1 |
27 |
unneback |
/*
|
2 |
|
|
* jchuff.c
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
5 |
|
|
* This file is part of the Independent JPEG Group's software.
|
6 |
|
|
* For conditions of distribution and use, see the accompanying README file.
|
7 |
|
|
*
|
8 |
|
|
* This file contains Huffman entropy encoding routines.
|
9 |
|
|
*
|
10 |
|
|
* Much of the complexity here has to do with supporting output suspension.
|
11 |
|
|
* If the data destination module demands suspension, we want to be able to
|
12 |
|
|
* back up to the start of the current MCU. To do this, we copy state
|
13 |
|
|
* variables into local working storage, and update them back to the
|
14 |
|
|
* permanent JPEG objects only upon successful completion of an MCU.
|
15 |
|
|
*/
|
16 |
|
|
|
17 |
|
|
#define JPEG_INTERNALS
|
18 |
|
|
#include "jinclude.h"
|
19 |
|
|
#include "jpeglib.h"
|
20 |
|
|
#include "jchuff.h" /* Declarations shared with jcphuff.c */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
/* Expanded entropy encoder object for Huffman encoding.
|
24 |
|
|
*
|
25 |
|
|
* The savable_state subrecord contains fields that change within an MCU,
|
26 |
|
|
* but must not be updated permanently until we complete the MCU.
|
27 |
|
|
*/
|
28 |
|
|
|
29 |
|
|
typedef struct {
|
30 |
|
|
INT32 put_buffer; /* current bit-accumulation buffer */
|
31 |
|
|
int put_bits; /* # of bits now in it */
|
32 |
|
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
33 |
|
|
} savable_state;
|
34 |
|
|
|
35 |
|
|
/* This macro is to work around compilers with missing or broken
|
36 |
|
|
* structure assignment. You'll need to fix this code if you have
|
37 |
|
|
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
38 |
|
|
*/
|
39 |
|
|
|
40 |
|
|
#ifndef NO_STRUCT_ASSIGN
|
41 |
|
|
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
42 |
|
|
#else
|
43 |
|
|
#if MAX_COMPS_IN_SCAN == 4
|
44 |
|
|
#define ASSIGN_STATE(dest,src) \
|
45 |
|
|
((dest).put_buffer = (src).put_buffer, \
|
46 |
|
|
(dest).put_bits = (src).put_bits, \
|
47 |
|
|
(dest).last_dc_val[0] = (src).last_dc_val[0], \
|
48 |
|
|
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
49 |
|
|
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
50 |
|
|
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
51 |
|
|
#endif
|
52 |
|
|
#endif
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
typedef struct {
|
56 |
|
|
struct jpeg_entropy_encoder pub; /* public fields */
|
57 |
|
|
|
58 |
|
|
savable_state saved; /* Bit buffer & DC state at start of MCU */
|
59 |
|
|
|
60 |
|
|
/* These fields are NOT loaded into local working state. */
|
61 |
|
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
62 |
|
|
int next_restart_num; /* next restart number to write (0-7) */
|
63 |
|
|
|
64 |
|
|
/* Pointers to derived tables (these workspaces have image lifespan) */
|
65 |
|
|
c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
66 |
|
|
c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
67 |
|
|
|
68 |
|
|
#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
|
69 |
|
|
long * dc_count_ptrs[NUM_HUFF_TBLS];
|
70 |
|
|
long * ac_count_ptrs[NUM_HUFF_TBLS];
|
71 |
|
|
#endif
|
72 |
|
|
} huff_entropy_encoder;
|
73 |
|
|
|
74 |
|
|
typedef huff_entropy_encoder * huff_entropy_ptr;
|
75 |
|
|
|
76 |
|
|
/* Working state while writing an MCU.
|
77 |
|
|
* This struct contains all the fields that are needed by subroutines.
|
78 |
|
|
*/
|
79 |
|
|
|
80 |
|
|
typedef struct {
|
81 |
|
|
JOCTET * next_output_byte; /* => next byte to write in buffer */
|
82 |
|
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
83 |
|
|
savable_state cur; /* Current bit buffer & DC state */
|
84 |
|
|
j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
85 |
|
|
} working_state;
|
86 |
|
|
|
87 |
|
|
|
88 |
|
|
/* Forward declarations */
|
89 |
|
|
METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
|
90 |
|
|
JBLOCKROW *MCU_data));
|
91 |
|
|
METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
|
92 |
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
93 |
|
|
METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
|
94 |
|
|
JBLOCKROW *MCU_data));
|
95 |
|
|
METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
|
96 |
|
|
#endif
|
97 |
|
|
|
98 |
|
|
|
99 |
|
|
/*
|
100 |
|
|
* Initialize for a Huffman-compressed scan.
|
101 |
|
|
* If gather_statistics is TRUE, we do not output anything during the scan,
|
102 |
|
|
* just count the Huffman symbols used and generate Huffman code tables.
|
103 |
|
|
*/
|
104 |
|
|
|
105 |
|
|
METHODDEF(void)
|
106 |
|
|
start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
|
107 |
|
|
{
|
108 |
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
109 |
|
|
int ci, dctbl, actbl;
|
110 |
|
|
jpeg_component_info * compptr;
|
111 |
|
|
|
112 |
|
|
if (gather_statistics) {
|
113 |
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
114 |
|
|
entropy->pub.encode_mcu = encode_mcu_gather;
|
115 |
|
|
entropy->pub.finish_pass = finish_pass_gather;
|
116 |
|
|
#else
|
117 |
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
118 |
|
|
#endif
|
119 |
|
|
} else {
|
120 |
|
|
entropy->pub.encode_mcu = encode_mcu_huff;
|
121 |
|
|
entropy->pub.finish_pass = finish_pass_huff;
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
125 |
|
|
compptr = cinfo->cur_comp_info[ci];
|
126 |
|
|
dctbl = compptr->dc_tbl_no;
|
127 |
|
|
actbl = compptr->ac_tbl_no;
|
128 |
|
|
if (gather_statistics) {
|
129 |
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
130 |
|
|
/* Check for invalid table indexes */
|
131 |
|
|
/* (make_c_derived_tbl does this in the other path) */
|
132 |
|
|
if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
|
133 |
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
|
134 |
|
|
if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
|
135 |
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
|
136 |
|
|
/* Allocate and zero the statistics tables */
|
137 |
|
|
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
138 |
|
|
if (entropy->dc_count_ptrs[dctbl] == NULL)
|
139 |
|
|
entropy->dc_count_ptrs[dctbl] = (long *)
|
140 |
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
141 |
|
|
257 * SIZEOF(long));
|
142 |
|
|
MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
|
143 |
|
|
if (entropy->ac_count_ptrs[actbl] == NULL)
|
144 |
|
|
entropy->ac_count_ptrs[actbl] = (long *)
|
145 |
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
146 |
|
|
257 * SIZEOF(long));
|
147 |
|
|
MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
|
148 |
|
|
#endif
|
149 |
|
|
} else {
|
150 |
|
|
/* Compute derived values for Huffman tables */
|
151 |
|
|
/* We may do this more than once for a table, but it's not expensive */
|
152 |
|
|
jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
|
153 |
|
|
& entropy->dc_derived_tbls[dctbl]);
|
154 |
|
|
jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
|
155 |
|
|
& entropy->ac_derived_tbls[actbl]);
|
156 |
|
|
}
|
157 |
|
|
/* Initialize DC predictions to 0 */
|
158 |
|
|
entropy->saved.last_dc_val[ci] = 0;
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
/* Initialize bit buffer to empty */
|
162 |
|
|
entropy->saved.put_buffer = 0;
|
163 |
|
|
entropy->saved.put_bits = 0;
|
164 |
|
|
|
165 |
|
|
/* Initialize restart stuff */
|
166 |
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
167 |
|
|
entropy->next_restart_num = 0;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
|
171 |
|
|
/*
|
172 |
|
|
* Compute the derived values for a Huffman table.
|
173 |
|
|
* This routine also performs some validation checks on the table.
|
174 |
|
|
*
|
175 |
|
|
* Note this is also used by jcphuff.c.
|
176 |
|
|
*/
|
177 |
|
|
|
178 |
|
|
GLOBAL(void)
|
179 |
|
|
jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
|
180 |
|
|
c_derived_tbl ** pdtbl)
|
181 |
|
|
{
|
182 |
|
|
JHUFF_TBL *htbl;
|
183 |
|
|
c_derived_tbl *dtbl;
|
184 |
|
|
int p, i, l, lastp, si, maxsymbol;
|
185 |
|
|
char huffsize[257];
|
186 |
|
|
unsigned int huffcode[257];
|
187 |
|
|
unsigned int code;
|
188 |
|
|
|
189 |
|
|
/* Note that huffsize[] and huffcode[] are filled in code-length order,
|
190 |
|
|
* paralleling the order of the symbols themselves in htbl->huffval[].
|
191 |
|
|
*/
|
192 |
|
|
|
193 |
|
|
/* Find the input Huffman table */
|
194 |
|
|
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
195 |
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
196 |
|
|
htbl =
|
197 |
|
|
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
198 |
|
|
if (htbl == NULL)
|
199 |
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
200 |
|
|
|
201 |
|
|
/* Allocate a workspace if we haven't already done so. */
|
202 |
|
|
if (*pdtbl == NULL)
|
203 |
|
|
*pdtbl = (c_derived_tbl *)
|
204 |
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
205 |
|
|
SIZEOF(c_derived_tbl));
|
206 |
|
|
dtbl = *pdtbl;
|
207 |
|
|
|
208 |
|
|
/* Figure C.1: make table of Huffman code length for each symbol */
|
209 |
|
|
|
210 |
|
|
p = 0;
|
211 |
|
|
for (l = 1; l <= 16; l++) {
|
212 |
|
|
i = (int) htbl->bits[l];
|
213 |
|
|
if (i < 0 || p + i > 256) /* protect against table overrun */
|
214 |
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
215 |
|
|
while (i--)
|
216 |
|
|
huffsize[p++] = (char) l;
|
217 |
|
|
}
|
218 |
|
|
huffsize[p] = 0;
|
219 |
|
|
lastp = p;
|
220 |
|
|
|
221 |
|
|
/* Figure C.2: generate the codes themselves */
|
222 |
|
|
/* We also validate that the counts represent a legal Huffman code tree. */
|
223 |
|
|
|
224 |
|
|
code = 0;
|
225 |
|
|
si = huffsize[0];
|
226 |
|
|
p = 0;
|
227 |
|
|
while (huffsize[p]) {
|
228 |
|
|
while (((int) huffsize[p]) == si) {
|
229 |
|
|
huffcode[p++] = code;
|
230 |
|
|
code++;
|
231 |
|
|
}
|
232 |
|
|
/* code is now 1 more than the last code used for codelength si; but
|
233 |
|
|
* it must still fit in si bits, since no code is allowed to be all ones.
|
234 |
|
|
*/
|
235 |
|
|
if (((INT32) code) >= (((INT32) 1) << si))
|
236 |
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
237 |
|
|
code <<= 1;
|
238 |
|
|
si++;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* Figure C.3: generate encoding tables */
|
242 |
|
|
/* These are code and size indexed by symbol value */
|
243 |
|
|
|
244 |
|
|
/* Set all codeless symbols to have code length 0;
|
245 |
|
|
* this lets us detect duplicate VAL entries here, and later
|
246 |
|
|
* allows emit_bits to detect any attempt to emit such symbols.
|
247 |
|
|
*/
|
248 |
|
|
MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
|
249 |
|
|
|
250 |
|
|
/* This is also a convenient place to check for out-of-range
|
251 |
|
|
* and duplicated VAL entries. We allow 0..255 for AC symbols
|
252 |
|
|
* but only 0..15 for DC. (We could constrain them further
|
253 |
|
|
* based on data depth and mode, but this seems enough.)
|
254 |
|
|
*/
|
255 |
|
|
maxsymbol = isDC ? 15 : 255;
|
256 |
|
|
|
257 |
|
|
for (p = 0; p < lastp; p++) {
|
258 |
|
|
i = htbl->huffval[p];
|
259 |
|
|
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
260 |
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
261 |
|
|
dtbl->ehufco[i] = huffcode[p];
|
262 |
|
|
dtbl->ehufsi[i] = huffsize[p];
|
263 |
|
|
}
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
|
267 |
|
|
/* Outputting bytes to the file */
|
268 |
|
|
|
269 |
|
|
/* Emit a byte, taking 'action' if must suspend. */
|
270 |
|
|
#define emit_byte(state,val,action) \
|
271 |
|
|
{ *(state)->next_output_byte++ = (JOCTET) (val); \
|
272 |
|
|
if (--(state)->free_in_buffer == 0) \
|
273 |
|
|
if (! dump_buffer(state)) \
|
274 |
|
|
{ action; } }
|
275 |
|
|
|
276 |
|
|
|
277 |
|
|
LOCAL(boolean)
|
278 |
|
|
dump_buffer (working_state * state)
|
279 |
|
|
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
280 |
|
|
{
|
281 |
|
|
struct jpeg_destination_mgr * dest = state->cinfo->dest;
|
282 |
|
|
|
283 |
|
|
if (! (*dest->empty_output_buffer) (state->cinfo))
|
284 |
|
|
return FALSE;
|
285 |
|
|
/* After a successful buffer dump, must reset buffer pointers */
|
286 |
|
|
state->next_output_byte = dest->next_output_byte;
|
287 |
|
|
state->free_in_buffer = dest->free_in_buffer;
|
288 |
|
|
return TRUE;
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
|
292 |
|
|
/* Outputting bits to the file */
|
293 |
|
|
|
294 |
|
|
/* Only the right 24 bits of put_buffer are used; the valid bits are
|
295 |
|
|
* left-justified in this part. At most 16 bits can be passed to emit_bits
|
296 |
|
|
* in one call, and we never retain more than 7 bits in put_buffer
|
297 |
|
|
* between calls, so 24 bits are sufficient.
|
298 |
|
|
*/
|
299 |
|
|
|
300 |
|
|
INLINE
|
301 |
|
|
LOCAL(boolean)
|
302 |
|
|
emit_bits (working_state * state, unsigned int code, int size)
|
303 |
|
|
/* Emit some bits; return TRUE if successful, FALSE if must suspend */
|
304 |
|
|
{
|
305 |
|
|
/* This routine is heavily used, so it's worth coding tightly. */
|
306 |
|
|
register INT32 put_buffer = (INT32) code;
|
307 |
|
|
register int put_bits = state->cur.put_bits;
|
308 |
|
|
|
309 |
|
|
/* if size is 0, caller used an invalid Huffman table entry */
|
310 |
|
|
if (size == 0)
|
311 |
|
|
ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
|
312 |
|
|
|
313 |
|
|
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
314 |
|
|
|
315 |
|
|
put_bits += size; /* new number of bits in buffer */
|
316 |
|
|
|
317 |
|
|
put_buffer <<= 24 - put_bits; /* align incoming bits */
|
318 |
|
|
|
319 |
|
|
put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
|
320 |
|
|
|
321 |
|
|
while (put_bits >= 8) {
|
322 |
|
|
int c = (int) ((put_buffer >> 16) & 0xFF);
|
323 |
|
|
|
324 |
|
|
emit_byte(state, c, return FALSE);
|
325 |
|
|
if (c == 0xFF) { /* need to stuff a zero byte? */
|
326 |
|
|
emit_byte(state, 0, return FALSE);
|
327 |
|
|
}
|
328 |
|
|
put_buffer <<= 8;
|
329 |
|
|
put_bits -= 8;
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
state->cur.put_buffer = put_buffer; /* update state variables */
|
333 |
|
|
state->cur.put_bits = put_bits;
|
334 |
|
|
|
335 |
|
|
return TRUE;
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
|
339 |
|
|
LOCAL(boolean)
|
340 |
|
|
flush_bits (working_state * state)
|
341 |
|
|
{
|
342 |
|
|
if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
|
343 |
|
|
return FALSE;
|
344 |
|
|
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
345 |
|
|
state->cur.put_bits = 0;
|
346 |
|
|
return TRUE;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
|
350 |
|
|
/* Encode a single block's worth of coefficients */
|
351 |
|
|
|
352 |
|
|
LOCAL(boolean)
|
353 |
|
|
encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
|
354 |
|
|
c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
355 |
|
|
{
|
356 |
|
|
register int temp, temp2;
|
357 |
|
|
register int nbits;
|
358 |
|
|
register int k, r, i;
|
359 |
|
|
|
360 |
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */
|
361 |
|
|
|
362 |
|
|
temp = temp2 = block[0] - last_dc_val;
|
363 |
|
|
|
364 |
|
|
if (temp < 0) {
|
365 |
|
|
temp = -temp; /* temp is abs value of input */
|
366 |
|
|
/* For a negative input, want temp2 = bitwise complement of abs(input) */
|
367 |
|
|
/* This code assumes we are on a two's complement machine */
|
368 |
|
|
temp2--;
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
372 |
|
|
nbits = 0;
|
373 |
|
|
while (temp) {
|
374 |
|
|
nbits++;
|
375 |
|
|
temp >>= 1;
|
376 |
|
|
}
|
377 |
|
|
/* Check for out-of-range coefficient values.
|
378 |
|
|
* Since we're encoding a difference, the range limit is twice as much.
|
379 |
|
|
*/
|
380 |
|
|
if (nbits > MAX_COEF_BITS+1)
|
381 |
|
|
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
382 |
|
|
|
383 |
|
|
/* Emit the Huffman-coded symbol for the number of bits */
|
384 |
|
|
if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
|
385 |
|
|
return FALSE;
|
386 |
|
|
|
387 |
|
|
/* Emit that number of bits of the value, if positive, */
|
388 |
|
|
/* or the complement of its magnitude, if negative. */
|
389 |
|
|
if (nbits) /* emit_bits rejects calls with size 0 */
|
390 |
|
|
if (! emit_bits(state, (unsigned int) temp2, nbits))
|
391 |
|
|
return FALSE;
|
392 |
|
|
|
393 |
|
|
/* Encode the AC coefficients per section F.1.2.2 */
|
394 |
|
|
|
395 |
|
|
r = 0; /* r = run length of zeros */
|
396 |
|
|
|
397 |
|
|
for (k = 1; k < DCTSIZE2; k++) {
|
398 |
|
|
if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
399 |
|
|
r++;
|
400 |
|
|
} else {
|
401 |
|
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
402 |
|
|
while (r > 15) {
|
403 |
|
|
if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
|
404 |
|
|
return FALSE;
|
405 |
|
|
r -= 16;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
temp2 = temp;
|
409 |
|
|
if (temp < 0) {
|
410 |
|
|
temp = -temp; /* temp is abs value of input */
|
411 |
|
|
/* This code assumes we are on a two's complement machine */
|
412 |
|
|
temp2--;
|
413 |
|
|
}
|
414 |
|
|
|
415 |
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
416 |
|
|
nbits = 1; /* there must be at least one 1 bit */
|
417 |
|
|
while ((temp >>= 1))
|
418 |
|
|
nbits++;
|
419 |
|
|
/* Check for out-of-range coefficient values */
|
420 |
|
|
if (nbits > MAX_COEF_BITS)
|
421 |
|
|
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
422 |
|
|
|
423 |
|
|
/* Emit Huffman symbol for run length / number of bits */
|
424 |
|
|
i = (r << 4) + nbits;
|
425 |
|
|
if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
|
426 |
|
|
return FALSE;
|
427 |
|
|
|
428 |
|
|
/* Emit that number of bits of the value, if positive, */
|
429 |
|
|
/* or the complement of its magnitude, if negative. */
|
430 |
|
|
if (! emit_bits(state, (unsigned int) temp2, nbits))
|
431 |
|
|
return FALSE;
|
432 |
|
|
|
433 |
|
|
r = 0;
|
434 |
|
|
}
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
/* If the last coef(s) were zero, emit an end-of-block code */
|
438 |
|
|
if (r > 0)
|
439 |
|
|
if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
|
440 |
|
|
return FALSE;
|
441 |
|
|
|
442 |
|
|
return TRUE;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
|
446 |
|
|
/*
|
447 |
|
|
* Emit a restart marker & resynchronize predictions.
|
448 |
|
|
*/
|
449 |
|
|
|
450 |
|
|
LOCAL(boolean)
|
451 |
|
|
emit_restart (working_state * state, int restart_num)
|
452 |
|
|
{
|
453 |
|
|
int ci;
|
454 |
|
|
|
455 |
|
|
if (! flush_bits(state))
|
456 |
|
|
return FALSE;
|
457 |
|
|
|
458 |
|
|
emit_byte(state, 0xFF, return FALSE);
|
459 |
|
|
emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
|
460 |
|
|
|
461 |
|
|
/* Re-initialize DC predictions to 0 */
|
462 |
|
|
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
463 |
|
|
state->cur.last_dc_val[ci] = 0;
|
464 |
|
|
|
465 |
|
|
/* The restart counter is not updated until we successfully write the MCU. */
|
466 |
|
|
|
467 |
|
|
return TRUE;
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
|
471 |
|
|
/*
|
472 |
|
|
* Encode and output one MCU's worth of Huffman-compressed coefficients.
|
473 |
|
|
*/
|
474 |
|
|
|
475 |
|
|
METHODDEF(boolean)
|
476 |
|
|
encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
477 |
|
|
{
|
478 |
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
479 |
|
|
working_state state;
|
480 |
|
|
int blkn, ci;
|
481 |
|
|
jpeg_component_info * compptr;
|
482 |
|
|
|
483 |
|
|
/* Load up working state */
|
484 |
|
|
state.next_output_byte = cinfo->dest->next_output_byte;
|
485 |
|
|
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
486 |
|
|
ASSIGN_STATE(state.cur, entropy->saved);
|
487 |
|
|
state.cinfo = cinfo;
|
488 |
|
|
|
489 |
|
|
/* Emit restart marker if needed */
|
490 |
|
|
if (cinfo->restart_interval) {
|
491 |
|
|
if (entropy->restarts_to_go == 0)
|
492 |
|
|
if (! emit_restart(&state, entropy->next_restart_num))
|
493 |
|
|
return FALSE;
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
/* Encode the MCU data blocks */
|
497 |
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
498 |
|
|
ci = cinfo->MCU_membership[blkn];
|
499 |
|
|
compptr = cinfo->cur_comp_info[ci];
|
500 |
|
|
if (! encode_one_block(&state,
|
501 |
|
|
MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
502 |
|
|
entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
503 |
|
|
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
504 |
|
|
return FALSE;
|
505 |
|
|
/* Update last_dc_val */
|
506 |
|
|
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
/* Completed MCU, so update state */
|
510 |
|
|
cinfo->dest->next_output_byte = state.next_output_byte;
|
511 |
|
|
cinfo->dest->free_in_buffer = state.free_in_buffer;
|
512 |
|
|
ASSIGN_STATE(entropy->saved, state.cur);
|
513 |
|
|
|
514 |
|
|
/* Update restart-interval state too */
|
515 |
|
|
if (cinfo->restart_interval) {
|
516 |
|
|
if (entropy->restarts_to_go == 0) {
|
517 |
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
518 |
|
|
entropy->next_restart_num++;
|
519 |
|
|
entropy->next_restart_num &= 7;
|
520 |
|
|
}
|
521 |
|
|
entropy->restarts_to_go--;
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
return TRUE;
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
|
528 |
|
|
/*
|
529 |
|
|
* Finish up at the end of a Huffman-compressed scan.
|
530 |
|
|
*/
|
531 |
|
|
|
532 |
|
|
METHODDEF(void)
|
533 |
|
|
finish_pass_huff (j_compress_ptr cinfo)
|
534 |
|
|
{
|
535 |
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
536 |
|
|
working_state state;
|
537 |
|
|
|
538 |
|
|
/* Load up working state ... flush_bits needs it */
|
539 |
|
|
state.next_output_byte = cinfo->dest->next_output_byte;
|
540 |
|
|
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
541 |
|
|
ASSIGN_STATE(state.cur, entropy->saved);
|
542 |
|
|
state.cinfo = cinfo;
|
543 |
|
|
|
544 |
|
|
/* Flush out the last data */
|
545 |
|
|
if (! flush_bits(&state))
|
546 |
|
|
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
547 |
|
|
|
548 |
|
|
/* Update state */
|
549 |
|
|
cinfo->dest->next_output_byte = state.next_output_byte;
|
550 |
|
|
cinfo->dest->free_in_buffer = state.free_in_buffer;
|
551 |
|
|
ASSIGN_STATE(entropy->saved, state.cur);
|
552 |
|
|
}
|
553 |
|
|
|
554 |
|
|
|
555 |
|
|
/*
|
556 |
|
|
* Huffman coding optimization.
|
557 |
|
|
*
|
558 |
|
|
* We first scan the supplied data and count the number of uses of each symbol
|
559 |
|
|
* that is to be Huffman-coded. (This process MUST agree with the code above.)
|
560 |
|
|
* Then we build a Huffman coding tree for the observed counts.
|
561 |
|
|
* Symbols which are not needed at all for the particular image are not
|
562 |
|
|
* assigned any code, which saves space in the DHT marker as well as in
|
563 |
|
|
* the compressed data.
|
564 |
|
|
*/
|
565 |
|
|
|
566 |
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
567 |
|
|
|
568 |
|
|
|
569 |
|
|
/* Process a single block's worth of coefficients */
|
570 |
|
|
|
571 |
|
|
LOCAL(void)
|
572 |
|
|
htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
573 |
|
|
long dc_counts[], long ac_counts[])
|
574 |
|
|
{
|
575 |
|
|
register int temp;
|
576 |
|
|
register int nbits;
|
577 |
|
|
register int k, r;
|
578 |
|
|
|
579 |
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */
|
580 |
|
|
|
581 |
|
|
temp = block[0] - last_dc_val;
|
582 |
|
|
if (temp < 0)
|
583 |
|
|
temp = -temp;
|
584 |
|
|
|
585 |
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
586 |
|
|
nbits = 0;
|
587 |
|
|
while (temp) {
|
588 |
|
|
nbits++;
|
589 |
|
|
temp >>= 1;
|
590 |
|
|
}
|
591 |
|
|
/* Check for out-of-range coefficient values.
|
592 |
|
|
* Since we're encoding a difference, the range limit is twice as much.
|
593 |
|
|
*/
|
594 |
|
|
if (nbits > MAX_COEF_BITS+1)
|
595 |
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
596 |
|
|
|
597 |
|
|
/* Count the Huffman symbol for the number of bits */
|
598 |
|
|
dc_counts[nbits]++;
|
599 |
|
|
|
600 |
|
|
/* Encode the AC coefficients per section F.1.2.2 */
|
601 |
|
|
|
602 |
|
|
r = 0; /* r = run length of zeros */
|
603 |
|
|
|
604 |
|
|
for (k = 1; k < DCTSIZE2; k++) {
|
605 |
|
|
if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
606 |
|
|
r++;
|
607 |
|
|
} else {
|
608 |
|
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
609 |
|
|
while (r > 15) {
|
610 |
|
|
ac_counts[0xF0]++;
|
611 |
|
|
r -= 16;
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
615 |
|
|
if (temp < 0)
|
616 |
|
|
temp = -temp;
|
617 |
|
|
|
618 |
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
619 |
|
|
nbits = 1; /* there must be at least one 1 bit */
|
620 |
|
|
while ((temp >>= 1))
|
621 |
|
|
nbits++;
|
622 |
|
|
/* Check for out-of-range coefficient values */
|
623 |
|
|
if (nbits > MAX_COEF_BITS)
|
624 |
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
625 |
|
|
|
626 |
|
|
/* Count Huffman symbol for run length / number of bits */
|
627 |
|
|
ac_counts[(r << 4) + nbits]++;
|
628 |
|
|
|
629 |
|
|
r = 0;
|
630 |
|
|
}
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* If the last coef(s) were zero, emit an end-of-block code */
|
634 |
|
|
if (r > 0)
|
635 |
|
|
ac_counts[0]++;
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
|
639 |
|
|
/*
|
640 |
|
|
* Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
641 |
|
|
* No data is actually output, so no suspension return is possible.
|
642 |
|
|
*/
|
643 |
|
|
|
644 |
|
|
METHODDEF(boolean)
|
645 |
|
|
encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
646 |
|
|
{
|
647 |
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
648 |
|
|
int blkn, ci;
|
649 |
|
|
jpeg_component_info * compptr;
|
650 |
|
|
|
651 |
|
|
/* Take care of restart intervals if needed */
|
652 |
|
|
if (cinfo->restart_interval) {
|
653 |
|
|
if (entropy->restarts_to_go == 0) {
|
654 |
|
|
/* Re-initialize DC predictions to 0 */
|
655 |
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
656 |
|
|
entropy->saved.last_dc_val[ci] = 0;
|
657 |
|
|
/* Update restart state */
|
658 |
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
659 |
|
|
}
|
660 |
|
|
entropy->restarts_to_go--;
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
664 |
|
|
ci = cinfo->MCU_membership[blkn];
|
665 |
|
|
compptr = cinfo->cur_comp_info[ci];
|
666 |
|
|
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
667 |
|
|
entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
668 |
|
|
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
669 |
|
|
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
return TRUE;
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
|
676 |
|
|
/*
|
677 |
|
|
* Generate the best Huffman code table for the given counts, fill htbl.
|
678 |
|
|
* Note this is also used by jcphuff.c.
|
679 |
|
|
*
|
680 |
|
|
* The JPEG standard requires that no symbol be assigned a codeword of all
|
681 |
|
|
* one bits (so that padding bits added at the end of a compressed segment
|
682 |
|
|
* can't look like a valid code). Because of the canonical ordering of
|
683 |
|
|
* codewords, this just means that there must be an unused slot in the
|
684 |
|
|
* longest codeword length category. Section K.2 of the JPEG spec suggests
|
685 |
|
|
* reserving such a slot by pretending that symbol 256 is a valid symbol
|
686 |
|
|
* with count 1. In theory that's not optimal; giving it count zero but
|
687 |
|
|
* including it in the symbol set anyway should give a better Huffman code.
|
688 |
|
|
* But the theoretically better code actually seems to come out worse in
|
689 |
|
|
* practice, because it produces more all-ones bytes (which incur stuffed
|
690 |
|
|
* zero bytes in the final file). In any case the difference is tiny.
|
691 |
|
|
*
|
692 |
|
|
* The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
693 |
|
|
* If some symbols have a very small but nonzero probability, the Huffman tree
|
694 |
|
|
* must be adjusted to meet the code length restriction. We currently use
|
695 |
|
|
* the adjustment method suggested in JPEG section K.2. This method is *not*
|
696 |
|
|
* optimal; it may not choose the best possible limited-length code. But
|
697 |
|
|
* typically only very-low-frequency symbols will be given less-than-optimal
|
698 |
|
|
* lengths, so the code is almost optimal. Experimental comparisons against
|
699 |
|
|
* an optimal limited-length-code algorithm indicate that the difference is
|
700 |
|
|
* microscopic --- usually less than a hundredth of a percent of total size.
|
701 |
|
|
* So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
702 |
|
|
*/
|
703 |
|
|
|
704 |
|
|
GLOBAL(void)
|
705 |
|
|
jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
|
706 |
|
|
{
|
707 |
|
|
#define MAX_CLEN 32 /* assumed maximum initial code length */
|
708 |
|
|
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
|
709 |
|
|
int codesize[257]; /* codesize[k] = code length of symbol k */
|
710 |
|
|
int others[257]; /* next symbol in current branch of tree */
|
711 |
|
|
int c1, c2;
|
712 |
|
|
int p, i, j;
|
713 |
|
|
long v;
|
714 |
|
|
|
715 |
|
|
/* This algorithm is explained in section K.2 of the JPEG standard */
|
716 |
|
|
|
717 |
|
|
MEMZERO(bits, SIZEOF(bits));
|
718 |
|
|
MEMZERO(codesize, SIZEOF(codesize));
|
719 |
|
|
for (i = 0; i < 257; i++)
|
720 |
|
|
others[i] = -1; /* init links to empty */
|
721 |
|
|
|
722 |
|
|
freq[256] = 1; /* make sure 256 has a nonzero count */
|
723 |
|
|
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
724 |
|
|
* that no real symbol is given code-value of all ones, because 256
|
725 |
|
|
* will be placed last in the largest codeword category.
|
726 |
|
|
*/
|
727 |
|
|
|
728 |
|
|
/* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
729 |
|
|
|
730 |
|
|
for (;;) {
|
731 |
|
|
/* Find the smallest nonzero frequency, set c1 = its symbol */
|
732 |
|
|
/* In case of ties, take the larger symbol number */
|
733 |
|
|
c1 = -1;
|
734 |
|
|
v = 1000000000L;
|
735 |
|
|
for (i = 0; i <= 256; i++) {
|
736 |
|
|
if (freq[i] && freq[i] <= v) {
|
737 |
|
|
v = freq[i];
|
738 |
|
|
c1 = i;
|
739 |
|
|
}
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
/* Find the next smallest nonzero frequency, set c2 = its symbol */
|
743 |
|
|
/* In case of ties, take the larger symbol number */
|
744 |
|
|
c2 = -1;
|
745 |
|
|
v = 1000000000L;
|
746 |
|
|
for (i = 0; i <= 256; i++) {
|
747 |
|
|
if (freq[i] && freq[i] <= v && i != c1) {
|
748 |
|
|
v = freq[i];
|
749 |
|
|
c2 = i;
|
750 |
|
|
}
|
751 |
|
|
}
|
752 |
|
|
|
753 |
|
|
/* Done if we've merged everything into one frequency */
|
754 |
|
|
if (c2 < 0)
|
755 |
|
|
break;
|
756 |
|
|
|
757 |
|
|
/* Else merge the two counts/trees */
|
758 |
|
|
freq[c1] += freq[c2];
|
759 |
|
|
freq[c2] = 0;
|
760 |
|
|
|
761 |
|
|
/* Increment the codesize of everything in c1's tree branch */
|
762 |
|
|
codesize[c1]++;
|
763 |
|
|
while (others[c1] >= 0) {
|
764 |
|
|
c1 = others[c1];
|
765 |
|
|
codesize[c1]++;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
others[c1] = c2; /* chain c2 onto c1's tree branch */
|
769 |
|
|
|
770 |
|
|
/* Increment the codesize of everything in c2's tree branch */
|
771 |
|
|
codesize[c2]++;
|
772 |
|
|
while (others[c2] >= 0) {
|
773 |
|
|
c2 = others[c2];
|
774 |
|
|
codesize[c2]++;
|
775 |
|
|
}
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
/* Now count the number of symbols of each code length */
|
779 |
|
|
for (i = 0; i <= 256; i++) {
|
780 |
|
|
if (codesize[i]) {
|
781 |
|
|
/* The JPEG standard seems to think that this can't happen, */
|
782 |
|
|
/* but I'm paranoid... */
|
783 |
|
|
if (codesize[i] > MAX_CLEN)
|
784 |
|
|
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
|
785 |
|
|
|
786 |
|
|
bits[codesize[i]]++;
|
787 |
|
|
}
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
791 |
|
|
* Huffman procedure assigned any such lengths, we must adjust the coding.
|
792 |
|
|
* Here is what the JPEG spec says about how this next bit works:
|
793 |
|
|
* Since symbols are paired for the longest Huffman code, the symbols are
|
794 |
|
|
* removed from this length category two at a time. The prefix for the pair
|
795 |
|
|
* (which is one bit shorter) is allocated to one of the pair; then,
|
796 |
|
|
* skipping the BITS entry for that prefix length, a code word from the next
|
797 |
|
|
* shortest nonzero BITS entry is converted into a prefix for two code words
|
798 |
|
|
* one bit longer.
|
799 |
|
|
*/
|
800 |
|
|
|
801 |
|
|
for (i = MAX_CLEN; i > 16; i--) {
|
802 |
|
|
while (bits[i] > 0) {
|
803 |
|
|
j = i - 2; /* find length of new prefix to be used */
|
804 |
|
|
while (bits[j] == 0)
|
805 |
|
|
j--;
|
806 |
|
|
|
807 |
|
|
bits[i] -= 2; /* remove two symbols */
|
808 |
|
|
bits[i-1]++; /* one goes in this length */
|
809 |
|
|
bits[j+1] += 2; /* two new symbols in this length */
|
810 |
|
|
bits[j]--; /* symbol of this length is now a prefix */
|
811 |
|
|
}
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
815 |
|
|
while (bits[i] == 0) /* find largest codelength still in use */
|
816 |
|
|
i--;
|
817 |
|
|
bits[i]--;
|
818 |
|
|
|
819 |
|
|
/* Return final symbol counts (only for lengths 0..16) */
|
820 |
|
|
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
821 |
|
|
|
822 |
|
|
/* Return a list of the symbols sorted by code length */
|
823 |
|
|
/* It's not real clear to me why we don't need to consider the codelength
|
824 |
|
|
* changes made above, but the JPEG spec seems to think this works.
|
825 |
|
|
*/
|
826 |
|
|
p = 0;
|
827 |
|
|
for (i = 1; i <= MAX_CLEN; i++) {
|
828 |
|
|
for (j = 0; j <= 255; j++) {
|
829 |
|
|
if (codesize[j] == i) {
|
830 |
|
|
htbl->huffval[p] = (UINT8) j;
|
831 |
|
|
p++;
|
832 |
|
|
}
|
833 |
|
|
}
|
834 |
|
|
}
|
835 |
|
|
|
836 |
|
|
/* Set sent_table FALSE so updated table will be written to JPEG file. */
|
837 |
|
|
htbl->sent_table = FALSE;
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
|
841 |
|
|
/*
|
842 |
|
|
* Finish up a statistics-gathering pass and create the new Huffman tables.
|
843 |
|
|
*/
|
844 |
|
|
|
845 |
|
|
METHODDEF(void)
|
846 |
|
|
finish_pass_gather (j_compress_ptr cinfo)
|
847 |
|
|
{
|
848 |
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
849 |
|
|
int ci, dctbl, actbl;
|
850 |
|
|
jpeg_component_info * compptr;
|
851 |
|
|
JHUFF_TBL **htblptr;
|
852 |
|
|
boolean did_dc[NUM_HUFF_TBLS];
|
853 |
|
|
boolean did_ac[NUM_HUFF_TBLS];
|
854 |
|
|
|
855 |
|
|
/* It's important not to apply jpeg_gen_optimal_table more than once
|
856 |
|
|
* per table, because it clobbers the input frequency counts!
|
857 |
|
|
*/
|
858 |
|
|
MEMZERO(did_dc, SIZEOF(did_dc));
|
859 |
|
|
MEMZERO(did_ac, SIZEOF(did_ac));
|
860 |
|
|
|
861 |
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
862 |
|
|
compptr = cinfo->cur_comp_info[ci];
|
863 |
|
|
dctbl = compptr->dc_tbl_no;
|
864 |
|
|
actbl = compptr->ac_tbl_no;
|
865 |
|
|
if (! did_dc[dctbl]) {
|
866 |
|
|
htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
|
867 |
|
|
if (*htblptr == NULL)
|
868 |
|
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
869 |
|
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
|
870 |
|
|
did_dc[dctbl] = TRUE;
|
871 |
|
|
}
|
872 |
|
|
if (! did_ac[actbl]) {
|
873 |
|
|
htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
|
874 |
|
|
if (*htblptr == NULL)
|
875 |
|
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
876 |
|
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
|
877 |
|
|
did_ac[actbl] = TRUE;
|
878 |
|
|
}
|
879 |
|
|
}
|
880 |
|
|
}
|
881 |
|
|
|
882 |
|
|
|
883 |
|
|
#endif /* ENTROPY_OPT_SUPPORTED */
|
884 |
|
|
|
885 |
|
|
|
886 |
|
|
/*
|
887 |
|
|
* Module initialization routine for Huffman entropy encoding.
|
888 |
|
|
*/
|
889 |
|
|
|
890 |
|
|
GLOBAL(void)
|
891 |
|
|
jinit_huff_encoder (j_compress_ptr cinfo)
|
892 |
|
|
{
|
893 |
|
|
huff_entropy_ptr entropy;
|
894 |
|
|
int i;
|
895 |
|
|
|
896 |
|
|
entropy = (huff_entropy_ptr)
|
897 |
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
898 |
|
|
SIZEOF(huff_entropy_encoder));
|
899 |
|
|
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
900 |
|
|
entropy->pub.start_pass = start_pass_huff;
|
901 |
|
|
|
902 |
|
|
/* Mark tables unallocated */
|
903 |
|
|
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
904 |
|
|
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
905 |
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
906 |
|
|
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
907 |
|
|
#endif
|
908 |
|
|
}
|
909 |
|
|
}
|