1 |
27 |
unneback |
#include <stdio.h>
|
2 |
|
|
#include <stdlib.h>
|
3 |
|
|
#include "device.h"
|
4 |
|
|
/*
|
5 |
|
|
* Microwindows polygon outline and fill routines.
|
6 |
|
|
* Copyright (c) 1999, 2000, 2001 Greg Haerr <greg@censoft.com>
|
7 |
|
|
* Portions Copyright (c) 1991 David I. Bell
|
8 |
|
|
*
|
9 |
|
|
* There are currently three implementations of the polygon
|
10 |
|
|
* fill routine. The version from X11 most properly
|
11 |
|
|
* fills polygons that must also be outlined as well. All are
|
12 |
|
|
* controlled with #if directive in this file.
|
13 |
|
|
*/
|
14 |
|
|
|
15 |
|
|
/* extern definitions*/
|
16 |
|
|
void drawpoint(PSD psd,MWCOORD x, MWCOORD y);
|
17 |
|
|
void drawrow(PSD psd,MWCOORD x1,MWCOORD x2,MWCOORD y);
|
18 |
|
|
extern int gr_mode; /* drawing mode */
|
19 |
|
|
|
20 |
|
|
/* Draw a polygon in the foreground color, applying clipping if necessary.
|
21 |
|
|
* The polygon is only closed if the first point is repeated at the end.
|
22 |
|
|
* Some care is taken to plot the endpoints correctly if the current
|
23 |
|
|
* drawing mode is XOR. However, internal crossings are not handled
|
24 |
|
|
* correctly.
|
25 |
|
|
*/
|
26 |
|
|
void
|
27 |
|
|
GdPoly(PSD psd, int count, MWPOINT *points)
|
28 |
|
|
{
|
29 |
|
|
MWCOORD firstx;
|
30 |
|
|
MWCOORD firsty;
|
31 |
|
|
MWBOOL didline;
|
32 |
|
|
|
33 |
|
|
if (count < 2)
|
34 |
|
|
return;
|
35 |
|
|
firstx = points->x;
|
36 |
|
|
firsty = points->y;
|
37 |
|
|
didline = FALSE;
|
38 |
|
|
|
39 |
|
|
while (count-- > 1) {
|
40 |
|
|
if (didline && (gr_mode == MWMODE_XOR))
|
41 |
|
|
drawpoint(psd, points->x, points->y);
|
42 |
|
|
/* note: change to drawline*/
|
43 |
|
|
GdLine(psd, points[0].x, points[0].y, points[1].x, points[1].y, TRUE);
|
44 |
|
|
points++;
|
45 |
|
|
didline = TRUE;
|
46 |
|
|
}
|
47 |
|
|
if (gr_mode == MWMODE_XOR) {
|
48 |
|
|
points--;
|
49 |
|
|
if (points->x == firstx && points->y == firsty)
|
50 |
|
|
drawpoint(psd, points->x, points->y);
|
51 |
|
|
}
|
52 |
|
|
GdFixCursor(psd);
|
53 |
|
|
}
|
54 |
|
|
|
55 |
|
|
#if 1 /* improved convex polygon fill routine*/
|
56 |
|
|
/***********************************************************
|
57 |
|
|
Copyright (c) 1987 X Consortium
|
58 |
|
|
|
59 |
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
60 |
|
|
of this software and associated documentation files (the "Software"), to deal
|
61 |
|
|
in the Software without restriction, including without limitation the rights
|
62 |
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
63 |
|
|
copies of the Software, and to permit persons to whom the Software is
|
64 |
|
|
furnished to do so, subject to the following conditions:
|
65 |
|
|
|
66 |
|
|
The above copyright notice and this permission notice shall be included in
|
67 |
|
|
all copies or substantial portions of the Software.
|
68 |
|
|
|
69 |
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
70 |
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
71 |
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
72 |
|
|
X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
73 |
|
|
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
74 |
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
75 |
|
|
|
76 |
|
|
Except as contained in this notice, the name of the X Consortium shall not be
|
77 |
|
|
used in advertising or otherwise to promote the sale, use or other dealings
|
78 |
|
|
in this Software without prior written authorization from the X Consortium.
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
|
82 |
|
|
|
83 |
|
|
All Rights Reserved
|
84 |
|
|
|
85 |
|
|
Permission to use, copy, modify, and distribute this software and its
|
86 |
|
|
documentation for any purpose and without fee is hereby granted,
|
87 |
|
|
provided that the above copyright notice appear in all copies and that
|
88 |
|
|
both that copyright notice and this permission notice appear in
|
89 |
|
|
supporting documentation, and that the name of Digital not be
|
90 |
|
|
used in advertising or publicity pertaining to distribution of the
|
91 |
|
|
software without specific, written prior permission.
|
92 |
|
|
|
93 |
|
|
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
|
94 |
|
|
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
|
95 |
|
|
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
|
96 |
|
|
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
97 |
|
|
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
98 |
|
|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
|
99 |
|
|
SOFTWARE.
|
100 |
|
|
******************************************************************/
|
101 |
|
|
|
102 |
|
|
/*
|
103 |
|
|
* Written by Brian Kelleher; Dec. 1985.
|
104 |
|
|
* Adapted for Microwindows Sep 2001 by Greg Haerr <greg@censoft.com>
|
105 |
|
|
*
|
106 |
|
|
* Fill a convex polygon in the fg color, with clipping.
|
107 |
|
|
* If the given polygon
|
108 |
|
|
* is not convex, then the result is undefined.
|
109 |
|
|
* The algorithm is to order the edges from smallest
|
110 |
|
|
* y to largest by partitioning the array into a left
|
111 |
|
|
* edge list and a right edge list. The algorithm used
|
112 |
|
|
* to traverse each edge is an extension of Bresenham's
|
113 |
|
|
* line algorithm with y as the major axis.
|
114 |
|
|
*
|
115 |
|
|
* This file contains a few macros to help track
|
116 |
|
|
* the edge of a filled object. The object is assumed
|
117 |
|
|
* to be filled in scanline order, and thus the
|
118 |
|
|
* algorithm used is an extension of Bresenham's line
|
119 |
|
|
* drawing algorithm which assumes that y is always the
|
120 |
|
|
* major axis.
|
121 |
|
|
*
|
122 |
|
|
* In scan converting polygons, we want to choose those pixels
|
123 |
|
|
* which are inside the polygon. Thus, we add .5 to the starting
|
124 |
|
|
* x coordinate for both left and right edges. Now we choose the
|
125 |
|
|
* first pixel which is inside the pgon for the left edge and the
|
126 |
|
|
* first pixel which is outside the pgon for the right edge.
|
127 |
|
|
* Draw the left pixel, but not the right.
|
128 |
|
|
*
|
129 |
|
|
* How to add .5 to the starting x coordinate:
|
130 |
|
|
* If the edge is moving to the right, then subtract dy from the
|
131 |
|
|
* error term from the general form of the algorithm.
|
132 |
|
|
* If the edge is moving to the left, then add dy to the error term.
|
133 |
|
|
*
|
134 |
|
|
* The reason for the difference between edges moving to the left
|
135 |
|
|
* and edges moving to the right is simple: If an edge is moving
|
136 |
|
|
* to the right, then we want the algorithm to flip immediately.
|
137 |
|
|
* If it is moving to the left, then we don't want it to flip until
|
138 |
|
|
* we traverse an entire pixel.
|
139 |
|
|
*/
|
140 |
|
|
#define BRESINITPGON(dy, x1, x2, xStart, d, m, m1, incr1, incr2) { \
|
141 |
|
|
int dx; /* local storage */ \
|
142 |
|
|
\
|
143 |
|
|
/* \
|
144 |
|
|
* if the edge is horizontal, then it is ignored \
|
145 |
|
|
* and assumed not to be processed. Otherwise, do this stuff. \
|
146 |
|
|
*/ \
|
147 |
|
|
if ((dy) != 0) { \
|
148 |
|
|
xStart = (x1); \
|
149 |
|
|
dx = (x2) - xStart; \
|
150 |
|
|
if (dx < 0) { \
|
151 |
|
|
m = dx / (dy); \
|
152 |
|
|
m1 = m - 1; \
|
153 |
|
|
incr1 = -2 * dx + 2 * (dy) * m1; \
|
154 |
|
|
incr2 = -2 * dx + 2 * (dy) * m; \
|
155 |
|
|
d = 2 * m * (dy) - 2 * dx - 2 * (dy); \
|
156 |
|
|
} else { \
|
157 |
|
|
m = dx / (dy); \
|
158 |
|
|
m1 = m + 1; \
|
159 |
|
|
incr1 = 2 * dx - 2 * (dy) * m1; \
|
160 |
|
|
incr2 = 2 * dx - 2 * (dy) * m; \
|
161 |
|
|
d = -2 * m * (dy) + 2 * dx; \
|
162 |
|
|
} \
|
163 |
|
|
} \
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
#define BRESINCRPGON(d, minval, m, m1, incr1, incr2) { \
|
167 |
|
|
if (m1 > 0) { \
|
168 |
|
|
if (d > 0) { \
|
169 |
|
|
minval += m1; \
|
170 |
|
|
d += incr1; \
|
171 |
|
|
} \
|
172 |
|
|
else { \
|
173 |
|
|
minval += m; \
|
174 |
|
|
d += incr2; \
|
175 |
|
|
} \
|
176 |
|
|
} else {\
|
177 |
|
|
if (d >= 0) { \
|
178 |
|
|
minval += m1; \
|
179 |
|
|
d += incr1; \
|
180 |
|
|
} \
|
181 |
|
|
else { \
|
182 |
|
|
minval += m; \
|
183 |
|
|
d += incr2; \
|
184 |
|
|
} \
|
185 |
|
|
} \
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
/*
|
189 |
|
|
* Find the index of the point with the smallest y.
|
190 |
|
|
*/
|
191 |
|
|
static int
|
192 |
|
|
getPolyYBounds(MWPOINT *pts, int n, int *by, int *ty)
|
193 |
|
|
{
|
194 |
|
|
MWPOINT *ptMin;
|
195 |
|
|
int ymin, ymax;
|
196 |
|
|
MWPOINT *ptsStart = pts;
|
197 |
|
|
|
198 |
|
|
ptMin = pts;
|
199 |
|
|
ymin = ymax = (pts++)->y;
|
200 |
|
|
|
201 |
|
|
while (--n > 0) {
|
202 |
|
|
if (pts->y < ymin)
|
203 |
|
|
{
|
204 |
|
|
ptMin = pts;
|
205 |
|
|
ymin = pts->y;
|
206 |
|
|
}
|
207 |
|
|
if(pts->y > ymax)
|
208 |
|
|
ymax = pts->y;
|
209 |
|
|
|
210 |
|
|
pts++;
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
*by = ymin;
|
214 |
|
|
*ty = ymax;
|
215 |
|
|
return(ptMin-ptsStart);
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
void
|
219 |
|
|
GdFillPoly(PSD psd, int count, MWPOINT *pointtable)
|
220 |
|
|
{
|
221 |
|
|
MWCOORD xl = 0, xr = 0; /* x vals of left and right edges */
|
222 |
|
|
int dl = 0, dr = 0; /* decision variables */
|
223 |
|
|
int ml = 0, m1l = 0; /* left edge slope and slope+1 */
|
224 |
|
|
int mr = 0, m1r = 0; /* right edge slope and slope+1 */
|
225 |
|
|
int incr1l = 0, incr2l = 0; /* left edge error increments */
|
226 |
|
|
int incr1r = 0, incr2r = 0; /* right edge error increments */
|
227 |
|
|
int dy; /* delta y */
|
228 |
|
|
MWCOORD y; /* current scanline */
|
229 |
|
|
int left, right; /* indices to first endpoints */
|
230 |
|
|
int i; /* loop counter */
|
231 |
|
|
int nextleft, nextright; /* indices to second endpoints */
|
232 |
|
|
MWPOINT *ptsOut, *FirstPoint;/* output buffer */
|
233 |
|
|
MWCOORD *width, *FirstWidth;/* output buffer */
|
234 |
|
|
int imin; /* index of smallest vertex (in y)*/
|
235 |
|
|
int ymin; /* y-extents of polygon */
|
236 |
|
|
int ymax;
|
237 |
|
|
|
238 |
|
|
/*
|
239 |
|
|
* find leftx, bottomy, rightx, topy, and the index
|
240 |
|
|
* of bottomy.
|
241 |
|
|
*/
|
242 |
|
|
imin = getPolyYBounds(pointtable, count, &ymin, &ymax);
|
243 |
|
|
|
244 |
|
|
dy = ymax - ymin + 1;
|
245 |
|
|
if ((count < 3) || (dy < 0))
|
246 |
|
|
return;
|
247 |
|
|
ptsOut = FirstPoint = (MWPOINT *)ALLOCA(sizeof(MWPOINT) * dy);
|
248 |
|
|
width = FirstWidth = (MWCOORD *)ALLOCA(sizeof(MWCOORD) * dy);
|
249 |
|
|
if(!FirstPoint || !FirstWidth)
|
250 |
|
|
{
|
251 |
|
|
if (FirstWidth) FREEA(FirstWidth);
|
252 |
|
|
if (FirstPoint) FREEA(FirstPoint);
|
253 |
|
|
return;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
nextleft = nextright = imin;
|
257 |
|
|
y = pointtable[nextleft].y;
|
258 |
|
|
|
259 |
|
|
/*
|
260 |
|
|
* loop through all edges of the polygon
|
261 |
|
|
*/
|
262 |
|
|
do {
|
263 |
|
|
/*
|
264 |
|
|
* add a left edge if we need to
|
265 |
|
|
*/
|
266 |
|
|
if (pointtable[nextleft].y == y) {
|
267 |
|
|
left = nextleft;
|
268 |
|
|
|
269 |
|
|
/*
|
270 |
|
|
* find the next edge, considering the end
|
271 |
|
|
* conditions of the array.
|
272 |
|
|
*/
|
273 |
|
|
nextleft++;
|
274 |
|
|
if (nextleft >= count)
|
275 |
|
|
nextleft = 0;
|
276 |
|
|
|
277 |
|
|
/*
|
278 |
|
|
* now compute all of the random information
|
279 |
|
|
* needed to run the iterative algorithm.
|
280 |
|
|
*/
|
281 |
|
|
BRESINITPGON(pointtable[nextleft].y-pointtable[left].y,
|
282 |
|
|
pointtable[left].x,pointtable[nextleft].x,
|
283 |
|
|
xl, dl, ml, m1l, incr1l, incr2l);
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
/*
|
287 |
|
|
* add a right edge if we need to
|
288 |
|
|
*/
|
289 |
|
|
if (pointtable[nextright].y == y) {
|
290 |
|
|
right = nextright;
|
291 |
|
|
|
292 |
|
|
/*
|
293 |
|
|
* find the next edge, considering the end
|
294 |
|
|
* conditions of the array.
|
295 |
|
|
*/
|
296 |
|
|
nextright--;
|
297 |
|
|
if (nextright < 0)
|
298 |
|
|
nextright = count-1;
|
299 |
|
|
|
300 |
|
|
/*
|
301 |
|
|
* now compute all of the random information
|
302 |
|
|
* needed to run the iterative algorithm.
|
303 |
|
|
*/
|
304 |
|
|
BRESINITPGON(pointtable[nextright].y-pointtable[right].y,
|
305 |
|
|
pointtable[right].x,pointtable[nextright].x,
|
306 |
|
|
xr, dr, mr, m1r, incr1r, incr2r);
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
/*
|
310 |
|
|
* generate scans to fill while we still have
|
311 |
|
|
* a right edge as well as a left edge.
|
312 |
|
|
*/
|
313 |
|
|
i = MWMIN(pointtable[nextleft].y, pointtable[nextright].y) - y;
|
314 |
|
|
/* in case we're called with non-convex polygon */
|
315 |
|
|
if(i < 0)
|
316 |
|
|
{
|
317 |
|
|
FREEA(FirstWidth);
|
318 |
|
|
FREEA(FirstPoint);
|
319 |
|
|
return;
|
320 |
|
|
}
|
321 |
|
|
while (i-- > 0)
|
322 |
|
|
{
|
323 |
|
|
ptsOut->y = y;
|
324 |
|
|
|
325 |
|
|
/*
|
326 |
|
|
* reverse the edges if necessary
|
327 |
|
|
*/
|
328 |
|
|
if (xl < xr)
|
329 |
|
|
{
|
330 |
|
|
*(width++) = xr - xl;
|
331 |
|
|
(ptsOut++)->x = xl;
|
332 |
|
|
}
|
333 |
|
|
else
|
334 |
|
|
{
|
335 |
|
|
*(width++) = xl - xr;
|
336 |
|
|
(ptsOut++)->x = xr;
|
337 |
|
|
}
|
338 |
|
|
y++;
|
339 |
|
|
|
340 |
|
|
/* increment down the edges */
|
341 |
|
|
BRESINCRPGON(dl, xl, ml, m1l, incr1l, incr2l);
|
342 |
|
|
BRESINCRPGON(dr, xr, mr, m1r, incr1r, incr2r);
|
343 |
|
|
}
|
344 |
|
|
} while (y != ymax);
|
345 |
|
|
|
346 |
|
|
/*
|
347 |
|
|
* Finally, fill the spans
|
348 |
|
|
*/
|
349 |
|
|
i = ptsOut-FirstPoint;
|
350 |
|
|
ptsOut = FirstPoint;
|
351 |
|
|
width = FirstWidth;
|
352 |
|
|
while (--i >= 0) {
|
353 |
|
|
/* calc x extent from width*/
|
354 |
|
|
int e = *width++ - 1;
|
355 |
|
|
if (e >= 0) {
|
356 |
|
|
drawrow(psd, ptsOut->x, ptsOut->x + e, ptsOut->y);
|
357 |
|
|
}
|
358 |
|
|
++ptsOut;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
FREEA(FirstWidth);
|
362 |
|
|
FREEA(FirstPoint);
|
363 |
|
|
GdFixCursor(psd);
|
364 |
|
|
}
|
365 |
|
|
#endif
|
366 |
|
|
|
367 |
|
|
#if 0 /* original convex only polygon fill routine*/
|
368 |
|
|
/*
|
369 |
|
|
* Fill a polygon in the foreground color, applying clipping if necessary.
|
370 |
|
|
* The last point may be a duplicate of the first point, but this is
|
371 |
|
|
* not required.
|
372 |
|
|
* Note: this routine currently only correctly fills convex polygons.
|
373 |
|
|
*/
|
374 |
|
|
|
375 |
|
|
/* Utility routine for filling polygons. Find the intersection point (if
|
376 |
|
|
* any) of a horizontal line with an arbitrary line, and extend the current
|
377 |
|
|
* minimum and maximum x values as needed to include the intersection point.
|
378 |
|
|
* Input parms:
|
379 |
|
|
* y row to check for intersection
|
380 |
|
|
* x1, y1 first endpoint
|
381 |
|
|
* x2, y2 second enpoint
|
382 |
|
|
* minxptr address of current minimum x
|
383 |
|
|
* maxxptr address of current maximum x
|
384 |
|
|
*/
|
385 |
|
|
static void
|
386 |
|
|
extendrow(MWCOORD y,MWCOORD x1,MWCOORD y1,MWCOORD x2,MWCOORD y2,
|
387 |
|
|
MWCOORD *minxptr,MWCOORD *maxxptr)
|
388 |
|
|
{
|
389 |
|
|
MWCOORD x; /* x coordinate of intersection */
|
390 |
|
|
typedef long NUM;
|
391 |
|
|
NUM num; /* numerator of fraction */
|
392 |
|
|
|
393 |
|
|
/* First make sure the specified line segment includes the specified
|
394 |
|
|
* row number. If not, then there is no intersection.
|
395 |
|
|
*/
|
396 |
|
|
if (((y < y1) || (y > y2)) && ((y < y2) || (y > y1)))
|
397 |
|
|
return;
|
398 |
|
|
|
399 |
|
|
/* If a horizontal line, then check the two endpoints. */
|
400 |
|
|
if (y1 == y2) {
|
401 |
|
|
if (*minxptr > x1) *minxptr = x1;
|
402 |
|
|
if (*minxptr > x2) *minxptr = x2;
|
403 |
|
|
if (*maxxptr < x1) *maxxptr = x1;
|
404 |
|
|
if (*maxxptr < x2) *maxxptr = x2;
|
405 |
|
|
return;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
/* If a vertical line, then check the x coordinate. */
|
409 |
|
|
if (x1 == x2) {
|
410 |
|
|
if (*minxptr > x1) *minxptr = x1;
|
411 |
|
|
if (*maxxptr < x1) *maxxptr = x1;
|
412 |
|
|
return;
|
413 |
|
|
}
|
414 |
|
|
|
415 |
|
|
/* An arbitrary line. Calculate the intersection point using the
|
416 |
|
|
* formula x = x1 + (y - y1) * (x2 - x1) / (y2 - y1).
|
417 |
|
|
*/
|
418 |
|
|
num = ((NUM) (y - y1)) * (x2 - x1);
|
419 |
|
|
x = x1 + num / (y2 - y1);
|
420 |
|
|
if (*minxptr > x) *minxptr = x;
|
421 |
|
|
if (*maxxptr < x) *maxxptr = x;
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
void
|
425 |
|
|
GdFillPoly(PSD psd, int count, MWPOINT *points)
|
426 |
|
|
{
|
427 |
|
|
MWPOINT *pp; /* current point */
|
428 |
|
|
MWCOORD miny; /* minimum row */
|
429 |
|
|
MWCOORD maxy; /* maximum row */
|
430 |
|
|
MWCOORD minx; /* minimum column */
|
431 |
|
|
MWCOORD maxx; /* maximum column */
|
432 |
|
|
int i; /* counter */
|
433 |
|
|
|
434 |
|
|
if (count <= 0)
|
435 |
|
|
return;
|
436 |
|
|
|
437 |
|
|
/* First determine the minimum and maximum rows for the polygon. */
|
438 |
|
|
pp = points;
|
439 |
|
|
miny = pp->y;
|
440 |
|
|
maxy = pp->y;
|
441 |
|
|
for (i = count; i-- > 0; pp++) {
|
442 |
|
|
if (miny > pp->y) miny = pp->y;
|
443 |
|
|
if (maxy < pp->y) maxy = pp->y;
|
444 |
|
|
}
|
445 |
|
|
if (miny < 0)
|
446 |
|
|
miny = 0;
|
447 |
|
|
if (maxy >= psd->yvirtres)
|
448 |
|
|
maxy = psd->yvirtres - 1;
|
449 |
|
|
if (miny > maxy)
|
450 |
|
|
return;
|
451 |
|
|
|
452 |
|
|
/* Now for each row, scan the list of points and determine the
|
453 |
|
|
* minimum and maximum x coordinate for each line, and plot the row.
|
454 |
|
|
* The last point connects with the first point automatically.
|
455 |
|
|
*/
|
456 |
|
|
for (; miny <= maxy; miny++) {
|
457 |
|
|
minx = MAX_MWCOORD;
|
458 |
|
|
maxx = MIN_MWCOORD;
|
459 |
|
|
pp = points;
|
460 |
|
|
for (i = count; --i > 0; pp++)
|
461 |
|
|
extendrow(miny, pp[0].x, pp[0].y, pp[1].x, pp[1].y,
|
462 |
|
|
&minx, &maxx);
|
463 |
|
|
extendrow(miny, pp[0].x, pp[0].y, points[0].x, points[0].y,
|
464 |
|
|
&minx, &maxx);
|
465 |
|
|
|
466 |
|
|
if (minx <= maxx)
|
467 |
|
|
drawrow(psd, minx, maxx, miny);
|
468 |
|
|
}
|
469 |
|
|
GdFixCursor(psd);
|
470 |
|
|
}
|
471 |
|
|
#endif
|
472 |
|
|
|
473 |
|
|
#if 0 /* irregular polygon fill, uses edge table, malloc, qsort*/
|
474 |
|
|
/*
|
475 |
|
|
* Fill a polygon in the foreground color, applying clipping if necessary.
|
476 |
|
|
* The last point may be a duplicate of the first point, but this is
|
477 |
|
|
* not required.
|
478 |
|
|
* Note: this routine correctly draws convex, concave, regular,
|
479 |
|
|
* and irregular polygons.
|
480 |
|
|
*/
|
481 |
|
|
#define USE_FLOAT HAVEFLOAT /* set to use floating point*/
|
482 |
|
|
|
483 |
|
|
#define swap(a,b) do { a ^= b; b ^= a; a ^= b; } while (0)
|
484 |
|
|
|
485 |
|
|
typedef struct {
|
486 |
|
|
int x1, y1, x2, y2;
|
487 |
|
|
#if USE_FLOAT
|
488 |
|
|
double x, m;
|
489 |
|
|
#else
|
490 |
|
|
int cx, fn, mn, d;
|
491 |
|
|
#endif
|
492 |
|
|
} edge_t;
|
493 |
|
|
|
494 |
|
|
static int
|
495 |
|
|
edge_cmp(const void *lvp, const void *rvp)
|
496 |
|
|
{
|
497 |
|
|
/* convert from void pointers to structure pointers */
|
498 |
|
|
const edge_t *lp = (const edge_t *)lvp;
|
499 |
|
|
const edge_t *rp = (const edge_t *)rvp;
|
500 |
|
|
|
501 |
|
|
/* if the minimum y values are different, sort on minimum y */
|
502 |
|
|
if (lp->y1 != rp->y1)
|
503 |
|
|
return lp->y1 - rp->y1;
|
504 |
|
|
|
505 |
|
|
/* if the current x values are different, sort on current x */
|
506 |
|
|
#if USE_FLOAT
|
507 |
|
|
if (lp->x < rp->x)
|
508 |
|
|
return -1;
|
509 |
|
|
else if (lp->x > rp->x)
|
510 |
|
|
return +1;
|
511 |
|
|
#else
|
512 |
|
|
if (lp->cx != rp->cx)
|
513 |
|
|
return lp->cx - rp->cx;
|
514 |
|
|
#endif
|
515 |
|
|
|
516 |
|
|
/* otherwise they are equal */
|
517 |
|
|
return 0;
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
void
|
521 |
|
|
GdFillPoly(PSD psd, int count, MWPOINT * pointtable)
|
522 |
|
|
{
|
523 |
|
|
edge_t *get; /* global edge table */
|
524 |
|
|
int nge = 0; /* num global edges */
|
525 |
|
|
int cge = 0; /* cur global edge */
|
526 |
|
|
|
527 |
|
|
edge_t *aet; /* active edge table */
|
528 |
|
|
int nae = 0; /* num active edges */
|
529 |
|
|
|
530 |
|
|
int i, y;
|
531 |
|
|
|
532 |
|
|
if (count < 3) {
|
533 |
|
|
/* error, polygons require at least three edges (a triangle) */
|
534 |
|
|
return;
|
535 |
|
|
}
|
536 |
|
|
get = (edge_t *) calloc(count, sizeof(edge_t));
|
537 |
|
|
aet = (edge_t *) calloc(count, sizeof(edge_t));
|
538 |
|
|
|
539 |
|
|
if ((get == 0) || (aet == 0)) {
|
540 |
|
|
/* error, couldn't allocate one or both of the needed tables */
|
541 |
|
|
if (get)
|
542 |
|
|
free(get);
|
543 |
|
|
if (aet)
|
544 |
|
|
free(aet);
|
545 |
|
|
return;
|
546 |
|
|
}
|
547 |
|
|
/* setup the global edge table */
|
548 |
|
|
for (i = 0; i < count; ++i) {
|
549 |
|
|
get[nge].x1 = pointtable[i].x;
|
550 |
|
|
get[nge].y1 = pointtable[i].y;
|
551 |
|
|
get[nge].x2 = pointtable[(i + 1) % count].x;
|
552 |
|
|
get[nge].y2 = pointtable[(i + 1) % count].y;
|
553 |
|
|
if (get[nge].y1 != get[nge].y2) {
|
554 |
|
|
if (get[nge].y1 > get[nge].y2) {
|
555 |
|
|
swap(get[nge].x1, get[nge].x2);
|
556 |
|
|
swap(get[nge].y1, get[nge].y2);
|
557 |
|
|
}
|
558 |
|
|
#if USE_FLOAT
|
559 |
|
|
get[nge].x = get[nge].x1;
|
560 |
|
|
get[nge].m = get[nge].x2 - get[nge].x1;
|
561 |
|
|
get[nge].m /= get[nge].y2 - get[nge].y1;
|
562 |
|
|
#else
|
563 |
|
|
get[nge].cx = get[nge].x1;
|
564 |
|
|
get[nge].mn = get[nge].x2 - get[nge].x1;
|
565 |
|
|
get[nge].d = get[nge].y2 - get[nge].y1;
|
566 |
|
|
get[nge].fn = get[nge].mn / 2;
|
567 |
|
|
#endif
|
568 |
|
|
++nge;
|
569 |
|
|
}
|
570 |
|
|
}
|
571 |
|
|
|
572 |
|
|
qsort(get, nge, sizeof(get[0]), edge_cmp);
|
573 |
|
|
|
574 |
|
|
/* start with the lowest y in the table */
|
575 |
|
|
y = get[0].y1;
|
576 |
|
|
|
577 |
|
|
do {
|
578 |
|
|
|
579 |
|
|
/* add edges to the active table from the global table */
|
580 |
|
|
while ((nge > 0) && (get[cge].y1 == y)) {
|
581 |
|
|
aet[nae] = get[cge++];
|
582 |
|
|
--nge;
|
583 |
|
|
aet[nae++].y1 = 0;
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
qsort(aet, nae, sizeof(aet[0]), edge_cmp);
|
587 |
|
|
|
588 |
|
|
/* using odd parity, render alternating line segments */
|
589 |
|
|
for (i = 1; i < nae; i += 2) {
|
590 |
|
|
#if USE_FLOAT
|
591 |
|
|
int l = (int)aet[i - 1].x;
|
592 |
|
|
int r = (int)aet[i].x;
|
593 |
|
|
#else
|
594 |
|
|
int l = (int)aet[i - 1].cx;
|
595 |
|
|
int r = (int)aet[i].cx;
|
596 |
|
|
#endif
|
597 |
|
|
if (r > l)
|
598 |
|
|
drawrow(psd, l, r - 1, y);
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
/* prepare for the next scan line */
|
602 |
|
|
++y;
|
603 |
|
|
|
604 |
|
|
/* remove inactive edges from the active edge table */
|
605 |
|
|
/* or update the current x position of active edges */
|
606 |
|
|
for (i = 0; i < nae; ++i) {
|
607 |
|
|
if (aet[i].y2 == y)
|
608 |
|
|
aet[i--] = aet[--nae];
|
609 |
|
|
else {
|
610 |
|
|
#if USE_FLOAT
|
611 |
|
|
aet[i].x += aet[i].m;
|
612 |
|
|
#else
|
613 |
|
|
aet[i].fn += aet[i].mn;
|
614 |
|
|
if (aet[i].fn < 0) {
|
615 |
|
|
aet[i].cx += aet[i].fn / aet[i].d - 1;
|
616 |
|
|
aet[i].fn %= aet[i].d;
|
617 |
|
|
aet[i].fn += aet[i].d;
|
618 |
|
|
}
|
619 |
|
|
if (aet[i].fn >= aet[i].d) {
|
620 |
|
|
aet[i].cx += aet[i].fn / aet[i].d;
|
621 |
|
|
aet[i].fn %= aet[i].d;
|
622 |
|
|
}
|
623 |
|
|
#endif
|
624 |
|
|
}
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
/* keep doing this while there are any edges left */
|
628 |
|
|
} while ((nae > 0) || (nge > 0));
|
629 |
|
|
|
630 |
|
|
/* all done, free the edge tables */
|
631 |
|
|
free(get);
|
632 |
|
|
free(aet);
|
633 |
|
|
|
634 |
|
|
GdFixCursor(psd);
|
635 |
|
|
}
|
636 |
|
|
#endif
|