OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [language/] [c/] [libm/] [v2_0/] [src/] [double/] [portable-api/] [s_log1p.c] - Blame information for rev 174

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
//===========================================================================
2
//
3
//      s_log1p.c
4
//
5
//      Part of the standard mathematical function library
6
//
7
//===========================================================================
8
//####ECOSGPLCOPYRIGHTBEGIN####
9
// -------------------------------------------
10
// This file is part of eCos, the Embedded Configurable Operating System.
11
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
12
//
13
// eCos is free software; you can redistribute it and/or modify it under
14
// the terms of the GNU General Public License as published by the Free
15
// Software Foundation; either version 2 or (at your option) any later version.
16
//
17
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
18
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
19
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
20
// for more details.
21
//
22
// You should have received a copy of the GNU General Public License along
23
// with eCos; if not, write to the Free Software Foundation, Inc.,
24
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25
//
26
// As a special exception, if other files instantiate templates or use macros
27
// or inline functions from this file, or you compile this file and link it
28
// with other works to produce a work based on this file, this file does not
29
// by itself cause the resulting work to be covered by the GNU General Public
30
// License. However the source code for this file must still be made available
31
// in accordance with section (3) of the GNU General Public License.
32
//
33
// This exception does not invalidate any other reasons why a work based on
34
// this file might be covered by the GNU General Public License.
35
//
36
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
37
// at http://sources.redhat.com/ecos/ecos-license/
38
// -------------------------------------------
39
//####ECOSGPLCOPYRIGHTEND####
40
//===========================================================================
41
//#####DESCRIPTIONBEGIN####
42
//
43
// Author(s):   jlarmour
44
// Contributors:  jlarmour
45
// Date:        1998-02-13
46
// Purpose:     
47
// Description: 
48
// Usage:       
49
//
50
//####DESCRIPTIONEND####
51
//
52
//===========================================================================
53
 
54
// CONFIGURATION
55
 
56
#include <pkgconf/libm.h>   // Configuration header
57
 
58
// Include the Math library?
59
#ifdef CYGPKG_LIBM     
60
 
61
// Derived from code with the following copyright
62
 
63
 
64
/* @(#)s_log1p.c 1.3 95/01/18 */
65
/*
66
 * ====================================================
67
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
68
 *
69
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
70
 * Permission to use, copy, modify, and distribute this
71
 * software is freely granted, provided that this notice
72
 * is preserved.
73
 * ====================================================
74
 */
75
 
76
/* double log1p(double x)
77
 *
78
 * Method :
79
 *   1. Argument Reduction: find k and f such that
80
 *                      1+x = 2^k * (1+f),
81
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
82
 *
83
 *      Note. If k=0, then f=x is exact. However, if k!=0, then f
84
 *      may not be representable exactly. In that case, a correction
85
 *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
86
 *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
87
 *      and add back the correction term c/u.
88
 *      (Note: when x > 2**53, one can simply return log(x))
89
 *
90
 *   2. Approximation of log1p(f).
91
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
92
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
93
 *               = 2s + s*R
94
 *      We use a special Reme algorithm on [0,0.1716] to generate
95
 *      a polynomial of degree 14 to approximate R The maximum error
96
 *      of this polynomial approximation is bounded by 2**-58.45. In
97
 *      other words,
98
 *                      2      4      6      8      10      12      14
99
 *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
100
 *      (the values of Lp1 to Lp7 are listed in the program)
101
 *      and
102
 *          |      2          14          |     -58.45
103
 *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
104
 *          |                             |
105
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
106
 *      In order to guarantee error in log below 1ulp, we compute log
107
 *      by
108
 *              log1p(f) = f - (hfsq - s*(hfsq+R)).
109
 *
110
 *      3. Finally, log1p(x) = k*ln2 + log1p(f).
111
 *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
112
 *         Here ln2 is split into two floating point number:
113
 *                      ln2_hi + ln2_lo,
114
 *         where n*ln2_hi is always exact for |n| < 2000.
115
 *
116
 * Special cases:
117
 *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
118
 *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
119
 *      log1p(NaN) is that NaN with no signal.
120
 *
121
 * Accuracy:
122
 *      according to an error analysis, the error is always less than
123
 *      1 ulp (unit in the last place).
124
 *
125
 * Constants:
126
 * The hexadecimal values are the intended ones for the following
127
 * constants. The decimal values may be used, provided that the
128
 * compiler will convert from decimal to binary accurately enough
129
 * to produce the hexadecimal values shown.
130
 *
131
 * Note: Assuming log() return accurate answer, the following
132
 *       algorithm can be used to compute log1p(x) to within a few ULP:
133
 *
134
 *              u = 1+x;
135
 *              if(u==1.0) return x ; else
136
 *                         return log(u)*(x/(u-1.0));
137
 *
138
 *       See HP-15C Advanced Functions Handbook, p.193.
139
 */
140
 
141
#include "mathincl/fdlibm.h"
142
 
143
static const double
144
ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
145
ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
146
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
147
Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
148
Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
149
Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
150
Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
151
Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
152
Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
153
Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
154
 
155
static double zero = 0.0;
156
 
157
        double log1p(double x)
158
{
159
        double hfsq,f,c,s,z,R,u;
160
        int k,hx,hu,ax;
161
 
162
        c=f=hu=0.0; /* to placate compiler */
163
        hx = CYG_LIBM_HI(x);            /* high word of x */
164
        ax = hx&0x7fffffff;
165
 
166
        k = 1;
167
        if (hx < 0x3FDA827A) {                  /* x < 0.41422  */
168
            if(ax>=0x3ff00000) {                /* x <= -1.0 */
169
                if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
170
                else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
171
            }
172
            if(ax<0x3e200000) {                 /* |x| < 2**-29 */
173
                if(two54+x>zero                 /* raise inexact */
174
                    &&ax<0x3c900000)            /* |x| < 2**-54 */
175
                    return x;
176
                else
177
                    return x - x*x*0.5;
178
            }
179
            if(hx>0||hx<=((int)0xbfd2bec3)) {
180
                k=0;f=x;hu=1;}  /* -0.2929<x<0.41422 */
181
        }
182
        if (hx >= 0x7ff00000) return x+x;
183
        if(k!=0) {
184
            if(hx<0x43400000) {
185
                u  = 1.0+x;
186
                hu = CYG_LIBM_HI(u);            /* high word of u */
187
                k  = (hu>>20)-1023;
188
                c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
189
                c /= u;
190
            } else {
191
                u  = x;
192
                hu = CYG_LIBM_HI(u);            /* high word of u */
193
                k  = (hu>>20)-1023;
194
                c  = 0;
195
            }
196
            hu &= 0x000fffff;
197
            if(hu<0x6a09e) {
198
                CYG_LIBM_HI(u) = hu|0x3ff00000; /* normalize u */
199
            } else {
200
                k += 1;
201
                CYG_LIBM_HI(u) = hu|0x3fe00000; /* normalize u/2 */
202
                hu = (0x00100000-hu)>>2;
203
            }
204
            f = u-1.0;
205
        }
206
        hfsq=0.5*f*f;
207
        if(hu==0) {     /* |f| < 2**-20 */
208
            if(f==zero) {
209
                if(k==0) return zero;
210
                else {
211
                    c += k*ln2_lo; return k*ln2_hi+c;
212
                }
213
            }
214
            R = hfsq*(1.0-0.66666666666666666*f);
215
            if(k==0) return f-R;
216
            else return k*ln2_hi-((R-(k*ln2_lo+c))-f);
217
        }
218
        s = f/(2.0+f);
219
        z = s*s;
220
        R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
221
        if(k==0) return f-(hfsq-s*(hfsq+R));
222
        else return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
223
}
224
 
225
#endif // ifdef CYGPKG_LIBM     
226
 
227
// EOF s_log1p.c

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.