OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [services/] [gfx/] [mw/] [v2_0/] [src/] [jpeg-6b/] [jidctred.c] - Blame information for rev 654

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
/*
2
 * jidctred.c
3
 *
4
 * Copyright (C) 1994-1998, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains inverse-DCT routines that produce reduced-size output:
9
 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
10
 *
11
 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
12
 * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
13
 * with an 8-to-4 step that produces the four averages of two adjacent outputs
14
 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
15
 * These steps were derived by computing the corresponding values at the end
16
 * of the normal LL&M code, then simplifying as much as possible.
17
 *
18
 * 1x1 is trivial: just take the DC coefficient divided by 8.
19
 *
20
 * See jidctint.c for additional comments.
21
 */
22
 
23
#define JPEG_INTERNALS
24
#include "jinclude.h"
25
#include "jpeglib.h"
26
#include "jdct.h"               /* Private declarations for DCT subsystem */
27
 
28
#ifdef IDCT_SCALING_SUPPORTED
29
 
30
 
31
/*
32
 * This module is specialized to the case DCTSIZE = 8.
33
 */
34
 
35
#if DCTSIZE != 8
36
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
37
#endif
38
 
39
 
40
/* Scaling is the same as in jidctint.c. */
41
 
42
#if BITS_IN_JSAMPLE == 8
43
#define CONST_BITS  13
44
#define PASS1_BITS  2
45
#else
46
#define CONST_BITS  13
47
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
48
#endif
49
 
50
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
51
 * causing a lot of useless floating-point operations at run time.
52
 * To get around this we use the following pre-calculated constants.
53
 * If you change CONST_BITS you may want to add appropriate values.
54
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
55
 */
56
 
57
#if CONST_BITS == 13
58
#define FIX_0_211164243  ((INT32)  1730)        /* FIX(0.211164243) */
59
#define FIX_0_509795579  ((INT32)  4176)        /* FIX(0.509795579) */
60
#define FIX_0_601344887  ((INT32)  4926)        /* FIX(0.601344887) */
61
#define FIX_0_720959822  ((INT32)  5906)        /* FIX(0.720959822) */
62
#define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
63
#define FIX_0_850430095  ((INT32)  6967)        /* FIX(0.850430095) */
64
#define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
65
#define FIX_1_061594337  ((INT32)  8697)        /* FIX(1.061594337) */
66
#define FIX_1_272758580  ((INT32)  10426)       /* FIX(1.272758580) */
67
#define FIX_1_451774981  ((INT32)  11893)       /* FIX(1.451774981) */
68
#define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
69
#define FIX_2_172734803  ((INT32)  17799)       /* FIX(2.172734803) */
70
#define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
71
#define FIX_3_624509785  ((INT32)  29692)       /* FIX(3.624509785) */
72
#else
73
#define FIX_0_211164243  FIX(0.211164243)
74
#define FIX_0_509795579  FIX(0.509795579)
75
#define FIX_0_601344887  FIX(0.601344887)
76
#define FIX_0_720959822  FIX(0.720959822)
77
#define FIX_0_765366865  FIX(0.765366865)
78
#define FIX_0_850430095  FIX(0.850430095)
79
#define FIX_0_899976223  FIX(0.899976223)
80
#define FIX_1_061594337  FIX(1.061594337)
81
#define FIX_1_272758580  FIX(1.272758580)
82
#define FIX_1_451774981  FIX(1.451774981)
83
#define FIX_1_847759065  FIX(1.847759065)
84
#define FIX_2_172734803  FIX(2.172734803)
85
#define FIX_2_562915447  FIX(2.562915447)
86
#define FIX_3_624509785  FIX(3.624509785)
87
#endif
88
 
89
 
90
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
91
 * For 8-bit samples with the recommended scaling, all the variable
92
 * and constant values involved are no more than 16 bits wide, so a
93
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
94
 * For 12-bit samples, a full 32-bit multiplication will be needed.
95
 */
96
 
97
#if BITS_IN_JSAMPLE == 8
98
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
99
#else
100
#define MULTIPLY(var,const)  ((var) * (const))
101
#endif
102
 
103
 
104
/* Dequantize a coefficient by multiplying it by the multiplier-table
105
 * entry; produce an int result.  In this module, both inputs and result
106
 * are 16 bits or less, so either int or short multiply will work.
107
 */
108
 
109
#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
110
 
111
 
112
/*
113
 * Perform dequantization and inverse DCT on one block of coefficients,
114
 * producing a reduced-size 4x4 output block.
115
 */
116
 
117
GLOBAL(void)
118
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
119
               JCOEFPTR coef_block,
120
               JSAMPARRAY output_buf, JDIMENSION output_col)
121
{
122
  INT32 tmp0, tmp2, tmp10, tmp12;
123
  INT32 z1, z2, z3, z4;
124
  JCOEFPTR inptr;
125
  ISLOW_MULT_TYPE * quantptr;
126
  int * wsptr;
127
  JSAMPROW outptr;
128
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
129
  int ctr;
130
  int workspace[DCTSIZE*4];     /* buffers data between passes */
131
  SHIFT_TEMPS
132
 
133
  /* Pass 1: process columns from input, store into work array. */
134
 
135
  inptr = coef_block;
136
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
137
  wsptr = workspace;
138
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
139
    /* Don't bother to process column 4, because second pass won't use it */
140
    if (ctr == DCTSIZE-4)
141
      continue;
142
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
143
        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
144
        inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
145
      /* AC terms all zero; we need not examine term 4 for 4x4 output */
146
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
147
 
148
      wsptr[DCTSIZE*0] = dcval;
149
      wsptr[DCTSIZE*1] = dcval;
150
      wsptr[DCTSIZE*2] = dcval;
151
      wsptr[DCTSIZE*3] = dcval;
152
 
153
      continue;
154
    }
155
 
156
    /* Even part */
157
 
158
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
159
    tmp0 <<= (CONST_BITS+1);
160
 
161
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
162
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
163
 
164
    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
165
 
166
    tmp10 = tmp0 + tmp2;
167
    tmp12 = tmp0 - tmp2;
168
 
169
    /* Odd part */
170
 
171
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
172
    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
173
    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
174
    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
175
 
176
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
177
         + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
178
         + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
179
         + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
180
 
181
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
182
         + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
183
         + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
184
         + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
185
 
186
    /* Final output stage */
187
 
188
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
189
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
190
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
191
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
192
  }
193
 
194
  /* Pass 2: process 4 rows from work array, store into output array. */
195
 
196
  wsptr = workspace;
197
  for (ctr = 0; ctr < 4; ctr++) {
198
    outptr = output_buf[ctr] + output_col;
199
    /* It's not clear whether a zero row test is worthwhile here ... */
200
 
201
#ifndef NO_ZERO_ROW_TEST
202
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
203
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
204
      /* AC terms all zero */
205
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
206
                                  & RANGE_MASK];
207
 
208
      outptr[0] = dcval;
209
      outptr[1] = dcval;
210
      outptr[2] = dcval;
211
      outptr[3] = dcval;
212
 
213
      wsptr += DCTSIZE;         /* advance pointer to next row */
214
      continue;
215
    }
216
#endif
217
 
218
    /* Even part */
219
 
220
    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
221
 
222
    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
223
         + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
224
 
225
    tmp10 = tmp0 + tmp2;
226
    tmp12 = tmp0 - tmp2;
227
 
228
    /* Odd part */
229
 
230
    z1 = (INT32) wsptr[7];
231
    z2 = (INT32) wsptr[5];
232
    z3 = (INT32) wsptr[3];
233
    z4 = (INT32) wsptr[1];
234
 
235
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
236
         + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
237
         + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
238
         + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
239
 
240
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
241
         + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
242
         + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
243
         + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
244
 
245
    /* Final output stage */
246
 
247
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
248
                                          CONST_BITS+PASS1_BITS+3+1)
249
                            & RANGE_MASK];
250
    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
251
                                          CONST_BITS+PASS1_BITS+3+1)
252
                            & RANGE_MASK];
253
    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
254
                                          CONST_BITS+PASS1_BITS+3+1)
255
                            & RANGE_MASK];
256
    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
257
                                          CONST_BITS+PASS1_BITS+3+1)
258
                            & RANGE_MASK];
259
 
260
    wsptr += DCTSIZE;           /* advance pointer to next row */
261
  }
262
}
263
 
264
 
265
/*
266
 * Perform dequantization and inverse DCT on one block of coefficients,
267
 * producing a reduced-size 2x2 output block.
268
 */
269
 
270
GLOBAL(void)
271
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
272
               JCOEFPTR coef_block,
273
               JSAMPARRAY output_buf, JDIMENSION output_col)
274
{
275
  INT32 tmp0, tmp10, z1;
276
  JCOEFPTR inptr;
277
  ISLOW_MULT_TYPE * quantptr;
278
  int * wsptr;
279
  JSAMPROW outptr;
280
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
281
  int ctr;
282
  int workspace[DCTSIZE*2];     /* buffers data between passes */
283
  SHIFT_TEMPS
284
 
285
  /* Pass 1: process columns from input, store into work array. */
286
 
287
  inptr = coef_block;
288
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
289
  wsptr = workspace;
290
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
291
    /* Don't bother to process columns 2,4,6 */
292
    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
293
      continue;
294
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
295
        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
296
      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
297
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
298
 
299
      wsptr[DCTSIZE*0] = dcval;
300
      wsptr[DCTSIZE*1] = dcval;
301
 
302
      continue;
303
    }
304
 
305
    /* Even part */
306
 
307
    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
308
    tmp10 = z1 << (CONST_BITS+2);
309
 
310
    /* Odd part */
311
 
312
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
313
    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
314
    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
315
    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
316
    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
317
    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
318
    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
319
    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
320
 
321
    /* Final output stage */
322
 
323
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
324
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
325
  }
326
 
327
  /* Pass 2: process 2 rows from work array, store into output array. */
328
 
329
  wsptr = workspace;
330
  for (ctr = 0; ctr < 2; ctr++) {
331
    outptr = output_buf[ctr] + output_col;
332
    /* It's not clear whether a zero row test is worthwhile here ... */
333
 
334
#ifndef NO_ZERO_ROW_TEST
335
    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
336
      /* AC terms all zero */
337
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
338
                                  & RANGE_MASK];
339
 
340
      outptr[0] = dcval;
341
      outptr[1] = dcval;
342
 
343
      wsptr += DCTSIZE;         /* advance pointer to next row */
344
      continue;
345
    }
346
#endif
347
 
348
    /* Even part */
349
 
350
    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
351
 
352
    /* Odd part */
353
 
354
    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
355
         + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
356
         + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
357
         + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
358
 
359
    /* Final output stage */
360
 
361
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
362
                                          CONST_BITS+PASS1_BITS+3+2)
363
                            & RANGE_MASK];
364
    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
365
                                          CONST_BITS+PASS1_BITS+3+2)
366
                            & RANGE_MASK];
367
 
368
    wsptr += DCTSIZE;           /* advance pointer to next row */
369
  }
370
}
371
 
372
 
373
/*
374
 * Perform dequantization and inverse DCT on one block of coefficients,
375
 * producing a reduced-size 1x1 output block.
376
 */
377
 
378
GLOBAL(void)
379
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
380
               JCOEFPTR coef_block,
381
               JSAMPARRAY output_buf, JDIMENSION output_col)
382
{
383
  int dcval;
384
  ISLOW_MULT_TYPE * quantptr;
385
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
386
  SHIFT_TEMPS
387
 
388
  /* We hardly need an inverse DCT routine for this: just take the
389
   * average pixel value, which is one-eighth of the DC coefficient.
390
   */
391
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
392
  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
393
  dcval = (int) DESCALE((INT32) dcval, 3);
394
 
395
  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
396
}
397
 
398
#endif /* IDCT_SCALING_SUPPORTED */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.