OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [net/] [bsd_tcpip/] [v2_0/] [src/] [sys/] [netinet/] [tcp_subr.c] - Blame information for rev 174

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
//==========================================================================
2
//
3
//      src/sys/netinet/tcp_subr.c
4
//
5
//==========================================================================
6
//####BSDCOPYRIGHTBEGIN####
7
//
8
// -------------------------------------------
9
//
10
// Portions of this software may have been derived from OpenBSD, 
11
// FreeBSD or other sources, and are covered by the appropriate
12
// copyright disclaimers included herein.
13
//
14
// Portions created by Red Hat are
15
// Copyright (C) 2002 Red Hat, Inc. All Rights Reserved.
16
//
17
// -------------------------------------------
18
//
19
//####BSDCOPYRIGHTEND####
20
//==========================================================================
21
 
22
/*
23
 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
24
 *      The Regents of the University of California.  All rights reserved.
25
 *
26
 * Redistribution and use in source and binary forms, with or without
27
 * modification, are permitted provided that the following conditions
28
 * are met:
29
 * 1. Redistributions of source code must retain the above copyright
30
 *    notice, this list of conditions and the following disclaimer.
31
 * 2. Redistributions in binary form must reproduce the above copyright
32
 *    notice, this list of conditions and the following disclaimer in the
33
 *    documentation and/or other materials provided with the distribution.
34
 * 3. All advertising materials mentioning features or use of this software
35
 *    must display the following acknowledgement:
36
 *      This product includes software developed by the University of
37
 *      California, Berkeley and its contributors.
38
 * 4. Neither the name of the University nor the names of its contributors
39
 *    may be used to endorse or promote products derived from this software
40
 *    without specific prior written permission.
41
 *
42
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52
 * SUCH DAMAGE.
53
 *
54
 *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
55
 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
56
 */
57
 
58
#include <sys/param.h>
59
#include <sys/malloc.h>
60
#include <sys/mbuf.h>
61
#ifdef INET6
62
#include <sys/domain.h>
63
#endif
64
#include <sys/socket.h>
65
#include <sys/socketvar.h>
66
#include <sys/protosw.h>
67
 
68
#include <net/route.h>
69
#include <net/if.h>
70
 
71
#define _IP_VHL
72
#include <netinet/in.h>
73
#include <netinet/in_systm.h>
74
#include <netinet/ip.h>
75
#ifdef INET6
76
#include <netinet/ip6.h>
77
#endif
78
#include <netinet/in_pcb.h>
79
#ifdef INET6
80
#include <netinet6/in6_pcb.h>
81
#endif
82
#include <netinet/in_var.h>
83
#include <netinet/ip_var.h>
84
#ifdef INET6
85
#include <netinet6/ip6_var.h>
86
#endif
87
#include <netinet/tcp.h>
88
#include <netinet/tcp_fsm.h>
89
#include <netinet/tcp_seq.h>
90
#include <netinet/tcp_timer.h>
91
#include <netinet/tcp_var.h>
92
#ifdef INET6
93
#include <netinet6/tcp6_var.h>
94
#include <netinet6/ip6protosw.h>
95
#endif
96
#include <netinet/tcpip.h>
97
#ifdef TCPDEBUG
98
#include <netinet/tcp_debug.h>
99
#endif
100
 
101
#ifdef IPSEC
102
#include <netinet6/ipsec.h>
103
#endif /*IPSEC*/
104
 
105
#include <sys/md5.h>
106
 
107
int     tcp_mssdflt = TCP_MSS;
108
 
109
#ifdef INET6
110
int     tcp_v6mssdflt = TCP6_MSS;
111
#endif
112
 
113
#if 0
114
static int      tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
115
#endif
116
 
117
static int      tcp_do_rfc1323 = 1;
118
static int      tcp_do_rfc1644 = 0;
119
static int      tcp_tcbhashsize = 0;
120
static int      do_tcpdrain = 1;
121
static int      icmp_may_rst = 1;
122
static int      tcp_strict_rfc1948 = 0;
123
static int      tcp_isn_reseed_interval = 0;
124
static void     tcp_cleartaocache __P((void));
125
static void     tcp_notify __P((struct inpcb *, int));
126
 
127
/*
128
 * Target size of TCP PCB hash tables. Must be a power of two.
129
 *
130
 * Note that this can be overridden by the kernel environment
131
 * variable net.inet.tcp.tcbhashsize
132
 */
133
#ifndef TCBHASHSIZE
134
#define TCBHASHSIZE     512
135
#endif
136
 
137
/*
138
 * This is the actual shape of what we allocate using the zone
139
 * allocator.  Doing it this way allows us to protect both structures
140
 * using the same generation count, and also eliminates the overhead
141
 * of allocating tcpcbs separately.  By hiding the structure here,
142
 * we avoid changing most of the rest of the code (although it needs
143
 * to be changed, eventually, for greater efficiency).
144
 */
145
#define ALIGNMENT       32
146
#define ALIGNM1         (ALIGNMENT - 1)
147
struct  inp_tp {
148
        union {
149
                struct  inpcb inp;
150
                char    align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
151
        } inp_tp_u;
152
        struct  tcpcb tcb;
153
        struct  callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
154
        struct  callout inp_tp_delack;
155
};
156
#undef ALIGNMENT
157
#undef ALIGNM1
158
 
159
/*
160
 * Tcp initialization
161
 */
162
void
163
tcp_init()
164
{
165
        int hashsize = TCBHASHSIZE;
166
 
167
        tcp_ccgen = 1;
168
        tcp_cleartaocache();
169
 
170
        tcp_delacktime = TCPTV_DELACK;
171
        tcp_keepinit = TCPTV_KEEP_INIT;
172
        tcp_keepidle = TCPTV_KEEP_IDLE;
173
        tcp_keepintvl = TCPTV_KEEPINTVL;
174
        tcp_maxpersistidle = TCPTV_KEEP_IDLE;
175
        tcp_msl = TCPTV_MSL;
176
 
177
        LIST_INIT(&tcb);
178
        tcbinfo.listhead = &tcb;
179
        tcp_tcbhashsize = hashsize;
180
        tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
181
        tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
182
                                        &tcbinfo.porthashmask);
183
        tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
184
                                 ZONE_INTERRUPT, 0);
185
#ifdef INET6
186
#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
187
#else /* INET6 */
188
#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
189
#endif /* INET6 */
190
        if (max_protohdr < TCP_MINPROTOHDR)
191
                max_protohdr = TCP_MINPROTOHDR;
192
        if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
193
                panic("tcp_init");
194
#undef TCP_MINPROTOHDR
195
}
196
 
197
/*
198
 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
199
 * tcp_template used to store this data in mbufs, but we now recopy it out
200
 * of the tcpcb each time to conserve mbufs.
201
 */
202
void
203
tcp_fillheaders(tp, ip_ptr, tcp_ptr)
204
        struct tcpcb *tp;
205
        void *ip_ptr;
206
        void *tcp_ptr;
207
{
208
        struct inpcb *inp = tp->t_inpcb;
209
        struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
210
 
211
#ifdef INET6
212
        if ((inp->inp_vflag & INP_IPV6) != 0) {
213
                struct ip6_hdr *ip6;
214
 
215
                ip6 = (struct ip6_hdr *)ip_ptr;
216
                ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
217
                        (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
218
                ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
219
                        (IPV6_VERSION & IPV6_VERSION_MASK);
220
                ip6->ip6_nxt = IPPROTO_TCP;
221
                ip6->ip6_plen = sizeof(struct tcphdr);
222
                ip6->ip6_src = inp->in6p_laddr;
223
                ip6->ip6_dst = inp->in6p_faddr;
224
                tcp_hdr->th_sum = 0;
225
        } else
226
#endif
227
        {
228
        struct ip *ip = (struct ip *) ip_ptr;
229
 
230
        ip->ip_vhl = IP_VHL_BORING;
231
        ip->ip_tos = 0;
232
        ip->ip_len = 0;
233
        ip->ip_id = 0;
234
        ip->ip_off = 0;
235
        ip->ip_ttl = 0;
236
        ip->ip_sum = 0;
237
        ip->ip_p = IPPROTO_TCP;
238
        ip->ip_src = inp->inp_laddr;
239
        ip->ip_dst = inp->inp_faddr;
240
        tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
241
                htons(sizeof(struct tcphdr) + IPPROTO_TCP));
242
        }
243
 
244
        tcp_hdr->th_sport = inp->inp_lport;
245
        tcp_hdr->th_dport = inp->inp_fport;
246
        tcp_hdr->th_seq = 0;
247
        tcp_hdr->th_ack = 0;
248
        tcp_hdr->th_x2 = 0;
249
        tcp_hdr->th_off = 5;
250
        tcp_hdr->th_flags = 0;
251
        tcp_hdr->th_win = 0;
252
        tcp_hdr->th_urp = 0;
253
}
254
 
255
/*
256
 * Create template to be used to send tcp packets on a connection.
257
 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
258
 * use for this function is in keepalives, which use tcp_respond.
259
 */
260
struct tcptemp *
261
tcp_maketemplate(tp)
262
        struct tcpcb *tp;
263
{
264
        struct mbuf *m;
265
        struct tcptemp *n;
266
 
267
        m = m_get(M_DONTWAIT, MT_HEADER);
268
        if (m == NULL)
269
                return (0);
270
        m->m_len = sizeof(struct tcptemp);
271
        n = mtod(m, struct tcptemp *);
272
 
273
        tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
274
        return (n);
275
}
276
 
277
/*
278
 * Send a single message to the TCP at address specified by
279
 * the given TCP/IP header.  If m == 0, then we make a copy
280
 * of the tcpiphdr at ti and send directly to the addressed host.
281
 * This is used to force keep alive messages out using the TCP
282
 * template for a connection.  If flags are given then we send
283
 * a message back to the TCP which originated the * segment ti,
284
 * and discard the mbuf containing it and any other attached mbufs.
285
 *
286
 * In any case the ack and sequence number of the transmitted
287
 * segment are as specified by the parameters.
288
 *
289
 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
290
 */
291
void
292
tcp_respond(tp, ipgen, th, m, ack, seq, flags)
293
        struct tcpcb *tp;
294
        void *ipgen;
295
        register struct tcphdr *th;
296
        register struct mbuf *m;
297
        tcp_seq ack, seq;
298
        int flags;
299
{
300
        register int tlen;
301
        int win = 0;
302
        struct route *ro = 0;
303
        struct route sro;
304
        struct ip *ip;
305
        struct tcphdr *nth;
306
#ifdef INET6
307
#ifdef NEW_STRUCT_ROUTE
308
        struct route *ro6 = 0;
309
        struct route sro6;
310
#else
311
        struct route_in6 *ro6 = 0;
312
        struct route_in6 sro6;
313
#endif
314
        struct ip6_hdr *ip6;
315
        int isipv6;
316
#endif /* INET6 */
317
        int ipflags = 0;
318
 
319
#ifdef INET6
320
        isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
321
        ip6 = ipgen;
322
#endif /* INET6 */
323
        ip = ipgen;
324
 
325
        if (tp) {
326
                if (!(flags & TH_RST)) {
327
                        win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
328
                        if (win > (long)TCP_MAXWIN << tp->rcv_scale)
329
                                win = (long)TCP_MAXWIN << tp->rcv_scale;
330
                }
331
#ifdef INET6
332
                if (isipv6)
333
                        ro6 = &tp->t_inpcb->in6p_route;
334
                else
335
#endif /* INET6 */
336
                ro = &tp->t_inpcb->inp_route;
337
        } else {
338
#ifdef INET6
339
                if (isipv6) {
340
                        ro6 = &sro6;
341
                        bzero(ro6, sizeof *ro6);
342
                } else
343
#endif /* INET6 */
344
              {
345
                ro = &sro;
346
                bzero(ro, sizeof *ro);
347
              }
348
        }
349
        if (m == 0) {
350
                m = m_gethdr(M_DONTWAIT, MT_HEADER);
351
                if (m == NULL)
352
                        return;
353
                tlen = 0;
354
                m->m_data += max_linkhdr;
355
#ifdef INET6
356
                if (isipv6) {
357
                        bcopy((caddr_t)ip6, mtod(m, caddr_t),
358
                              sizeof(struct ip6_hdr));
359
                        ip6 = mtod(m, struct ip6_hdr *);
360
                        nth = (struct tcphdr *)(ip6 + 1);
361
                } else
362
#endif /* INET6 */
363
              {
364
                bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
365
                ip = mtod(m, struct ip *);
366
                nth = (struct tcphdr *)(ip + 1);
367
              }
368
                bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
369
                flags = TH_ACK;
370
        } else {
371
                m_freem(m->m_next);
372
                m->m_next = 0;
373
                m->m_data = (caddr_t)ipgen;
374
                /* m_len is set later */
375
                tlen = 0;
376
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
377
#ifdef INET6
378
                if (isipv6) {
379
                        xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
380
                        nth = (struct tcphdr *)(ip6 + 1);
381
                } else
382
#endif /* INET6 */
383
              {
384
                xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
385
                nth = (struct tcphdr *)(ip + 1);
386
              }
387
                if (th != nth) {
388
                        /*
389
                         * this is usually a case when an extension header
390
                         * exists between the IPv6 header and the
391
                         * TCP header.
392
                         */
393
                        nth->th_sport = th->th_sport;
394
                        nth->th_dport = th->th_dport;
395
                }
396
                xchg(nth->th_dport, nth->th_sport, n_short);
397
#undef xchg
398
        }
399
#ifdef INET6
400
        if (isipv6) {
401
                ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
402
                                                tlen));
403
                tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
404
        } else
405
#endif
406
      {
407
        tlen += sizeof (struct tcpiphdr);
408
        ip->ip_len = tlen;
409
        ip->ip_ttl = ip_defttl;
410
      }
411
        m->m_len = tlen;
412
        m->m_pkthdr.len = tlen;
413
        m->m_pkthdr.rcvif = (struct ifnet *) 0;
414
        nth->th_seq = htonl(seq);
415
        nth->th_ack = htonl(ack);
416
        nth->th_x2 = 0;
417
        nth->th_off = sizeof (struct tcphdr) >> 2;
418
        nth->th_flags = flags;
419
        if (tp)
420
                nth->th_win = htons((u_short) (win >> tp->rcv_scale));
421
        else
422
                nth->th_win = htons((u_short)win);
423
        nth->th_urp = 0;
424
#ifdef INET6
425
        if (isipv6) {
426
                nth->th_sum = 0;
427
                nth->th_sum = in6_cksum(m, IPPROTO_TCP,
428
                                        sizeof(struct ip6_hdr),
429
                                        tlen - sizeof(struct ip6_hdr));
430
                ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
431
                                               ro6 && ro6->ro_rt ?
432
                                               ro6->ro_rt->rt_ifp :
433
                                               NULL);
434
        } else
435
#endif /* INET6 */
436
      {
437
        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
438
            htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
439
        m->m_pkthdr.csum_flags = CSUM_TCP;
440
        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
441
      }
442
#ifdef TCPDEBUG
443
        if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
444
                tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
445
#endif
446
#ifdef IPSEC
447
        if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
448
                m_freem(m);
449
                return;
450
        }
451
#endif
452
#ifdef INET6
453
        if (isipv6) {
454
                (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
455
                if (ro6 == &sro6 && ro6->ro_rt) {
456
                        RTFREE(ro6->ro_rt);
457
                        ro6->ro_rt = NULL;
458
                }
459
        } else
460
#endif /* INET6 */
461
      {
462
        (void) ip_output(m, NULL, ro, ipflags, NULL);
463
        if (ro == &sro && ro->ro_rt) {
464
                RTFREE(ro->ro_rt);
465
                ro->ro_rt = NULL;
466
        }
467
      }
468
}
469
 
470
/*
471
 * Create a new TCP control block, making an
472
 * empty reassembly queue and hooking it to the argument
473
 * protocol control block.  The `inp' parameter must have
474
 * come from the zone allocator set up in tcp_init().
475
 */
476
struct tcpcb *
477
tcp_newtcpcb(inp)
478
        struct inpcb *inp;
479
{
480
        struct inp_tp *it;
481
        register struct tcpcb *tp;
482
#ifdef INET6
483
        int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
484
#endif /* INET6 */
485
 
486
        it = (struct inp_tp *)inp;
487
        tp = &it->tcb;
488
        bzero((char *) tp, sizeof(struct tcpcb));
489
        LIST_INIT(&tp->t_segq);
490
        tp->t_maxseg = tp->t_maxopd =
491
#ifdef INET6
492
                isipv6 ? tcp_v6mssdflt :
493
#endif /* INET6 */
494
                tcp_mssdflt;
495
 
496
        /* Set up our timeouts. */
497
        callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
498
        callout_init(tp->tt_persist = &it->inp_tp_persist);
499
        callout_init(tp->tt_keep = &it->inp_tp_keep);
500
        callout_init(tp->tt_2msl = &it->inp_tp_2msl);
501
        callout_init(tp->tt_delack = &it->inp_tp_delack);
502
 
503
        if (tcp_do_rfc1323)
504
                tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
505
        if (tcp_do_rfc1644)
506
                tp->t_flags |= TF_REQ_CC;
507
        tp->t_inpcb = inp;      /* XXX */
508
        /*
509
         * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
510
         * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
511
         * reasonable initial retransmit time.
512
         */
513
        tp->t_srtt = TCPTV_SRTTBASE;
514
        tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
515
        tp->t_rttmin = TCPTV_MIN;
516
        tp->t_rxtcur = TCPTV_RTOBASE;
517
        tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
518
        tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
519
        tp->t_rcvtime = ticks;
520
        /*
521
         * IPv4 TTL initialization is necessary for an IPv6 socket as well,
522
         * because the socket may be bound to an IPv6 wildcard address,
523
         * which may match an IPv4-mapped IPv6 address.
524
         */
525
        inp->inp_ip_ttl = ip_defttl;
526
        inp->inp_ppcb = (caddr_t)tp;
527
        return (tp);            /* XXX */
528
}
529
 
530
/*
531
 * Drop a TCP connection, reporting
532
 * the specified error.  If connection is synchronized,
533
 * then send a RST to peer.
534
 */
535
struct tcpcb *
536
tcp_drop(tp, _errno)
537
        register struct tcpcb *tp;
538
        int _errno;
539
{
540
        struct socket *so = tp->t_inpcb->inp_socket;
541
 
542
        if (TCPS_HAVERCVDSYN(tp->t_state)) {
543
                tp->t_state = TCPS_CLOSED;
544
                (void) tcp_output(tp);
545
                tcpstat.tcps_drops++;
546
        } else
547
                tcpstat.tcps_conndrops++;
548
        if (_errno == ETIMEDOUT && tp->t_softerror)
549
                _errno = tp->t_softerror;
550
        so->so_error = _errno;
551
        return (tcp_close(tp));
552
}
553
 
554
/*
555
 * Close a TCP control block:
556
 *      discard all space held by the tcp
557
 *      discard internet protocol block
558
 *      wake up any sleepers
559
 */
560
struct tcpcb *
561
tcp_close(tp)
562
        register struct tcpcb *tp;
563
{
564
        register struct tseg_qent *q;
565
        struct inpcb *inp = tp->t_inpcb;
566
        struct socket *so = inp->inp_socket;
567
#ifdef INET6
568
        int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
569
#endif /* INET6 */
570
        register struct rtentry *rt;
571
        int dosavessthresh;
572
 
573
        /*
574
         * Make sure that all of our timers are stopped before we
575
         * delete the PCB.
576
         */
577
        callout_stop(tp->tt_rexmt);
578
        callout_stop(tp->tt_persist);
579
        callout_stop(tp->tt_keep);
580
        callout_stop(tp->tt_2msl);
581
        callout_stop(tp->tt_delack);
582
 
583
        /*
584
         * If we got enough samples through the srtt filter,
585
         * save the rtt and rttvar in the routing entry.
586
         * 'Enough' is arbitrarily defined as the 16 samples.
587
         * 16 samples is enough for the srtt filter to converge
588
         * to within 5% of the correct value; fewer samples and
589
         * we could save a very bogus rtt.
590
         *
591
         * Don't update the default route's characteristics and don't
592
         * update anything that the user "locked".
593
         */
594
        if (tp->t_rttupdated >= 16) {
595
                register u_long i = 0;
596
#ifdef INET6
597
                if (isipv6) {
598
                        struct sockaddr_in6 *sin6;
599
 
600
                        if ((rt = inp->in6p_route.ro_rt) == NULL)
601
                                goto no_valid_rt;
602
                        sin6 = (struct sockaddr_in6 *)rt_key(rt);
603
                        if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
604
                                goto no_valid_rt;
605
                }
606
                else
607
#endif /* INET6 */              
608
                if ((rt = inp->inp_route.ro_rt) == NULL ||
609
                    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
610
                    == INADDR_ANY)
611
                        goto no_valid_rt;
612
 
613
                if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
614
                        i = tp->t_srtt *
615
                            (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
616
                        if (rt->rt_rmx.rmx_rtt && i)
617
                                /*
618
                                 * filter this update to half the old & half
619
                                 * the new values, converting scale.
620
                                 * See route.h and tcp_var.h for a
621
                                 * description of the scaling constants.
622
                                 */
623
                                rt->rt_rmx.rmx_rtt =
624
                                    (rt->rt_rmx.rmx_rtt + i) / 2;
625
                        else
626
                                rt->rt_rmx.rmx_rtt = i;
627
                        tcpstat.tcps_cachedrtt++;
628
                }
629
                if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
630
                        i = tp->t_rttvar *
631
                            (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
632
                        if (rt->rt_rmx.rmx_rttvar && i)
633
                                rt->rt_rmx.rmx_rttvar =
634
                                    (rt->rt_rmx.rmx_rttvar + i) / 2;
635
                        else
636
                                rt->rt_rmx.rmx_rttvar = i;
637
                        tcpstat.tcps_cachedrttvar++;
638
                }
639
                /*
640
                 * The old comment here said:
641
                 * update the pipelimit (ssthresh) if it has been updated
642
                 * already or if a pipesize was specified & the threshhold
643
                 * got below half the pipesize.  I.e., wait for bad news
644
                 * before we start updating, then update on both good
645
                 * and bad news.
646
                 *
647
                 * But we want to save the ssthresh even if no pipesize is
648
                 * specified explicitly in the route, because such
649
                 * connections still have an implicit pipesize specified
650
                 * by the global tcp_sendspace.  In the absence of a reliable
651
                 * way to calculate the pipesize, it will have to do.
652
                 */
653
                i = tp->snd_ssthresh;
654
                if (rt->rt_rmx.rmx_sendpipe != 0)
655
                        dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
656
                else
657
                        dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
658
                if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
659
                     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
660
                    || dosavessthresh) {
661
                        /*
662
                         * convert the limit from user data bytes to
663
                         * packets then to packet data bytes.
664
                         */
665
                        i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
666
                        if (i < 2)
667
                                i = 2;
668
                        i *= (u_long)(tp->t_maxseg +
669
#ifdef INET6
670
                                      (isipv6 ? sizeof (struct ip6_hdr) +
671
                                               sizeof (struct tcphdr) :
672
#endif
673
                                       sizeof (struct tcpiphdr)
674
#ifdef INET6
675
                                       )
676
#endif
677
                                      );
678
                        if (rt->rt_rmx.rmx_ssthresh)
679
                                rt->rt_rmx.rmx_ssthresh =
680
                                    (rt->rt_rmx.rmx_ssthresh + i) / 2;
681
                        else
682
                                rt->rt_rmx.rmx_ssthresh = i;
683
                        tcpstat.tcps_cachedssthresh++;
684
                }
685
        }
686
        rt = inp->inp_route.ro_rt;
687
        if (rt) {
688
                /*
689
                 * mark route for deletion if no information is
690
                 * cached.
691
                 */
692
                if ((tp->t_flags & TF_LQ_OVERFLOW) &&
693
                    ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
694
                        if (rt->rt_rmx.rmx_rtt == 0)
695
                                rt->rt_flags |= RTF_DELCLONE;
696
                }
697
        }
698
    no_valid_rt:
699
        /* free the reassembly queue, if any */
700
        while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
701
                LIST_REMOVE(q, tqe_q);
702
                m_freem(q->tqe_m);
703
                FREE(q, M_TSEGQ);
704
        }
705
        inp->inp_ppcb = NULL;
706
        soisdisconnected(so);
707
#ifdef INET6
708
        if (INP_CHECK_SOCKAF(so, AF_INET6))
709
                in6_pcbdetach(inp);
710
        else
711
#endif /* INET6 */
712
        in_pcbdetach(inp);
713
        tcpstat.tcps_closed++;
714
        return ((struct tcpcb *)0);
715
}
716
 
717
void
718
tcp_drain()
719
{
720
        if (do_tcpdrain)
721
        {
722
                struct inpcb *inpb;
723
                struct tcpcb *tcpb;
724
                struct tseg_qent *te;
725
 
726
        /*
727
         * Walk the tcpbs, if existing, and flush the reassembly queue,
728
         * if there is one...
729
         * XXX: The "Net/3" implementation doesn't imply that the TCP
730
         *      reassembly queue should be flushed, but in a situation
731
         *      where we're really low on mbufs, this is potentially
732
         *      usefull.
733
         */
734
                for (inpb = LIST_FIRST(tcbinfo.listhead); inpb;
735
                        inpb = LIST_NEXT(inpb, inp_list)) {
736
                                if ((tcpb = intotcpcb(inpb))) {
737
                                        while ((te = LIST_FIRST(&tcpb->t_segq))
738
                                               != NULL) {
739
                                        LIST_REMOVE(te, tqe_q);
740
                                        m_freem(te->tqe_m);
741
                                        FREE(te, M_TSEGQ);
742
                                }
743
                        }
744
                }
745
 
746
        }
747
}
748
 
749
/*
750
 * Notify a tcp user of an asynchronous error;
751
 * store error as soft error, but wake up user
752
 * (for now, won't do anything until can select for soft error).
753
 *
754
 * Do not wake up user since there currently is no mechanism for
755
 * reporting soft errors (yet - a kqueue filter may be added).
756
 */
757
static void
758
tcp_notify(inp, error)
759
        struct inpcb *inp;
760
        int error;
761
{
762
        struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
763
 
764
        /*
765
         * Ignore some errors if we are hooked up.
766
         * If connection hasn't completed, has retransmitted several times,
767
         * and receives a second error, give up now.  This is better
768
         * than waiting a long time to establish a connection that
769
         * can never complete.
770
         */
771
        if (tp->t_state == TCPS_ESTABLISHED &&
772
             (error == EHOSTUNREACH || error == ENETUNREACH ||
773
              error == EHOSTDOWN)) {
774
                return;
775
        } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
776
            tp->t_softerror)
777
                tcp_drop(tp, error);
778
        else
779
                tp->t_softerror = error;
780
#if 0
781
        wakeup((caddr_t) &so->so_timeo);
782
        sorwakeup(so);
783
        sowwakeup(so);
784
#endif
785
}
786
 
787
void
788
tcp_ctlinput(cmd, sa, vip)
789
        int cmd;
790
        struct sockaddr *sa;
791
        void *vip;
792
{
793
        struct ip *ip = vip;
794
        struct tcphdr *th;
795
        struct in_addr faddr;
796
        struct inpcb *inp;
797
        struct tcpcb *tp;
798
        void (*notify) __P((struct inpcb *, int)) = tcp_notify;
799
        tcp_seq icmp_seq;
800
        int s;
801
 
802
        faddr = ((struct sockaddr_in *)sa)->sin_addr;
803
        if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
804
                return;
805
 
806
        if (cmd == PRC_QUENCH)
807
                notify = tcp_quench;
808
        else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
809
                cmd == PRC_UNREACH_PORT) && ip)
810
                notify = tcp_drop_syn_sent;
811
        else if (cmd == PRC_MSGSIZE)
812
                notify = tcp_mtudisc;
813
        else if (PRC_IS_REDIRECT(cmd)) {
814
                ip = 0;
815
                notify = in_rtchange;
816
        } else if (cmd == PRC_HOSTDEAD)
817
                ip = 0;
818
        else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
819
                return;
820
        if (ip) {
821
                s = splnet();
822
                th = (struct tcphdr *)((caddr_t)ip
823
                                       + (IP_VHL_HL(ip->ip_vhl) << 2));
824
                inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
825
                    ip->ip_src, th->th_sport, 0, NULL);
826
                if (inp != NULL && inp->inp_socket != NULL) {
827
                        icmp_seq = htonl(th->th_seq);
828
                        tp = intotcpcb(inp);
829
                        if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
830
                            SEQ_LT(icmp_seq, tp->snd_max))
831
                                (*notify)(inp, inetctlerrmap[cmd]);
832
                }
833
                splx(s);
834
        } else
835
                in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
836
}
837
 
838
#ifdef INET6
839
void
840
tcp6_ctlinput(cmd, sa, d)
841
        int cmd;
842
        struct sockaddr *sa;
843
        void *d;
844
{
845
        struct tcphdr th;
846
        void (*notify) __P((struct inpcb *, int)) = tcp_notify;
847
        struct ip6_hdr *ip6;
848
        struct mbuf *m;
849
        struct ip6ctlparam *ip6cp = NULL;
850
        const struct sockaddr_in6 *sa6_src = NULL;
851
        int off;
852
        struct tcp_portonly {
853
                u_int16_t th_sport;
854
                u_int16_t th_dport;
855
        } *thp;
856
 
857
        if (sa->sa_family != AF_INET6 ||
858
            sa->sa_len != sizeof(struct sockaddr_in6))
859
                return;
860
 
861
        if (cmd == PRC_QUENCH)
862
                notify = tcp_quench;
863
        else if (cmd == PRC_MSGSIZE)
864
                notify = tcp_mtudisc;
865
        else if (!PRC_IS_REDIRECT(cmd) &&
866
                 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
867
                return;
868
 
869
        /* if the parameter is from icmp6, decode it. */
870
        if (d != NULL) {
871
                ip6cp = (struct ip6ctlparam *)d;
872
                m = ip6cp->ip6c_m;
873
                ip6 = ip6cp->ip6c_ip6;
874
                off = ip6cp->ip6c_off;
875
                sa6_src = ip6cp->ip6c_src;
876
        } else {
877
                m = NULL;
878
                ip6 = NULL;
879
                off = 0; /* fool gcc */
880
                sa6_src = &sa6_any;
881
        }
882
 
883
        if (ip6) {
884
                /*
885
                 * XXX: We assume that when IPV6 is non NULL,
886
                 * M and OFF are valid.
887
                 */
888
 
889
                /* check if we can safely examine src and dst ports */
890
                if (m->m_pkthdr.len < off + sizeof(*thp))
891
                        return;
892
 
893
                bzero(&th, sizeof(th));
894
                m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
895
 
896
                in6_pcbnotify(&tcb, sa, th.th_dport,
897
                    (struct sockaddr *)ip6cp->ip6c_src,
898
                    th.th_sport, cmd, NULL, notify);
899
        } else
900
                in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src,
901
                              0, cmd, NULL, notify);
902
}
903
#endif /* INET6 */
904
 
905
/*
906
 * Following is where TCP initial sequence number generation occurs.
907
 *
908
 * There are two places where we must use initial sequence numbers:
909
 * 1.  In SYN-ACK packets.
910
 * 2.  In SYN packets.
911
 *
912
 * The ISNs in SYN-ACK packets have no monotonicity requirement,
913
 * and should be as unpredictable as possible to avoid the possibility
914
 * of spoofing and/or connection hijacking.  To satisfy this
915
 * requirement, SYN-ACK ISNs are generated via the arc4random()
916
 * function.  If exact RFC 1948 compliance is requested via sysctl,
917
 * these ISNs will be generated just like those in SYN packets.
918
 *
919
 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
920
 * depends on this property.  In addition, these ISNs should be
921
 * unguessable so as to prevent connection hijacking.  To satisfy
922
 * the requirements of this situation, the algorithm outlined in
923
 * RFC 1948 is used to generate sequence numbers.
924
 *
925
 * For more information on the theory of operation, please see
926
 * RFC 1948.
927
 *
928
 * Implementation details:
929
 *
930
 * Time is based off the system timer, and is corrected so that it
931
 * increases by one megabyte per second.  This allows for proper
932
 * recycling on high speed LANs while still leaving over an hour
933
 * before rollover.
934
 *
935
 * Two sysctls control the generation of ISNs:
936
 *
937
 * net.inet.tcp.isn_reseed_interval controls the number of seconds
938
 * between seeding of isn_secret.  This is normally set to zero,
939
 * as reseeding should not be necessary.
940
 *
941
 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
942
 * strictly.  When strict compliance is requested, reseeding is
943
 * disabled and SYN-ACKs will be generated in the same manner as
944
 * SYNs.  Strict mode is disabled by default.
945
 *
946
 */
947
 
948
#define ISN_BYTES_PER_SECOND 1048576
949
 
950
u_char isn_secret[32];
951
int isn_last_reseed;
952
MD5_CTX isn_ctx;
953
 
954
tcp_seq
955
tcp_new_isn(tp)
956
        struct tcpcb *tp;
957
{
958
        u_int32_t md5_buffer[4];
959
        tcp_seq new_isn;
960
 
961
        /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
962
        if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
963
           && tcp_strict_rfc1948 == 0)
964
                return arc4random();
965
 
966
        /* Seed if this is the first use, reseed if requested. */
967
        if ((isn_last_reseed == 0) ||
968
            ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
969
             (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
970
                < (u_int)ticks))) {
971
                read_random_unlimited(&isn_secret, sizeof(isn_secret));
972
                isn_last_reseed = ticks;
973
        }
974
 
975
        /* Compute the md5 hash and return the ISN. */
976
        MD5Init(&isn_ctx);
977
        MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
978
        MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
979
#ifdef INET6
980
        if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
981
                MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
982
                          sizeof(struct in6_addr));
983
                MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
984
                          sizeof(struct in6_addr));
985
        } else
986
#endif
987
        {
988
                MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
989
                          sizeof(struct in_addr));
990
                MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
991
                          sizeof(struct in_addr));
992
        }
993
        MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
994
        MD5Final((u_char *) &md5_buffer, &isn_ctx);
995
        new_isn = (tcp_seq) md5_buffer[0];
996
        new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
997
        return new_isn;
998
}
999
 
1000
/*
1001
 * When a source quench is received, close congestion window
1002
 * to one segment.  We will gradually open it again as we proceed.
1003
 */
1004
void
1005
tcp_quench(inp, _errno)
1006
        struct inpcb *inp;
1007
        int _errno;
1008
{
1009
        struct tcpcb *tp = intotcpcb(inp);
1010
 
1011
        if (tp)
1012
                tp->snd_cwnd = tp->t_maxseg;
1013
}
1014
 
1015
/*
1016
 * When a specific ICMP unreachable message is received and the
1017
 * connection state is SYN-SENT, drop the connection.  This behavior
1018
 * is controlled by the icmp_may_rst sysctl.
1019
 */
1020
void
1021
tcp_drop_syn_sent(inp, _errno)
1022
        struct inpcb *inp;
1023
        int _errno;
1024
{
1025
        struct tcpcb *tp = intotcpcb(inp);
1026
 
1027
        if (tp && tp->t_state == TCPS_SYN_SENT)
1028
                tcp_drop(tp, _errno);
1029
}
1030
 
1031
/*
1032
 * When `need fragmentation' ICMP is received, update our idea of the MSS
1033
 * based on the new value in the route.  Also nudge TCP to send something,
1034
 * since we know the packet we just sent was dropped.
1035
 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1036
 */
1037
void
1038
tcp_mtudisc(inp, _errno)
1039
        struct inpcb *inp;
1040
        int _errno;
1041
{
1042
        struct tcpcb *tp = intotcpcb(inp);
1043
        struct rtentry *rt;
1044
        struct rmxp_tao *taop;
1045
        struct socket *so = inp->inp_socket;
1046
        int offered;
1047
        int mss;
1048
#ifdef INET6
1049
        int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1050
#endif /* INET6 */
1051
 
1052
        if (tp) {
1053
#ifdef INET6
1054
                if (isipv6)
1055
                        rt = tcp_rtlookup6(inp);
1056
                else
1057
#endif /* INET6 */
1058
                rt = tcp_rtlookup(inp);
1059
                if (!rt || !rt->rt_rmx.rmx_mtu) {
1060
                        tp->t_maxopd = tp->t_maxseg =
1061
#ifdef INET6
1062
                                isipv6 ? tcp_v6mssdflt :
1063
#endif /* INET6 */
1064
                                tcp_mssdflt;
1065
                        return;
1066
                }
1067
                taop = rmx_taop(rt->rt_rmx);
1068
                offered = taop->tao_mssopt;
1069
                mss = rt->rt_rmx.rmx_mtu -
1070
#ifdef INET6
1071
                        (isipv6 ?
1072
                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1073
#endif /* INET6 */
1074
                         sizeof(struct tcpiphdr)
1075
#ifdef INET6
1076
                         )
1077
#endif /* INET6 */
1078
                        ;
1079
 
1080
                if (offered)
1081
                        mss = min(mss, offered);
1082
                /*
1083
                 * XXX - The above conditional probably violates the TCP
1084
                 * spec.  The problem is that, since we don't know the
1085
                 * other end's MSS, we are supposed to use a conservative
1086
                 * default.  But, if we do that, then MTU discovery will
1087
                 * never actually take place, because the conservative
1088
                 * default is much less than the MTUs typically seen
1089
                 * on the Internet today.  For the moment, we'll sweep
1090
                 * this under the carpet.
1091
                 *
1092
                 * The conservative default might not actually be a problem
1093
                 * if the only case this occurs is when sending an initial
1094
                 * SYN with options and data to a host we've never talked
1095
                 * to before.  Then, they will reply with an MSS value which
1096
                 * will get recorded and the new parameters should get
1097
                 * recomputed.  For Further Study.
1098
                 */
1099
                if (tp->t_maxopd <= mss)
1100
                        return;
1101
                tp->t_maxopd = mss;
1102
 
1103
                if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1104
                    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1105
                        mss -= TCPOLEN_TSTAMP_APPA;
1106
                if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1107
                    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1108
                        mss -= TCPOLEN_CC_APPA;
1109
#if     (MCLBYTES & (MCLBYTES - 1)) == 0
1110
                if (mss > MCLBYTES)
1111
                        mss &= ~(MCLBYTES-1);
1112
#else
1113
                if (mss > MCLBYTES)
1114
                        mss = mss / MCLBYTES * MCLBYTES;
1115
#endif
1116
                if (so->so_snd.sb_hiwat < mss)
1117
                        mss = so->so_snd.sb_hiwat;
1118
 
1119
                tp->t_maxseg = mss;
1120
 
1121
                tcpstat.tcps_mturesent++;
1122
                tp->t_rtttime = 0;
1123
                tp->snd_nxt = tp->snd_una;
1124
                tcp_output(tp);
1125
        }
1126
}
1127
 
1128
/*
1129
 * Look-up the routing entry to the peer of this inpcb.  If no route
1130
 * is found and it cannot be allocated the return NULL.  This routine
1131
 * is called by TCP routines that access the rmx structure and by tcp_mss
1132
 * to get the interface MTU.
1133
 */
1134
struct rtentry *
1135
tcp_rtlookup(inp)
1136
        struct inpcb *inp;
1137
{
1138
        struct route *ro;
1139
        struct rtentry *rt;
1140
 
1141
        ro = &inp->inp_route;
1142
        rt = ro->ro_rt;
1143
        if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1144
                /* No route yet, so try to acquire one */
1145
                if (inp->inp_faddr.s_addr != INADDR_ANY) {
1146
                        ro->ro_dst.sa_family = AF_INET;
1147
                        ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1148
                        ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1149
                                inp->inp_faddr;
1150
                        rtalloc(ro);
1151
                        rt = ro->ro_rt;
1152
                }
1153
        }
1154
        return rt;
1155
}
1156
 
1157
#ifdef INET6
1158
struct rtentry *
1159
tcp_rtlookup6(inp)
1160
        struct inpcb *inp;
1161
{
1162
#ifdef NEW_STRUCT_ROUTE
1163
        struct route *ro6;
1164
#else
1165
        struct route_in6 *ro6;
1166
#endif
1167
        struct rtentry *rt;
1168
 
1169
        ro6 = &inp->in6p_route;
1170
        rt = ro6->ro_rt;
1171
        if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1172
                /* No route yet, so try to acquire one */
1173
                if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1174
                        struct sockaddr_in6 *dst6;
1175
 
1176
                        dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
1177
                        dst6->sin6_family = AF_INET6;
1178
                        dst6->sin6_len = sizeof(*dst6);
1179
                        dst6->sin6_addr = inp->in6p_faddr;
1180
                        rtalloc((struct route *)ro6);
1181
                        rt = ro6->ro_rt;
1182
                }
1183
        }
1184
        return rt;
1185
}
1186
#endif /* INET6 */
1187
 
1188
#ifdef IPSEC
1189
/* compute ESP/AH header size for TCP, including outer IP header. */
1190
size_t
1191
ipsec_hdrsiz_tcp(tp)
1192
        struct tcpcb *tp;
1193
{
1194
        struct inpcb *inp;
1195
        struct mbuf *m;
1196
        size_t hdrsiz;
1197
        struct ip *ip;
1198
#ifdef INET6
1199
        struct ip6_hdr *ip6;
1200
#endif /* INET6 */
1201
        struct tcphdr *th;
1202
 
1203
        if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1204
                return 0;
1205
        MGETHDR(m, M_DONTWAIT, MT_DATA);
1206
        if (!m)
1207
                return 0;
1208
 
1209
#ifdef INET6
1210
        if ((inp->inp_vflag & INP_IPV6) != 0) {
1211
                ip6 = mtod(m, struct ip6_hdr *);
1212
                th = (struct tcphdr *)(ip6 + 1);
1213
                m->m_pkthdr.len = m->m_len =
1214
                        sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1215
                tcp_fillheaders(tp, ip6, th);
1216
                hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1217
        } else
1218
#endif /* INET6 */
1219
      {
1220
        ip = mtod(m, struct ip *);
1221
        th = (struct tcphdr *)(ip + 1);
1222
        m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1223
        tcp_fillheaders(tp, ip, th);
1224
        hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1225
      }
1226
 
1227
        m_free(m);
1228
        return hdrsiz;
1229
}
1230
#endif /*IPSEC*/
1231
 
1232
/*
1233
 * Return a pointer to the cached information about the remote host.
1234
 * The cached information is stored in the protocol specific part of
1235
 * the route metrics.
1236
 */
1237
struct rmxp_tao *
1238
tcp_gettaocache(inp)
1239
        struct inpcb *inp;
1240
{
1241
        struct rtentry *rt;
1242
 
1243
#ifdef INET6
1244
        if ((inp->inp_vflag & INP_IPV6) != 0)
1245
                rt = tcp_rtlookup6(inp);
1246
        else
1247
#endif /* INET6 */
1248
        rt = tcp_rtlookup(inp);
1249
 
1250
        /* Make sure this is a host route and is up. */
1251
        if (rt == NULL ||
1252
            (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1253
                return NULL;
1254
 
1255
        return rmx_taop(rt->rt_rmx);
1256
}
1257
 
1258
/*
1259
 * Clear all the TAO cache entries, called from tcp_init.
1260
 *
1261
 * XXX
1262
 * This routine is just an empty one, because we assume that the routing
1263
 * routing tables are initialized at the same time when TCP, so there is
1264
 * nothing in the cache left over.
1265
 */
1266
static void
1267
tcp_cleartaocache()
1268
{
1269
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.