OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [services/] [gfx/] [mw/] [v2_0/] [src/] [demos/] [nxscribble/] [matrix.c] - Blame information for rev 174

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
/***********************************************************************
2
 
3
matrix.c - simple matrix operations
4
 
5
Copyright (C) 1991 Dean Rubine
6
 
7
This program is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License. See ../COPYING for
9
the full agreement.
10
 
11
**********************************************************************/
12
 
13
/*
14
 Simple matrix operations
15
 Why I am writing this stuff over is beyond me
16
*/
17
 
18
#undef PIQ_DEBUG
19
 
20
#include <stdio.h>
21
#include <stdlib.h>
22
#include <math.h>
23
#include "util.h"
24
#include "matrix.h"
25
 
26
 
27
typedef struct array_header *Array;
28
 
29
#define EPSILON         (1.0e-10)       /* zero range */
30
 
31
/*
32
 Allocation functions
33
*/
34
 
35
 
36
Vector
37
NewVector(r)
38
int r;
39
{
40
        register struct array_header *a;
41
        register Vector v;
42
 
43
        a = (struct array_header *)
44
            allocate(sizeof(struct array_header) + r * sizeof(double), char);
45
        a->ndims = 1;
46
        a->nrows = r;
47
        a->ncols = 1;
48
        v = (Vector) (a + 1);
49
 
50
#define CHECK
51
#ifdef CHECK
52
        if(HEADER(v) != (struct array_header *) a ||
53
           NDIMS(v) != 1 || NROWS(v) != r || NCOLS(v) != 1) {
54
                exit_error("NewVector error: v=%x H: %x,%x  D:%d,%d  R:%d,%d  C:%d,%d\n", v,  HEADER(v), a,  NDIMS(v), 1,  NROWS(v), r, NCOLS(v), 1);
55
            }
56
#endif
57
 
58
        return v;
59
}
60
 
61
Matrix
62
NewMatrix(r, c)
63
int r, c;
64
{
65
        register struct array_header *a = (struct array_header *)
66
           allocate(sizeof(struct array_header) + r * sizeof(double *), char);
67
        register int i;
68
        register Matrix m;
69
 
70
        m = (Matrix) (a + 1);
71
        for(i = 0; i < r; i++)
72
                m[i] = allocate(c, double);
73
        a->ndims = 2;
74
        a->nrows = r;
75
        a->ncols = c;
76
        return m;
77
}
78
 
79
void
80
FreeVector(v)
81
Vector v;
82
{
83
        free(HEADER(v));
84
}
85
 
86
void
87
FreeMatrix(m)
88
Matrix m;
89
{
90
        register int i;
91
 
92
        for(i = 0; i < NROWS(m); i++)
93
                free(m[i]);
94
        free(HEADER(m));
95
}
96
 
97
Vector
98
VectorCopy(v)
99
register Vector v;
100
{
101
        register Vector r = NewVector(NROWS(v));
102
        register int i;
103
 
104
        for(i = 0; i < NROWS(v); i++)
105
                r[i] = v[i];
106
        return r;
107
}
108
 
109
Matrix
110
MatrixCopy(m)
111
register Matrix m;
112
{
113
        register Matrix r = NewMatrix(NROWS(m), NCOLS(m));
114
        register int i, j;
115
 
116
        for(i = 0; i < NROWS(m); i++)
117
                for(j = 0; j < NROWS(m); j++)
118
                        r[i][j] = m[i][j];
119
        return r;
120
}
121
 
122
/* Null vector and matrixes */
123
 
124
 
125
void
126
ZeroVector(v)
127
Vector v;
128
{
129
        register int i;
130
        for(i = 0; i < NROWS(v); i++) v[i] = 0.0;
131
}
132
 
133
 
134
void
135
ZeroMatrix(m)
136
Matrix m;
137
{
138
        register int i, j;
139
        for(i = 0; i < NROWS(m); i++)
140
                for(j = 0; j < NCOLS(m); j++)
141
                        m[i][j] = 0.0;
142
}
143
 
144
void
145
FillMatrix(m, fill)
146
Matrix m;
147
double fill;
148
{
149
        register int i, j;
150
        for(i = 0; i < NROWS(m); i++)
151
                for(j = 0; j < NCOLS(m); j++)
152
                        m[i][j] = fill;
153
}
154
 
155
double
156
InnerProduct(v1, v2)
157
register Vector v1, v2;
158
{
159
        double result = 0;
160
        register int n = NROWS(v1);
161
        if(n != NROWS(v2)) {
162
                exit_error("InnerProduct %d x %d ", n, NROWS(v2));
163
            }
164
        while(--n >= 0)
165
                result += *v1++ * *v2++;
166
        return result;
167
}
168
 
169
void
170
MatrixMultiply(m1, m2, prod)
171
register Matrix m1, m2, prod;
172
{
173
        register int i, j, k;
174
        double sum;
175
 
176
        if(NCOLS(m1) != NROWS(m2)) {
177
                error("MatrixMultiply: Can't multiply %dx%d and %dx%d matrices",
178
                        NROWS(m1), NCOLS(m1), NROWS(m2), NCOLS(m2));
179
                return;
180
            }
181
        if(NROWS(prod) != NROWS(m1) || NCOLS(prod) != NCOLS(m2)) {
182
                error("MatrixMultiply: %dx%d times %dx%d does not give %dx%d product",
183
                        NROWS(m1), NCOLS(m1), NROWS(m2), NCOLS(m2),
184
                        NROWS(prod), NCOLS(prod));
185
                return;
186
            }
187
 
188
        for(i = 0; i < NROWS(m1); i++)
189
                for(j = 0; j < NCOLS(m2); j++) {
190
                        sum = 0;
191
                        for(k = 0; k < NCOLS(m1); k++)
192
                                sum += m1[i][k] * m2[k][j];
193
                        prod[i][j] = sum;
194
                }
195
}
196
 
197
/*
198
Compute result = v'm where
199
        v is a column vector (r x 1)
200
        m is a matrix (r x c)
201
        result is a column vector (c x 1)
202
*/
203
 
204
void
205
VectorTimesMatrix(v, m, prod)
206
Vector v;
207
Matrix m;
208
Vector prod;
209
{
210
        register int i, j;
211
 
212
        if(NROWS(v) != NROWS(m)) {
213
                error("VectorTimesMatrix: Can't multiply %d vector by %dx%d",
214
                        NROWS(v), NROWS(m), NCOLS(m));
215
                return;
216
            }
217
        if(NROWS(prod) != NCOLS(m)) {
218
                error("VectorTimesMatrix: %d vector times %dx%d mat does not fit in %d product" ,
219
                        NROWS(v), NROWS(m), NCOLS(m), NROWS(prod));
220
                return;
221
            }
222
 
223
        for(j = 0; j < NCOLS(m); j++) {
224
                prod[j] = 0;
225
                for(i = 0; i < NROWS(m); i++)
226
                        prod[j] += v[i] * m[i][j];
227
        }
228
}
229
 
230
void
231
ScalarTimesVector(s, v, product)
232
double s;
233
register Vector v, product;
234
{
235
        register int n = NROWS(v);
236
 
237
        if(NROWS(v) != NROWS(product)) {
238
                error("ScalarTimesVector: result wrong size (%d!=%d)",
239
                        NROWS(v), NROWS(product));
240
                return;
241
            }
242
 
243
        while(--n >= 0)
244
                *product++ = s * *v++;
245
}
246
 
247
void
248
ScalarTimesMatrix(s, m, product)
249
double s;
250
register Matrix m, product;
251
{
252
        register int i, j;
253
 
254
        if(NROWS(m) != NROWS(product)  ||
255
           NCOLS(m) != NCOLS(product)) {
256
                error("ScalarTimesMatrix: result wrong size (%d!=%d)or(%d!=%d)",
257
                        NROWS(m), NROWS(product),
258
                        NCOLS(m), NCOLS(product));
259
                return;
260
            }
261
 
262
        for(i = 0; i < NROWS(m); i++)
263
                for(j = 0; j < NCOLS(m); j++)
264
                        product[i][j] = s * m[i][j];
265
}
266
 
267
/*
268
 Compute v'mv
269
 */
270
 
271
double
272
QuadraticForm(v, m)
273
register Vector v;
274
register Matrix m;
275
{
276
        register int i, j, n;
277
        double result = 0;
278
 
279
        n = NROWS(v);
280
 
281
        if(n != NROWS(m) || n != NCOLS(m)) {
282
                exit_error("QuadraticForm: bad matrix size (%dx%d not %dx%d)",
283
                        NROWS(m), NCOLS(m), n, n);
284
            }
285
        for(i = 0; i < n; i++)
286
                for(j = 0; j < n; j++) {
287
 
288
#ifdef PIQ_DEBUG
289
                        printf("%g*%g*%g [%g] %s ",
290
                        m[i][j],v[i],v[j],
291
                        m[i][j] * v[i] * v[j],
292
                        i==n-1&&j==n-1? "=" : "+");
293
#endif
294
 
295
                        result += m[i][j] * v[i] * v[j];
296
                }
297
        return result;
298
}
299
 
300
/* Matrix inversion using full pivoting.
301
 * The standard Gauss-Jordan method is used.
302
 * The return value is the determinant.
303
 * The input matrix may be the same as the result matrix
304
 *
305
 *      det = InvertMatrix(inputmatrix, resultmatrix);
306
 *
307
 * HISTORY
308
 * 26-Feb-82  David Smith (drs) at Carnegie-Mellon University
309
 *      Written.
310
 * Sun Mar 20 19:36:16 EST 1988 - converted to this form by Dean Rubine
311
 *
312
 */
313
 
314
int     DebugInvertMatrix = 0;
315
 
316
#define PERMBUFSIZE 200 /* Max mat size */
317
 
318
#define _abs(x) ((x)>=0 ? (x) : -(x))
319
 
320
double
321
InvertMatrix(ym, rm)
322
Matrix ym, rm;
323
{
324
        register int i, j, k;
325
        double det, biga, recip_biga, hold;
326
        int l[PERMBUFSIZE], m[PERMBUFSIZE];
327
        register int n;
328
 
329
        if(NROWS(ym) != NCOLS(ym)) {
330
                exit_error("InvertMatrix: not square");
331
            }
332
 
333
        n = NROWS(ym);
334
 
335
        if(n != NROWS(rm) || n != NCOLS(rm)) {
336
                exit_error("InvertMatrix: result wrong size");
337
            }
338
 
339
        /* Copy ym to rm */
340
 
341
        if(ym != rm)
342
                for(i = 0; i < n; i++)
343
                        for(j = 0; j < n; j++)
344
                                rm[i][j] = ym[i][j];
345
 
346
        /*if(DebugInvertMatrix) PrintMatrix(rm, "Inverting (det=%g)\n", det);*/
347
 
348
    /* Allocate permutation vectors for l and m, with the same origin
349
       as the matrix. */
350
 
351
        if (n >= PERMBUFSIZE) {
352
                exit_error("InvertMatrix: PERMBUFSIZE");
353
            }
354
 
355
        det = 1.0;
356
        for (k = 0; k < n;  k++) {
357
                l[k] = k;  m[k] = k;
358
                biga = rm[k][k];
359
 
360
                /* Find the biggest element in the submatrix */
361
                for (i = k;  i < n;  i++)
362
                        for (j = k; j < n; j++)
363
                                if (_abs(rm[i][j]) > _abs(biga)) {
364
                                        biga = rm[i][j];
365
                                        l[k] = i;
366
                                        m[k] = j;
367
                                }
368
 
369
                if(DebugInvertMatrix)
370
                        if(biga == 0.0)
371
                                PrintMatrix(m, "found zero biga = %g\n", biga);
372
 
373
                /* Interchange rows */
374
                i = l[k];
375
                if (i > k)
376
                        for (j = 0; j < n; j++) {
377
                                hold = -rm[k][j];
378
                                rm[k][j] = rm[i][j];
379
                                rm[i][j] = hold;
380
                        }
381
 
382
                /* Interchange columns */
383
                j = m[k];
384
                if (j > k)
385
                        for (i = 0; i < n; i++) {
386
                                hold = -rm[i][k];
387
                                rm[i][k] = rm[i][j];
388
                                rm[i][j] = hold;
389
                        }
390
 
391
                /* Divide column by minus pivot
392
                    (value of pivot element is contained in biga). */
393
                if (biga == 0.0) {
394
                        return 0.0;
395
                }
396
 
397
                if(DebugInvertMatrix) printf("biga = %g\n", biga);
398
                recip_biga = 1/biga;
399
                for (i = 0; i < n; i++)
400
                        if (i != k)
401
                                rm[i][k] *= -recip_biga;
402
 
403
                /* Reduce matrix */
404
                for (i = 0; i < n; i++)
405
                        if (i != k) {
406
                                hold = rm[i][k];
407
                                for (j = 0; j < n; j++)
408
                                        if (j != k)
409
                                                rm[i][j] += hold * rm[k][j];
410
                        }
411
 
412
                /* Divide row by pivot */
413
                for (j = 0; j < n; j++)
414
                        if (j != k)
415
                                rm[k][j] *= recip_biga;
416
 
417
                det *= biga;    /* Product of pivots */
418
                if(DebugInvertMatrix) printf("det = %g\n", det);
419
                rm[k][k] = recip_biga;
420
 
421
        }       /* K loop */
422
 
423
        /* Final row & column interchanges */
424
        for (k = n - 1; k >= 0; k--) {
425
                i = l[k];
426
                if (i > k)
427
                        for (j = 0; j < n; j++) {
428
                                hold = rm[j][k];
429
                                rm[j][k] = -rm[j][i];
430
                                rm[j][i] = hold;
431
                        }
432
                j = m[k];
433
                if (j > k)
434
                        for (i = 0; i < n; i++) {
435
                                hold = rm[k][i];
436
                                rm[k][i] = -rm[j][i];
437
                                rm[j][i] = hold;
438
                        }
439
        }
440
 
441
        if(DebugInvertMatrix) printf("returning, det = %g\n", det);
442
 
443
        return det;
444
}
445
 
446
 
447
#include "bitvector.h"
448
 
449
Vector
450
SliceVector(v, rowmask)
451
Vector v;
452
BitVector rowmask;
453
{
454
        register int i, ri;
455
 
456
        Vector r = NewVector(bitcount(NROWS(v), rowmask));
457
        for(i = ri = 0; i < NROWS(v); i++)
458
                if(IS_SET(i, rowmask) )
459
                        r[ri++] = v[i];
460
        return r;
461
}
462
 
463
Matrix
464
SliceMatrix(m, rowmask, colmask)
465
Matrix m;
466
BitVector rowmask, colmask;
467
{
468
        register int i, ri, j, rj;
469
 
470
        Matrix r;
471
 
472
        r = NewMatrix(bitcount(NROWS(m), rowmask),
473
                             bitcount(NCOLS(m), colmask));
474
        for(i = ri = 0; i < NROWS(m); i++)
475
                if(IS_SET(i, rowmask) ) {
476
                        for(j = rj = 0; j < NCOLS(m); j++)
477
                                if(IS_SET(j, colmask))
478
                                        r[ri][rj++] = m[i][j];
479
                        ri++;
480
                }
481
 
482
        return r;
483
}
484
 
485
Matrix
486
DeSliceMatrix(m, fill, rowmask, colmask, r)
487
Matrix m;
488
double fill;
489
BitVector rowmask, colmask;
490
Matrix r;
491
{
492
        register int i, ri, j, rj;
493
 
494
        FillMatrix(r, fill);
495
 
496
        for(i = ri = 0; i < NROWS(r); i++) {
497
                if(IS_SET(i, rowmask) )  {
498
                        for(j = rj = 0; j < NCOLS(r); j++)
499
                                if(IS_SET(j, colmask))
500
                                        r[i][j] = m[ri][rj++];
501
                        ri++;
502
                }
503
        }
504
 
505
        return r;
506
}
507
 
508
void
509
OutputVector(f, v)
510
FILE *f;
511
register Vector v;
512
{
513
        register int i;
514
        fprintf(f, " V %d   ", NROWS(v));
515
        for(i = 0; i < NROWS(v); i++)
516
                fprintf(f, " %g", v[i]);
517
        fprintf(f, "\n");
518
}
519
 
520
Vector
521
InputVector(f)
522
FILE *f;
523
{
524
        register Vector v;
525
        register int i;
526
        char check[4];
527
        int nrows;
528
 
529
        if(fscanf(f, "%1s %d", check, &nrows) != 2) {
530
                exit_error("InputVector fscanf 1");
531
            }
532
        if(check[0] != 'V') {
533
                exit_error("InputVector check");
534
            }
535
        v = NewVector(nrows);
536
        for(i = 0; i < nrows; i++) {
537
                if(fscanf(f, "%lf", &v[i]) != 1) {
538
                        exit_error("InputVector fscanf 2");
539
                    }
540
        }
541
        return v;
542
}
543
 
544
void
545
OutputMatrix(f, m)
546
FILE* f;
547
register Matrix m;
548
{
549
        register int i, j;
550
        fprintf(f, " M %d %d\n", NROWS(m), NCOLS(m));
551
        for(i = 0; i < NROWS(m);  i++) {
552
                for(j = 0; j < NCOLS(m); j++)
553
                        fprintf(f, " %g", m[i][j]);
554
                fprintf(f, "\n");
555
        }
556
}
557
 
558
Matrix
559
InputMatrix(f)
560
FILE *f;
561
{
562
        register Matrix m;
563
        register int i, j;
564
        char check[4];
565
        int nrows, ncols;
566
 
567
        if(fscanf(f, "%1s %d %d", check, &nrows, &ncols) != 3) {
568
                exit_error("InputMatrix fscanf 1");
569
            }
570
        if(check[0] != 'M') {
571
                exit_error("InputMatrix check");
572
            }
573
        m = NewMatrix(nrows, ncols);
574
        for(i = 0; i < nrows; i++)
575
            for(j = 0; j < ncols; j++) {
576
                        if(fscanf(f, "%lf", &m[i][j]) != 1) {
577
                                exit_error("InputMatrix fscanf 2");
578
                            }
579
            }
580
 
581
        return m;
582
}
583
 
584
double
585
InvertSingularMatrix(m, inv)
586
Matrix m, inv;
587
{
588
        register int i, j, k;
589
        BitVector mask;
590
        Matrix sm;
591
        double det, maxdet;
592
        int mi = -1, mj = -1, mk = -1;
593
 
594
        maxdet = 0.0;
595
        for(i = 0; i < NROWS(m); i++) {
596
                printf("r&c%d, ", i);
597
                SET_BIT_VECTOR(mask);
598
                BIT_CLEAR(i, mask);
599
                sm = SliceMatrix(m, mask, mask);
600
                det = InvertMatrix(sm, sm);
601
                if(det == 0.0)
602
                        printf("det still 0\n");
603
                else {
604
                        printf("det = %g\n", det);
605
                }
606
                if(_abs(det) > _abs(maxdet))
607
                        maxdet = det, mi = i;
608
                FreeMatrix(sm);
609
        }
610
        printf("\n");
611
 
612
        printf("maxdet=%g when row %d left out\n", maxdet, mi);
613
        if(fabs(maxdet) > 1.0e-6) {
614
                goto found;
615
        }
616
 
617
        maxdet = 0.0;
618
        for(i = 0; i < NROWS(m); i++) {
619
             for(j = i+1; j < NROWS(m); j++) {
620
                /* printf("leaving out row&col %d&%d, ", i, j); */
621
                SET_BIT_VECTOR(mask);
622
                BIT_CLEAR(i, mask);
623
                BIT_CLEAR(j, mask);
624
                sm = SliceMatrix(m, mask, mask);
625
                det = InvertMatrix(sm, sm);
626
                /*
627
                if(det == 0.0)
628
                        printf("det still 0\n");
629
                else {
630
                        printf("det = %g\n", det);
631
                }
632
                */
633
                if(abs(det) > abs(maxdet))
634
                        maxdet = det, mi = i, mj = j;
635
                FreeMatrix(sm);
636
            }
637
        }
638
 
639
        printf("maxdet=%g when rows %d,%d left out\n", maxdet, mi, mj);
640
        if(_abs(maxdet) > 1.0e-6) {
641
                goto found;
642
        }
643
 
644
        maxdet = 0.0;
645
        for(i = 0; i < NROWS(m); i++) {
646
           for(j = i+1; j < NROWS(m); j++) {
647
              for(k = j+1; k < NROWS(m); k++) {
648
                /* printf("leaving out row&col %d,%d&%d, ", i, j, k); */
649
                SET_BIT_VECTOR(mask);
650
                BIT_CLEAR(i, mask);
651
                BIT_CLEAR(j, mask);
652
                BIT_CLEAR(k, mask);
653
                sm = SliceMatrix(m, mask, mask);
654
                det = InvertMatrix(sm, sm);
655
                /*
656
                if(det == 0.0)
657
                        printf("det still 0\n");
658
                else {
659
                        printf("det = %g\n", det);
660
                }
661
                */
662
                if(_abs(det) > _abs(maxdet))
663
                        maxdet = det, mi = i, mj = j, mk = k;
664
                FreeMatrix(sm);
665
              }
666
           }
667
        }
668
        printf("maxdet=%g when rows %d,%d&%d left out\n", maxdet, mi, mj, mk);
669
        if(mk == -1)
670
                return 0.0;
671
 
672
found:
673
 
674
        SET_BIT_VECTOR(mask);
675
        if(mi >= 0) BIT_CLEAR(mi, mask);
676
        if(mj >= 0) BIT_CLEAR(mj, mask);
677
        if(mk >= 0) BIT_CLEAR(mk, mask);
678
        sm = SliceMatrix(m, mask, mask);
679
        det = InvertMatrix(sm, sm);
680
        DeSliceMatrix(sm, 0.0, mask, mask, inv);
681
        FreeMatrix(sm);
682
        PrintMatrix(inv, "desliced:\n");
683
        return det;
684
}
685
 
686
/* You can fairly confidently ignore the compiler warnings after here */
687
 
688
void
689
PrintVector(v, s,a1,a2,a3,a4,a5,a6,a7,a8)
690
register Vector v;
691
char *s; int a1,a2,a3,a4,a5,a6,a7,a8;
692
{
693
        register int i;
694
        printf(s,a1,a2,a3,a4,a5,a6,a7,a8);
695
 
696
        for(i = 0; i < NROWS(v); i++) printf(" %8.4f", v[i]);
697
        printf("\n");
698
}
699
 
700
void
701
PrintMatrix(m, s,a1,a2,a3,a4,a5,a6,a7,a8)
702
register Matrix m;
703
char *s; int a1,a2,a3,a4,a5,a6,a7,a8;
704
{
705
        register int i, j;
706
        printf(s,a1,a2,a3,a4,a5,a6,a7,a8);
707
        for(i = 0; i < NROWS(m);  i++) {
708
                for(j = 0; j < NCOLS(m); j++)
709
                        printf(" %8.4f", m[i][j]);
710
                printf("\n");
711
        }
712
}
713
 
714
void
715
PrintArray(a, s,a1,a2,a3,a4,a5,a6,a7,a8)
716
Array a;
717
char *s; int a1,a2,a3,a4,a5,a6,a7,a8;
718
{
719
        switch(NDIMS(a)) {
720
        case 1: PrintVector((Vector) a, s,a1,a2,a3,a4,a5,a6,a7,a8); break;
721
        case 2: PrintMatrix((Matrix) a, s,a1,a2,a3,a4,a5,a6,a7,a8); break;
722
        default: error("PrintArray");
723
        }
724
}
725
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.