OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [services/] [gfx/] [mw/] [v2_0/] [src/] [jpeg-6b/] [jmemmgr.c] - Blame information for rev 27

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
/*
2
 * jmemmgr.c
3
 *
4
 * Copyright (C) 1991-1997, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains the JPEG system-independent memory management
9
 * routines.  This code is usable across a wide variety of machines; most
10
 * of the system dependencies have been isolated in a separate file.
11
 * The major functions provided here are:
12
 *   * pool-based allocation and freeing of memory;
13
 *   * policy decisions about how to divide available memory among the
14
 *     virtual arrays;
15
 *   * control logic for swapping virtual arrays between main memory and
16
 *     backing storage.
17
 * The separate system-dependent file provides the actual backing-storage
18
 * access code, and it contains the policy decision about how much total
19
 * main memory to use.
20
 * This file is system-dependent in the sense that some of its functions
21
 * are unnecessary in some systems.  For example, if there is enough virtual
22
 * memory so that backing storage will never be used, much of the virtual
23
 * array control logic could be removed.  (Of course, if you have that much
24
 * memory then you shouldn't care about a little bit of unused code...)
25
 */
26
 
27
#define JPEG_INTERNALS
28
#define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
29
#include "jinclude.h"
30
#include "jpeglib.h"
31
#include "jmemsys.h"            /* import the system-dependent declarations */
32
 
33
#ifndef NO_GETENV
34
#ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
35
extern char * getenv JPP((const char * name));
36
#endif
37
#endif
38
 
39
 
40
/*
41
 * Some important notes:
42
 *   The allocation routines provided here must never return NULL.
43
 *   They should exit to error_exit if unsuccessful.
44
 *
45
 *   It's not a good idea to try to merge the sarray and barray routines,
46
 *   even though they are textually almost the same, because samples are
47
 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
48
 *   in machines where byte pointers have a different representation from
49
 *   word pointers, the resulting machine code could not be the same.
50
 */
51
 
52
 
53
/*
54
 * Many machines require storage alignment: longs must start on 4-byte
55
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
56
 * always returns pointers that are multiples of the worst-case alignment
57
 * requirement, and we had better do so too.
58
 * There isn't any really portable way to determine the worst-case alignment
59
 * requirement.  This module assumes that the alignment requirement is
60
 * multiples of sizeof(ALIGN_TYPE).
61
 * By default, we define ALIGN_TYPE as double.  This is necessary on some
62
 * workstations (where doubles really do need 8-byte alignment) and will work
63
 * fine on nearly everything.  If your machine has lesser alignment needs,
64
 * you can save a few bytes by making ALIGN_TYPE smaller.
65
 * The only place I know of where this will NOT work is certain Macintosh
66
 * 680x0 compilers that define double as a 10-byte IEEE extended float.
67
 * Doing 10-byte alignment is counterproductive because longwords won't be
68
 * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
69
 * such a compiler.
70
 */
71
 
72
#ifndef ALIGN_TYPE              /* so can override from jconfig.h */
73
#define ALIGN_TYPE  double
74
#endif
75
 
76
 
77
/*
78
 * We allocate objects from "pools", where each pool is gotten with a single
79
 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
80
 * overhead within a pool, except for alignment padding.  Each pool has a
81
 * header with a link to the next pool of the same class.
82
 * Small and large pool headers are identical except that the latter's
83
 * link pointer must be FAR on 80x86 machines.
84
 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
85
 * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
86
 * of the alignment requirement of ALIGN_TYPE.
87
 */
88
 
89
typedef union small_pool_struct * small_pool_ptr;
90
 
91
typedef union small_pool_struct {
92
  struct {
93
    small_pool_ptr next;        /* next in list of pools */
94
    size_t bytes_used;          /* how many bytes already used within pool */
95
    size_t bytes_left;          /* bytes still available in this pool */
96
  } hdr;
97
  ALIGN_TYPE dummy;             /* included in union to ensure alignment */
98
} small_pool_hdr;
99
 
100
typedef union large_pool_struct FAR * large_pool_ptr;
101
 
102
typedef union large_pool_struct {
103
  struct {
104
    large_pool_ptr next;        /* next in list of pools */
105
    size_t bytes_used;          /* how many bytes already used within pool */
106
    size_t bytes_left;          /* bytes still available in this pool */
107
  } hdr;
108
  ALIGN_TYPE dummy;             /* included in union to ensure alignment */
109
} large_pool_hdr;
110
 
111
 
112
/*
113
 * Here is the full definition of a memory manager object.
114
 */
115
 
116
typedef struct {
117
  struct jpeg_memory_mgr pub;   /* public fields */
118
 
119
  /* Each pool identifier (lifetime class) names a linked list of pools. */
120
  small_pool_ptr small_list[JPOOL_NUMPOOLS];
121
  large_pool_ptr large_list[JPOOL_NUMPOOLS];
122
 
123
  /* Since we only have one lifetime class of virtual arrays, only one
124
   * linked list is necessary (for each datatype).  Note that the virtual
125
   * array control blocks being linked together are actually stored somewhere
126
   * in the small-pool list.
127
   */
128
  jvirt_sarray_ptr virt_sarray_list;
129
  jvirt_barray_ptr virt_barray_list;
130
 
131
  /* This counts total space obtained from jpeg_get_small/large */
132
  long total_space_allocated;
133
 
134
  /* alloc_sarray and alloc_barray set this value for use by virtual
135
   * array routines.
136
   */
137
  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
138
} my_memory_mgr;
139
 
140
typedef my_memory_mgr * my_mem_ptr;
141
 
142
 
143
/*
144
 * The control blocks for virtual arrays.
145
 * Note that these blocks are allocated in the "small" pool area.
146
 * System-dependent info for the associated backing store (if any) is hidden
147
 * inside the backing_store_info struct.
148
 */
149
 
150
struct jvirt_sarray_control {
151
  JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
152
  JDIMENSION rows_in_array;     /* total virtual array height */
153
  JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
154
  JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
155
  JDIMENSION rows_in_mem;       /* height of memory buffer */
156
  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
157
  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
158
  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
159
  boolean pre_zero;             /* pre-zero mode requested? */
160
  boolean dirty;                /* do current buffer contents need written? */
161
  boolean b_s_open;             /* is backing-store data valid? */
162
  jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
163
  backing_store_info b_s_info;  /* System-dependent control info */
164
};
165
 
166
struct jvirt_barray_control {
167
  JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
168
  JDIMENSION rows_in_array;     /* total virtual array height */
169
  JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
170
  JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
171
  JDIMENSION rows_in_mem;       /* height of memory buffer */
172
  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
173
  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
174
  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
175
  boolean pre_zero;             /* pre-zero mode requested? */
176
  boolean dirty;                /* do current buffer contents need written? */
177
  boolean b_s_open;             /* is backing-store data valid? */
178
  jvirt_barray_ptr next;        /* link to next virtual barray control block */
179
  backing_store_info b_s_info;  /* System-dependent control info */
180
};
181
 
182
 
183
#ifdef MEM_STATS                /* optional extra stuff for statistics */
184
 
185
LOCAL(void)
186
print_mem_stats (j_common_ptr cinfo, int pool_id)
187
{
188
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
189
  small_pool_ptr shdr_ptr;
190
  large_pool_ptr lhdr_ptr;
191
 
192
  /* Since this is only a debugging stub, we can cheat a little by using
193
   * fprintf directly rather than going through the trace message code.
194
   * This is helpful because message parm array can't handle longs.
195
   */
196
  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
197
          pool_id, mem->total_space_allocated);
198
 
199
  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
200
       lhdr_ptr = lhdr_ptr->hdr.next) {
201
    fprintf(stderr, "  Large chunk used %ld\n",
202
            (long) lhdr_ptr->hdr.bytes_used);
203
  }
204
 
205
  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
206
       shdr_ptr = shdr_ptr->hdr.next) {
207
    fprintf(stderr, "  Small chunk used %ld free %ld\n",
208
            (long) shdr_ptr->hdr.bytes_used,
209
            (long) shdr_ptr->hdr.bytes_left);
210
  }
211
}
212
 
213
#endif /* MEM_STATS */
214
 
215
 
216
LOCAL(void)
217
out_of_memory (j_common_ptr cinfo, int which)
218
/* Report an out-of-memory error and stop execution */
219
/* If we compiled MEM_STATS support, report alloc requests before dying */
220
{
221
#ifdef MEM_STATS
222
  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
223
#endif
224
  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
225
}
226
 
227
 
228
/*
229
 * Allocation of "small" objects.
230
 *
231
 * For these, we use pooled storage.  When a new pool must be created,
232
 * we try to get enough space for the current request plus a "slop" factor,
233
 * where the slop will be the amount of leftover space in the new pool.
234
 * The speed vs. space tradeoff is largely determined by the slop values.
235
 * A different slop value is provided for each pool class (lifetime),
236
 * and we also distinguish the first pool of a class from later ones.
237
 * NOTE: the values given work fairly well on both 16- and 32-bit-int
238
 * machines, but may be too small if longs are 64 bits or more.
239
 */
240
 
241
static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
242
{
243
        1600,                   /* first PERMANENT pool */
244
        16000                   /* first IMAGE pool */
245
};
246
 
247
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
248
{
249
        0,                       /* additional PERMANENT pools */
250
        5000                    /* additional IMAGE pools */
251
};
252
 
253
#define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
254
 
255
 
256
METHODDEF(void *)
257
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
258
/* Allocate a "small" object */
259
{
260
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
261
  small_pool_ptr hdr_ptr, prev_hdr_ptr;
262
  char * data_ptr;
263
  size_t odd_bytes, min_request, slop;
264
 
265
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
266
  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
267
    out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
268
 
269
  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
270
  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
271
  if (odd_bytes > 0)
272
    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
273
 
274
  /* See if space is available in any existing pool */
275
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
276
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
277
  prev_hdr_ptr = NULL;
278
  hdr_ptr = mem->small_list[pool_id];
279
  while (hdr_ptr != NULL) {
280
    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
281
      break;                    /* found pool with enough space */
282
    prev_hdr_ptr = hdr_ptr;
283
    hdr_ptr = hdr_ptr->hdr.next;
284
  }
285
 
286
  /* Time to make a new pool? */
287
  if (hdr_ptr == NULL) {
288
    /* min_request is what we need now, slop is what will be leftover */
289
    min_request = sizeofobject + SIZEOF(small_pool_hdr);
290
    if (prev_hdr_ptr == NULL)   /* first pool in class? */
291
      slop = first_pool_slop[pool_id];
292
    else
293
      slop = extra_pool_slop[pool_id];
294
    /* Don't ask for more than MAX_ALLOC_CHUNK */
295
    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
296
      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
297
    /* Try to get space, if fail reduce slop and try again */
298
    for (;;) {
299
      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
300
      if (hdr_ptr != NULL)
301
        break;
302
      slop /= 2;
303
      if (slop < MIN_SLOP)      /* give up when it gets real small */
304
        out_of_memory(cinfo, 2); /* jpeg_get_small failed */
305
    }
306
    mem->total_space_allocated += min_request + slop;
307
    /* Success, initialize the new pool header and add to end of list */
308
    hdr_ptr->hdr.next = NULL;
309
    hdr_ptr->hdr.bytes_used = 0;
310
    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
311
    if (prev_hdr_ptr == NULL)   /* first pool in class? */
312
      mem->small_list[pool_id] = hdr_ptr;
313
    else
314
      prev_hdr_ptr->hdr.next = hdr_ptr;
315
  }
316
 
317
  /* OK, allocate the object from the current pool */
318
  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
319
  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
320
  hdr_ptr->hdr.bytes_used += sizeofobject;
321
  hdr_ptr->hdr.bytes_left -= sizeofobject;
322
 
323
  return (void *) data_ptr;
324
}
325
 
326
 
327
/*
328
 * Allocation of "large" objects.
329
 *
330
 * The external semantics of these are the same as "small" objects,
331
 * except that FAR pointers are used on 80x86.  However the pool
332
 * management heuristics are quite different.  We assume that each
333
 * request is large enough that it may as well be passed directly to
334
 * jpeg_get_large; the pool management just links everything together
335
 * so that we can free it all on demand.
336
 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
337
 * structures.  The routines that create these structures (see below)
338
 * deliberately bunch rows together to ensure a large request size.
339
 */
340
 
341
METHODDEF(void FAR *)
342
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
343
/* Allocate a "large" object */
344
{
345
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
346
  large_pool_ptr hdr_ptr;
347
  size_t odd_bytes;
348
 
349
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
350
  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
351
    out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
352
 
353
  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
354
  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
355
  if (odd_bytes > 0)
356
    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
357
 
358
  /* Always make a new pool */
359
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
360
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
361
 
362
  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
363
                                            SIZEOF(large_pool_hdr));
364
  if (hdr_ptr == NULL)
365
    out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
366
  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
367
 
368
  /* Success, initialize the new pool header and add to list */
369
  hdr_ptr->hdr.next = mem->large_list[pool_id];
370
  /* We maintain space counts in each pool header for statistical purposes,
371
   * even though they are not needed for allocation.
372
   */
373
  hdr_ptr->hdr.bytes_used = sizeofobject;
374
  hdr_ptr->hdr.bytes_left = 0;
375
  mem->large_list[pool_id] = hdr_ptr;
376
 
377
  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
378
}
379
 
380
 
381
/*
382
 * Creation of 2-D sample arrays.
383
 * The pointers are in near heap, the samples themselves in FAR heap.
384
 *
385
 * To minimize allocation overhead and to allow I/O of large contiguous
386
 * blocks, we allocate the sample rows in groups of as many rows as possible
387
 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
388
 * NB: the virtual array control routines, later in this file, know about
389
 * this chunking of rows.  The rowsperchunk value is left in the mem manager
390
 * object so that it can be saved away if this sarray is the workspace for
391
 * a virtual array.
392
 */
393
 
394
METHODDEF(JSAMPARRAY)
395
alloc_sarray (j_common_ptr cinfo, int pool_id,
396
              JDIMENSION samplesperrow, JDIMENSION numrows)
397
/* Allocate a 2-D sample array */
398
{
399
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
400
  JSAMPARRAY result;
401
  JSAMPROW workspace;
402
  JDIMENSION rowsperchunk, currow, i;
403
  long ltemp;
404
 
405
  /* Calculate max # of rows allowed in one allocation chunk */
406
  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
407
          ((long) samplesperrow * SIZEOF(JSAMPLE));
408
  if (ltemp <= 0)
409
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
410
  if (ltemp < (long) numrows)
411
    rowsperchunk = (JDIMENSION) ltemp;
412
  else
413
    rowsperchunk = numrows;
414
  mem->last_rowsperchunk = rowsperchunk;
415
 
416
  /* Get space for row pointers (small object) */
417
  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
418
                                    (size_t) (numrows * SIZEOF(JSAMPROW)));
419
 
420
  /* Get the rows themselves (large objects) */
421
  currow = 0;
422
  while (currow < numrows) {
423
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
424
    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
425
        (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
426
                  * SIZEOF(JSAMPLE)));
427
    for (i = rowsperchunk; i > 0; i--) {
428
      result[currow++] = workspace;
429
      workspace += samplesperrow;
430
    }
431
  }
432
 
433
  return result;
434
}
435
 
436
 
437
/*
438
 * Creation of 2-D coefficient-block arrays.
439
 * This is essentially the same as the code for sample arrays, above.
440
 */
441
 
442
METHODDEF(JBLOCKARRAY)
443
alloc_barray (j_common_ptr cinfo, int pool_id,
444
              JDIMENSION blocksperrow, JDIMENSION numrows)
445
/* Allocate a 2-D coefficient-block array */
446
{
447
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
448
  JBLOCKARRAY result;
449
  JBLOCKROW workspace;
450
  JDIMENSION rowsperchunk, currow, i;
451
  long ltemp;
452
 
453
  /* Calculate max # of rows allowed in one allocation chunk */
454
  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
455
          ((long) blocksperrow * SIZEOF(JBLOCK));
456
  if (ltemp <= 0)
457
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458
  if (ltemp < (long) numrows)
459
    rowsperchunk = (JDIMENSION) ltemp;
460
  else
461
    rowsperchunk = numrows;
462
  mem->last_rowsperchunk = rowsperchunk;
463
 
464
  /* Get space for row pointers (small object) */
465
  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
466
                                     (size_t) (numrows * SIZEOF(JBLOCKROW)));
467
 
468
  /* Get the rows themselves (large objects) */
469
  currow = 0;
470
  while (currow < numrows) {
471
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
472
    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
473
        (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
474
                  * SIZEOF(JBLOCK)));
475
    for (i = rowsperchunk; i > 0; i--) {
476
      result[currow++] = workspace;
477
      workspace += blocksperrow;
478
    }
479
  }
480
 
481
  return result;
482
}
483
 
484
 
485
/*
486
 * About virtual array management:
487
 *
488
 * The above "normal" array routines are only used to allocate strip buffers
489
 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
490
 * are handled as "virtual" arrays.  The array is still accessed a strip at a
491
 * time, but the memory manager must save the whole array for repeated
492
 * accesses.  The intended implementation is that there is a strip buffer in
493
 * memory (as high as is possible given the desired memory limit), plus a
494
 * backing file that holds the rest of the array.
495
 *
496
 * The request_virt_array routines are told the total size of the image and
497
 * the maximum number of rows that will be accessed at once.  The in-memory
498
 * buffer must be at least as large as the maxaccess value.
499
 *
500
 * The request routines create control blocks but not the in-memory buffers.
501
 * That is postponed until realize_virt_arrays is called.  At that time the
502
 * total amount of space needed is known (approximately, anyway), so free
503
 * memory can be divided up fairly.
504
 *
505
 * The access_virt_array routines are responsible for making a specific strip
506
 * area accessible (after reading or writing the backing file, if necessary).
507
 * Note that the access routines are told whether the caller intends to modify
508
 * the accessed strip; during a read-only pass this saves having to rewrite
509
 * data to disk.  The access routines are also responsible for pre-zeroing
510
 * any newly accessed rows, if pre-zeroing was requested.
511
 *
512
 * In current usage, the access requests are usually for nonoverlapping
513
 * strips; that is, successive access start_row numbers differ by exactly
514
 * num_rows = maxaccess.  This means we can get good performance with simple
515
 * buffer dump/reload logic, by making the in-memory buffer be a multiple
516
 * of the access height; then there will never be accesses across bufferload
517
 * boundaries.  The code will still work with overlapping access requests,
518
 * but it doesn't handle bufferload overlaps very efficiently.
519
 */
520
 
521
 
522
METHODDEF(jvirt_sarray_ptr)
523
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
524
                     JDIMENSION samplesperrow, JDIMENSION numrows,
525
                     JDIMENSION maxaccess)
526
/* Request a virtual 2-D sample array */
527
{
528
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
529
  jvirt_sarray_ptr result;
530
 
531
  /* Only IMAGE-lifetime virtual arrays are currently supported */
532
  if (pool_id != JPOOL_IMAGE)
533
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
534
 
535
  /* get control block */
536
  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
537
                                          SIZEOF(struct jvirt_sarray_control));
538
 
539
  result->mem_buffer = NULL;    /* marks array not yet realized */
540
  result->rows_in_array = numrows;
541
  result->samplesperrow = samplesperrow;
542
  result->maxaccess = maxaccess;
543
  result->pre_zero = pre_zero;
544
  result->b_s_open = FALSE;     /* no associated backing-store object */
545
  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
546
  mem->virt_sarray_list = result;
547
 
548
  return result;
549
}
550
 
551
 
552
METHODDEF(jvirt_barray_ptr)
553
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
554
                     JDIMENSION blocksperrow, JDIMENSION numrows,
555
                     JDIMENSION maxaccess)
556
/* Request a virtual 2-D coefficient-block array */
557
{
558
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
559
  jvirt_barray_ptr result;
560
 
561
  /* Only IMAGE-lifetime virtual arrays are currently supported */
562
  if (pool_id != JPOOL_IMAGE)
563
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
564
 
565
  /* get control block */
566
  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
567
                                          SIZEOF(struct jvirt_barray_control));
568
 
569
  result->mem_buffer = NULL;    /* marks array not yet realized */
570
  result->rows_in_array = numrows;
571
  result->blocksperrow = blocksperrow;
572
  result->maxaccess = maxaccess;
573
  result->pre_zero = pre_zero;
574
  result->b_s_open = FALSE;     /* no associated backing-store object */
575
  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
576
  mem->virt_barray_list = result;
577
 
578
  return result;
579
}
580
 
581
 
582
METHODDEF(void)
583
realize_virt_arrays (j_common_ptr cinfo)
584
/* Allocate the in-memory buffers for any unrealized virtual arrays */
585
{
586
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
587
  long space_per_minheight, maximum_space, avail_mem;
588
  long minheights, max_minheights;
589
  jvirt_sarray_ptr sptr;
590
  jvirt_barray_ptr bptr;
591
 
592
  /* Compute the minimum space needed (maxaccess rows in each buffer)
593
   * and the maximum space needed (full image height in each buffer).
594
   * These may be of use to the system-dependent jpeg_mem_available routine.
595
   */
596
  space_per_minheight = 0;
597
  maximum_space = 0;
598
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
599
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
600
      space_per_minheight += (long) sptr->maxaccess *
601
                             (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
602
      maximum_space += (long) sptr->rows_in_array *
603
                       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
604
    }
605
  }
606
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
607
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
608
      space_per_minheight += (long) bptr->maxaccess *
609
                             (long) bptr->blocksperrow * SIZEOF(JBLOCK);
610
      maximum_space += (long) bptr->rows_in_array *
611
                       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
612
    }
613
  }
614
 
615
  if (space_per_minheight <= 0)
616
    return;                     /* no unrealized arrays, no work */
617
 
618
  /* Determine amount of memory to actually use; this is system-dependent. */
619
  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
620
                                 mem->total_space_allocated);
621
 
622
  /* If the maximum space needed is available, make all the buffers full
623
   * height; otherwise parcel it out with the same number of minheights
624
   * in each buffer.
625
   */
626
  if (avail_mem >= maximum_space)
627
    max_minheights = 1000000000L;
628
  else {
629
    max_minheights = avail_mem / space_per_minheight;
630
    /* If there doesn't seem to be enough space, try to get the minimum
631
     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
632
     */
633
    if (max_minheights <= 0)
634
      max_minheights = 1;
635
  }
636
 
637
  /* Allocate the in-memory buffers and initialize backing store as needed. */
638
 
639
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
640
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
641
      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
642
      if (minheights <= max_minheights) {
643
        /* This buffer fits in memory */
644
        sptr->rows_in_mem = sptr->rows_in_array;
645
      } else {
646
        /* It doesn't fit in memory, create backing store. */
647
        sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
648
        jpeg_open_backing_store(cinfo, & sptr->b_s_info,
649
                                (long) sptr->rows_in_array *
650
                                (long) sptr->samplesperrow *
651
                                (long) SIZEOF(JSAMPLE));
652
        sptr->b_s_open = TRUE;
653
      }
654
      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
655
                                      sptr->samplesperrow, sptr->rows_in_mem);
656
      sptr->rowsperchunk = mem->last_rowsperchunk;
657
      sptr->cur_start_row = 0;
658
      sptr->first_undef_row = 0;
659
      sptr->dirty = FALSE;
660
    }
661
  }
662
 
663
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
664
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
665
      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
666
      if (minheights <= max_minheights) {
667
        /* This buffer fits in memory */
668
        bptr->rows_in_mem = bptr->rows_in_array;
669
      } else {
670
        /* It doesn't fit in memory, create backing store. */
671
        bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
672
        jpeg_open_backing_store(cinfo, & bptr->b_s_info,
673
                                (long) bptr->rows_in_array *
674
                                (long) bptr->blocksperrow *
675
                                (long) SIZEOF(JBLOCK));
676
        bptr->b_s_open = TRUE;
677
      }
678
      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
679
                                      bptr->blocksperrow, bptr->rows_in_mem);
680
      bptr->rowsperchunk = mem->last_rowsperchunk;
681
      bptr->cur_start_row = 0;
682
      bptr->first_undef_row = 0;
683
      bptr->dirty = FALSE;
684
    }
685
  }
686
}
687
 
688
 
689
LOCAL(void)
690
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
691
/* Do backing store read or write of a virtual sample array */
692
{
693
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
694
 
695
  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
696
  file_offset = ptr->cur_start_row * bytesperrow;
697
  /* Loop to read or write each allocation chunk in mem_buffer */
698
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
699
    /* One chunk, but check for short chunk at end of buffer */
700
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
701
    /* Transfer no more than is currently defined */
702
    thisrow = (long) ptr->cur_start_row + i;
703
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
704
    /* Transfer no more than fits in file */
705
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
706
    if (rows <= 0)               /* this chunk might be past end of file! */
707
      break;
708
    byte_count = rows * bytesperrow;
709
    if (writing)
710
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
711
                                            (void FAR *) ptr->mem_buffer[i],
712
                                            file_offset, byte_count);
713
    else
714
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
715
                                           (void FAR *) ptr->mem_buffer[i],
716
                                           file_offset, byte_count);
717
    file_offset += byte_count;
718
  }
719
}
720
 
721
 
722
LOCAL(void)
723
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
724
/* Do backing store read or write of a virtual coefficient-block array */
725
{
726
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
727
 
728
  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
729
  file_offset = ptr->cur_start_row * bytesperrow;
730
  /* Loop to read or write each allocation chunk in mem_buffer */
731
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
732
    /* One chunk, but check for short chunk at end of buffer */
733
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
734
    /* Transfer no more than is currently defined */
735
    thisrow = (long) ptr->cur_start_row + i;
736
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
737
    /* Transfer no more than fits in file */
738
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
739
    if (rows <= 0)               /* this chunk might be past end of file! */
740
      break;
741
    byte_count = rows * bytesperrow;
742
    if (writing)
743
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
744
                                            (void FAR *) ptr->mem_buffer[i],
745
                                            file_offset, byte_count);
746
    else
747
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
748
                                           (void FAR *) ptr->mem_buffer[i],
749
                                           file_offset, byte_count);
750
    file_offset += byte_count;
751
  }
752
}
753
 
754
 
755
METHODDEF(JSAMPARRAY)
756
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
757
                    JDIMENSION start_row, JDIMENSION num_rows,
758
                    boolean writable)
759
/* Access the part of a virtual sample array starting at start_row */
760
/* and extending for num_rows rows.  writable is true if  */
761
/* caller intends to modify the accessed area. */
762
{
763
  JDIMENSION end_row = start_row + num_rows;
764
  JDIMENSION undef_row;
765
 
766
  /* debugging check */
767
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
768
      ptr->mem_buffer == NULL)
769
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
770
 
771
  /* Make the desired part of the virtual array accessible */
772
  if (start_row < ptr->cur_start_row ||
773
      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
774
    if (! ptr->b_s_open)
775
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
776
    /* Flush old buffer contents if necessary */
777
    if (ptr->dirty) {
778
      do_sarray_io(cinfo, ptr, TRUE);
779
      ptr->dirty = FALSE;
780
    }
781
    /* Decide what part of virtual array to access.
782
     * Algorithm: if target address > current window, assume forward scan,
783
     * load starting at target address.  If target address < current window,
784
     * assume backward scan, load so that target area is top of window.
785
     * Note that when switching from forward write to forward read, will have
786
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
787
     */
788
    if (start_row > ptr->cur_start_row) {
789
      ptr->cur_start_row = start_row;
790
    } else {
791
      /* use long arithmetic here to avoid overflow & unsigned problems */
792
      long ltemp;
793
 
794
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
795
      if (ltemp < 0)
796
        ltemp = 0;               /* don't fall off front end of file */
797
      ptr->cur_start_row = (JDIMENSION) ltemp;
798
    }
799
    /* Read in the selected part of the array.
800
     * During the initial write pass, we will do no actual read
801
     * because the selected part is all undefined.
802
     */
803
    do_sarray_io(cinfo, ptr, FALSE);
804
  }
805
  /* Ensure the accessed part of the array is defined; prezero if needed.
806
   * To improve locality of access, we only prezero the part of the array
807
   * that the caller is about to access, not the entire in-memory array.
808
   */
809
  if (ptr->first_undef_row < end_row) {
810
    if (ptr->first_undef_row < start_row) {
811
      if (writable)             /* writer skipped over a section of array */
812
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
813
      undef_row = start_row;    /* but reader is allowed to read ahead */
814
    } else {
815
      undef_row = ptr->first_undef_row;
816
    }
817
    if (writable)
818
      ptr->first_undef_row = end_row;
819
    if (ptr->pre_zero) {
820
      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
821
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
822
      end_row -= ptr->cur_start_row;
823
      while (undef_row < end_row) {
824
        jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
825
        undef_row++;
826
      }
827
    } else {
828
      if (! writable)           /* reader looking at undefined data */
829
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
830
    }
831
  }
832
  /* Flag the buffer dirty if caller will write in it */
833
  if (writable)
834
    ptr->dirty = TRUE;
835
  /* Return address of proper part of the buffer */
836
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
837
}
838
 
839
 
840
METHODDEF(JBLOCKARRAY)
841
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
842
                    JDIMENSION start_row, JDIMENSION num_rows,
843
                    boolean writable)
844
/* Access the part of a virtual block array starting at start_row */
845
/* and extending for num_rows rows.  writable is true if  */
846
/* caller intends to modify the accessed area. */
847
{
848
  JDIMENSION end_row = start_row + num_rows;
849
  JDIMENSION undef_row;
850
 
851
  /* debugging check */
852
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
853
      ptr->mem_buffer == NULL)
854
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
855
 
856
  /* Make the desired part of the virtual array accessible */
857
  if (start_row < ptr->cur_start_row ||
858
      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
859
    if (! ptr->b_s_open)
860
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
861
    /* Flush old buffer contents if necessary */
862
    if (ptr->dirty) {
863
      do_barray_io(cinfo, ptr, TRUE);
864
      ptr->dirty = FALSE;
865
    }
866
    /* Decide what part of virtual array to access.
867
     * Algorithm: if target address > current window, assume forward scan,
868
     * load starting at target address.  If target address < current window,
869
     * assume backward scan, load so that target area is top of window.
870
     * Note that when switching from forward write to forward read, will have
871
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
872
     */
873
    if (start_row > ptr->cur_start_row) {
874
      ptr->cur_start_row = start_row;
875
    } else {
876
      /* use long arithmetic here to avoid overflow & unsigned problems */
877
      long ltemp;
878
 
879
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
880
      if (ltemp < 0)
881
        ltemp = 0;               /* don't fall off front end of file */
882
      ptr->cur_start_row = (JDIMENSION) ltemp;
883
    }
884
    /* Read in the selected part of the array.
885
     * During the initial write pass, we will do no actual read
886
     * because the selected part is all undefined.
887
     */
888
    do_barray_io(cinfo, ptr, FALSE);
889
  }
890
  /* Ensure the accessed part of the array is defined; prezero if needed.
891
   * To improve locality of access, we only prezero the part of the array
892
   * that the caller is about to access, not the entire in-memory array.
893
   */
894
  if (ptr->first_undef_row < end_row) {
895
    if (ptr->first_undef_row < start_row) {
896
      if (writable)             /* writer skipped over a section of array */
897
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
898
      undef_row = start_row;    /* but reader is allowed to read ahead */
899
    } else {
900
      undef_row = ptr->first_undef_row;
901
    }
902
    if (writable)
903
      ptr->first_undef_row = end_row;
904
    if (ptr->pre_zero) {
905
      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
906
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
907
      end_row -= ptr->cur_start_row;
908
      while (undef_row < end_row) {
909
        jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
910
        undef_row++;
911
      }
912
    } else {
913
      if (! writable)           /* reader looking at undefined data */
914
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
915
    }
916
  }
917
  /* Flag the buffer dirty if caller will write in it */
918
  if (writable)
919
    ptr->dirty = TRUE;
920
  /* Return address of proper part of the buffer */
921
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
922
}
923
 
924
 
925
/*
926
 * Release all objects belonging to a specified pool.
927
 */
928
 
929
METHODDEF(void)
930
free_pool (j_common_ptr cinfo, int pool_id)
931
{
932
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
933
  small_pool_ptr shdr_ptr;
934
  large_pool_ptr lhdr_ptr;
935
  size_t space_freed;
936
 
937
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
938
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
939
 
940
#ifdef MEM_STATS
941
  if (cinfo->err->trace_level > 1)
942
    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
943
#endif
944
 
945
  /* If freeing IMAGE pool, close any virtual arrays first */
946
  if (pool_id == JPOOL_IMAGE) {
947
    jvirt_sarray_ptr sptr;
948
    jvirt_barray_ptr bptr;
949
 
950
    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
951
      if (sptr->b_s_open) {     /* there may be no backing store */
952
        sptr->b_s_open = FALSE; /* prevent recursive close if error */
953
        (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
954
      }
955
    }
956
    mem->virt_sarray_list = NULL;
957
    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
958
      if (bptr->b_s_open) {     /* there may be no backing store */
959
        bptr->b_s_open = FALSE; /* prevent recursive close if error */
960
        (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
961
      }
962
    }
963
    mem->virt_barray_list = NULL;
964
  }
965
 
966
  /* Release large objects */
967
  lhdr_ptr = mem->large_list[pool_id];
968
  mem->large_list[pool_id] = NULL;
969
 
970
  while (lhdr_ptr != NULL) {
971
    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
972
    space_freed = lhdr_ptr->hdr.bytes_used +
973
                  lhdr_ptr->hdr.bytes_left +
974
                  SIZEOF(large_pool_hdr);
975
    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
976
    mem->total_space_allocated -= space_freed;
977
    lhdr_ptr = next_lhdr_ptr;
978
  }
979
 
980
  /* Release small objects */
981
  shdr_ptr = mem->small_list[pool_id];
982
  mem->small_list[pool_id] = NULL;
983
 
984
  while (shdr_ptr != NULL) {
985
    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
986
    space_freed = shdr_ptr->hdr.bytes_used +
987
                  shdr_ptr->hdr.bytes_left +
988
                  SIZEOF(small_pool_hdr);
989
    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
990
    mem->total_space_allocated -= space_freed;
991
    shdr_ptr = next_shdr_ptr;
992
  }
993
}
994
 
995
 
996
/*
997
 * Close up shop entirely.
998
 * Note that this cannot be called unless cinfo->mem is non-NULL.
999
 */
1000
 
1001
METHODDEF(void)
1002
self_destruct (j_common_ptr cinfo)
1003
{
1004
  int pool;
1005
 
1006
  /* Close all backing store, release all memory.
1007
   * Releasing pools in reverse order might help avoid fragmentation
1008
   * with some (brain-damaged) malloc libraries.
1009
   */
1010
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1011
    free_pool(cinfo, pool);
1012
  }
1013
 
1014
  /* Release the memory manager control block too. */
1015
  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1016
  cinfo->mem = NULL;            /* ensures I will be called only once */
1017
 
1018
  jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1019
}
1020
 
1021
 
1022
/*
1023
 * Memory manager initialization.
1024
 * When this is called, only the error manager pointer is valid in cinfo!
1025
 */
1026
 
1027
GLOBAL(void)
1028
jinit_memory_mgr (j_common_ptr cinfo)
1029
{
1030
  my_mem_ptr mem;
1031
  long max_to_use;
1032
  int pool;
1033
  size_t test_mac;
1034
 
1035
  cinfo->mem = NULL;            /* for safety if init fails */
1036
 
1037
  /* Check for configuration errors.
1038
   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1039
   * doesn't reflect any real hardware alignment requirement.
1040
   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1041
   * in common if and only if X is a power of 2, ie has only one one-bit.
1042
   * Some compilers may give an "unreachable code" warning here; ignore it.
1043
   */
1044
  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1045
    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1046
  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1047
   * a multiple of SIZEOF(ALIGN_TYPE).
1048
   * Again, an "unreachable code" warning may be ignored here.
1049
   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1050
   */
1051
  test_mac = (size_t) MAX_ALLOC_CHUNK;
1052
  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1053
      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1054
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1055
 
1056
  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1057
 
1058
  /* Attempt to allocate memory manager's control block */
1059
  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1060
 
1061
  if (mem == NULL) {
1062
    jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1063
    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1064
  }
1065
 
1066
  /* OK, fill in the method pointers */
1067
  mem->pub.alloc_small = alloc_small;
1068
  mem->pub.alloc_large = alloc_large;
1069
  mem->pub.alloc_sarray = alloc_sarray;
1070
  mem->pub.alloc_barray = alloc_barray;
1071
  mem->pub.request_virt_sarray = request_virt_sarray;
1072
  mem->pub.request_virt_barray = request_virt_barray;
1073
  mem->pub.realize_virt_arrays = realize_virt_arrays;
1074
  mem->pub.access_virt_sarray = access_virt_sarray;
1075
  mem->pub.access_virt_barray = access_virt_barray;
1076
  mem->pub.free_pool = free_pool;
1077
  mem->pub.self_destruct = self_destruct;
1078
 
1079
  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1080
  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1081
 
1082
  /* Initialize working state */
1083
  mem->pub.max_memory_to_use = max_to_use;
1084
 
1085
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1086
    mem->small_list[pool] = NULL;
1087
    mem->large_list[pool] = NULL;
1088
  }
1089
  mem->virt_sarray_list = NULL;
1090
  mem->virt_barray_list = NULL;
1091
 
1092
  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1093
 
1094
  /* Declare ourselves open for business */
1095
  cinfo->mem = & mem->pub;
1096
 
1097
  /* Check for an environment variable JPEGMEM; if found, override the
1098
   * default max_memory setting from jpeg_mem_init.  Note that the
1099
   * surrounding application may again override this value.
1100
   * If your system doesn't support getenv(), define NO_GETENV to disable
1101
   * this feature.
1102
   */
1103
#ifndef NO_GETENV
1104
  { char * memenv;
1105
 
1106
    if ((memenv = getenv("JPEGMEM")) != NULL) {
1107
      char ch = 'x';
1108
 
1109
      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1110
        if (ch == 'm' || ch == 'M')
1111
          max_to_use *= 1000L;
1112
        mem->pub.max_memory_to_use = max_to_use * 1000L;
1113
      }
1114
    }
1115
  }
1116
#endif
1117
 
1118
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.