
|
135 |
|
|
hx = CYG_LIBM_HI(x); /* high word of x */
|
136 |
|
|
ix = hx&0x7fffffff; /* high word of |x| */
|
137 |
|
|
if(ix<0x3e300000) /* x < 2**-28 */
|
138 |
|
|
{if((int)x==0) { /* generate inexact */
|
139 |
|
|
if(((ix|CYG_LIBM_LO(x))|(iy+1))==0) return one/fabs(x);
|
140 |
|
|
else return (iy==1)? x: -one/x;
|
141 |
|
|
}
|
142 |
|
|
}
|
143 |
|
|
if(ix>=0x3FE59428) { /* |x|>=0.6744 */
|
144 |
|
|
if(hx<0) {x = -x; y = -y;}
|
145 |
|
|
z = pio4-x;
|
146 |
|
|
w = pio4lo-y;
|
147 |
|
|
x = z+w; y = 0.0;
|
148 |
|
|
}
|
149 |
|
|
z = x*x;
|
150 |
|
|
w = z*z;
|
151 |
|
|
/* Break x^5*(T[1]+x^2*T[2]+...) into
|
152 |
|
|
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
153 |
|
|
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
154 |
|
|
*/
|
155 |
|
|
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
|
156 |
|
|
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
|
157 |
|
|
s = z*x;
|
158 |
|
|
r = y + z*(s*(r+v)+y);
|
159 |
|
|
r += T[0]*s;
|
160 |
|
|
w = x+r;
|
161 |
|
|
if(ix>=0x3FE59428) {
|
162 |
|
|
v = (double)iy;
|
163 |
|
|
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
|
164 |
|
|
}
|
165 |
|
|
if(iy==1) return w;
|
166 |
|
|
else { /* if allow error up to 2 ulp,
|
167 |
|
|
simply return -1.0/(x+r) here */
|
168 |
|
|
/* compute -1.0/(x+r) accurately */
|
169 |
|
|
double a,t;
|
170 |
|
|
z = w;
|
171 |
|
|
CYG_LIBM_LO(z) = 0;
|
172 |
|
|
v = r-(z - x); /* z+v = r+x */
|
173 |
|
|
t = a = -1.0/w; /* a = -1.0/w */
|
174 |
|
|
CYG_LIBM_LO(t) = 0;
|
175 |
|
|
s = 1.0+t*z;
|
176 |
|
|
return t+a*(s+t*v);
|
177 |
|
|
}
|
178 |
|
|
}
|
179 |
|
|
|
180 |
|
|
#endif // ifdef CYGPKG_LIBM
|
181 |
|
|
|
182 |
|
|
// EOF k_tan.c
|