OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [services/] [gfx/] [mw/] [v2_0/] [src/] [jpeg-6b/] [jquant1.c] - Blame information for rev 344

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
/*
2
 * jquant1.c
3
 *
4
 * Copyright (C) 1991-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains 1-pass color quantization (color mapping) routines.
9
 * These routines provide mapping to a fixed color map using equally spaced
10
 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
11
 */
12
 
13
#define JPEG_INTERNALS
14
#include "jinclude.h"
15
#include "jpeglib.h"
16
 
17
#ifdef QUANT_1PASS_SUPPORTED
18
 
19
 
20
/*
21
 * The main purpose of 1-pass quantization is to provide a fast, if not very
22
 * high quality, colormapped output capability.  A 2-pass quantizer usually
23
 * gives better visual quality; however, for quantized grayscale output this
24
 * quantizer is perfectly adequate.  Dithering is highly recommended with this
25
 * quantizer, though you can turn it off if you really want to.
26
 *
27
 * In 1-pass quantization the colormap must be chosen in advance of seeing the
28
 * image.  We use a map consisting of all combinations of Ncolors[i] color
29
 * values for the i'th component.  The Ncolors[] values are chosen so that
30
 * their product, the total number of colors, is no more than that requested.
31
 * (In most cases, the product will be somewhat less.)
32
 *
33
 * Since the colormap is orthogonal, the representative value for each color
34
 * component can be determined without considering the other components;
35
 * then these indexes can be combined into a colormap index by a standard
36
 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
37
 * can be precalculated and stored in the lookup table colorindex[].
38
 * colorindex[i][j] maps pixel value j in component i to the nearest
39
 * representative value (grid plane) for that component; this index is
40
 * multiplied by the array stride for component i, so that the
41
 * index of the colormap entry closest to a given pixel value is just
42
 *    sum( colorindex[component-number][pixel-component-value] )
43
 * Aside from being fast, this scheme allows for variable spacing between
44
 * representative values with no additional lookup cost.
45
 *
46
 * If gamma correction has been applied in color conversion, it might be wise
47
 * to adjust the color grid spacing so that the representative colors are
48
 * equidistant in linear space.  At this writing, gamma correction is not
49
 * implemented by jdcolor, so nothing is done here.
50
 */
51
 
52
 
53
/* Declarations for ordered dithering.
54
 *
55
 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
56
 * dithering is described in many references, for instance Dale Schumacher's
57
 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
58
 * In place of Schumacher's comparisons against a "threshold" value, we add a
59
 * "dither" value to the input pixel and then round the result to the nearest
60
 * output value.  The dither value is equivalent to (0.5 - threshold) times
61
 * the distance between output values.  For ordered dithering, we assume that
62
 * the output colors are equally spaced; if not, results will probably be
63
 * worse, since the dither may be too much or too little at a given point.
64
 *
65
 * The normal calculation would be to form pixel value + dither, range-limit
66
 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
67
 * We can skip the separate range-limiting step by extending the colorindex
68
 * table in both directions.
69
 */
70
 
71
#define ODITHER_SIZE  16        /* dimension of dither matrix */
72
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
73
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
74
#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
75
 
76
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
77
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
78
 
79
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
80
  /* Bayer's order-4 dither array.  Generated by the code given in
81
   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
82
   * The values in this array must range from 0 to ODITHER_CELLS-1.
83
   */
84
  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
85
  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
86
  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
87
  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
88
  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
89
  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
90
  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
91
  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
92
  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
93
  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
94
  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
95
  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
96
  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
97
  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
98
  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
99
  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
100
};
101
 
102
 
103
/* Declarations for Floyd-Steinberg dithering.
104
 *
105
 * Errors are accumulated into the array fserrors[], at a resolution of
106
 * 1/16th of a pixel count.  The error at a given pixel is propagated
107
 * to its not-yet-processed neighbors using the standard F-S fractions,
108
 *              ...     (here)  7/16
109
 *              3/16    5/16    1/16
110
 * We work left-to-right on even rows, right-to-left on odd rows.
111
 *
112
 * We can get away with a single array (holding one row's worth of errors)
113
 * by using it to store the current row's errors at pixel columns not yet
114
 * processed, but the next row's errors at columns already processed.  We
115
 * need only a few extra variables to hold the errors immediately around the
116
 * current column.  (If we are lucky, those variables are in registers, but
117
 * even if not, they're probably cheaper to access than array elements are.)
118
 *
119
 * The fserrors[] array is indexed [component#][position].
120
 * We provide (#columns + 2) entries per component; the extra entry at each
121
 * end saves us from special-casing the first and last pixels.
122
 *
123
 * Note: on a wide image, we might not have enough room in a PC's near data
124
 * segment to hold the error array; so it is allocated with alloc_large.
125
 */
126
 
127
#if BITS_IN_JSAMPLE == 8
128
typedef INT16 FSERROR;          /* 16 bits should be enough */
129
typedef int LOCFSERROR;         /* use 'int' for calculation temps */
130
#else
131
typedef INT32 FSERROR;          /* may need more than 16 bits */
132
typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
133
#endif
134
 
135
typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
136
 
137
 
138
/* Private subobject */
139
 
140
#define MAX_Q_COMPS 4           /* max components I can handle */
141
 
142
typedef struct {
143
  struct jpeg_color_quantizer pub; /* public fields */
144
 
145
  /* Initially allocated colormap is saved here */
146
  JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
147
  int sv_actual;                /* number of entries in use */
148
 
149
  JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
150
  /* colorindex[i][j] = index of color closest to pixel value j in component i,
151
   * premultiplied as described above.  Since colormap indexes must fit into
152
   * JSAMPLEs, the entries of this array will too.
153
   */
154
  boolean is_padded;            /* is the colorindex padded for odither? */
155
 
156
  int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
157
 
158
  /* Variables for ordered dithering */
159
  int row_index;                /* cur row's vertical index in dither matrix */
160
  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
161
 
162
  /* Variables for Floyd-Steinberg dithering */
163
  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
164
  boolean on_odd_row;           /* flag to remember which row we are on */
165
} my_cquantizer;
166
 
167
typedef my_cquantizer * my_cquantize_ptr;
168
 
169
 
170
/*
171
 * Policy-making subroutines for create_colormap and create_colorindex.
172
 * These routines determine the colormap to be used.  The rest of the module
173
 * only assumes that the colormap is orthogonal.
174
 *
175
 *  * select_ncolors decides how to divvy up the available colors
176
 *    among the components.
177
 *  * output_value defines the set of representative values for a component.
178
 *  * largest_input_value defines the mapping from input values to
179
 *    representative values for a component.
180
 * Note that the latter two routines may impose different policies for
181
 * different components, though this is not currently done.
182
 */
183
 
184
 
185
LOCAL(int)
186
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
187
/* Determine allocation of desired colors to components, */
188
/* and fill in Ncolors[] array to indicate choice. */
189
/* Return value is total number of colors (product of Ncolors[] values). */
190
{
191
  int nc = cinfo->out_color_components; /* number of color components */
192
  int max_colors = cinfo->desired_number_of_colors;
193
  int total_colors, iroot, i, j;
194
  boolean changed;
195
  long temp;
196
  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
197
 
198
  /* We can allocate at least the nc'th root of max_colors per component. */
199
  /* Compute floor(nc'th root of max_colors). */
200
  iroot = 1;
201
  do {
202
    iroot++;
203
    temp = iroot;               /* set temp = iroot ** nc */
204
    for (i = 1; i < nc; i++)
205
      temp *= iroot;
206
  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
207
  iroot--;                      /* now iroot = floor(root) */
208
 
209
  /* Must have at least 2 color values per component */
210
  if (iroot < 2)
211
    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
212
 
213
  /* Initialize to iroot color values for each component */
214
  total_colors = 1;
215
  for (i = 0; i < nc; i++) {
216
    Ncolors[i] = iroot;
217
    total_colors *= iroot;
218
  }
219
  /* We may be able to increment the count for one or more components without
220
   * exceeding max_colors, though we know not all can be incremented.
221
   * Sometimes, the first component can be incremented more than once!
222
   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
223
   * In RGB colorspace, try to increment G first, then R, then B.
224
   */
225
  do {
226
    changed = FALSE;
227
    for (i = 0; i < nc; i++) {
228
      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
229
      /* calculate new total_colors if Ncolors[j] is incremented */
230
      temp = total_colors / Ncolors[j];
231
      temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
232
      if (temp > (long) max_colors)
233
        break;                  /* won't fit, done with this pass */
234
      Ncolors[j]++;             /* OK, apply the increment */
235
      total_colors = (int) temp;
236
      changed = TRUE;
237
    }
238
  } while (changed);
239
 
240
  return total_colors;
241
}
242
 
243
 
244
LOCAL(int)
245
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
246
/* Return j'th output value, where j will range from 0 to maxj */
247
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
248
{
249
  /* We always provide values 0 and MAXJSAMPLE for each component;
250
   * any additional values are equally spaced between these limits.
251
   * (Forcing the upper and lower values to the limits ensures that
252
   * dithering can't produce a color outside the selected gamut.)
253
   */
254
  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
255
}
256
 
257
 
258
LOCAL(int)
259
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
260
/* Return largest input value that should map to j'th output value */
261
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
262
{
263
  /* Breakpoints are halfway between values returned by output_value */
264
  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
265
}
266
 
267
 
268
/*
269
 * Create the colormap.
270
 */
271
 
272
LOCAL(void)
273
create_colormap (j_decompress_ptr cinfo)
274
{
275
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
276
  JSAMPARRAY colormap;          /* Created colormap */
277
  int total_colors;             /* Number of distinct output colors */
278
  int i,j,k, nci, blksize, blkdist, ptr, val;
279
 
280
  /* Select number of colors for each component */
281
  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
282
 
283
  /* Report selected color counts */
284
  if (cinfo->out_color_components == 3)
285
    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
286
             total_colors, cquantize->Ncolors[0],
287
             cquantize->Ncolors[1], cquantize->Ncolors[2]);
288
  else
289
    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
290
 
291
  /* Allocate and fill in the colormap. */
292
  /* The colors are ordered in the map in standard row-major order, */
293
  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
294
 
295
  colormap = (*cinfo->mem->alloc_sarray)
296
    ((j_common_ptr) cinfo, JPOOL_IMAGE,
297
     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
298
 
299
  /* blksize is number of adjacent repeated entries for a component */
300
  /* blkdist is distance between groups of identical entries for a component */
301
  blkdist = total_colors;
302
 
303
  for (i = 0; i < cinfo->out_color_components; i++) {
304
    /* fill in colormap entries for i'th color component */
305
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
306
    blksize = blkdist / nci;
307
    for (j = 0; j < nci; j++) {
308
      /* Compute j'th output value (out of nci) for component */
309
      val = output_value(cinfo, i, j, nci-1);
310
      /* Fill in all colormap entries that have this value of this component */
311
      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
312
        /* fill in blksize entries beginning at ptr */
313
        for (k = 0; k < blksize; k++)
314
          colormap[i][ptr+k] = (JSAMPLE) val;
315
      }
316
    }
317
    blkdist = blksize;          /* blksize of this color is blkdist of next */
318
  }
319
 
320
  /* Save the colormap in private storage,
321
   * where it will survive color quantization mode changes.
322
   */
323
  cquantize->sv_colormap = colormap;
324
  cquantize->sv_actual = total_colors;
325
}
326
 
327
 
328
/*
329
 * Create the color index table.
330
 */
331
 
332
LOCAL(void)
333
create_colorindex (j_decompress_ptr cinfo)
334
{
335
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
336
  JSAMPROW indexptr;
337
  int i,j,k, nci, blksize, val, pad;
338
 
339
  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
340
   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
341
   * This is not necessary in the other dithering modes.  However, we
342
   * flag whether it was done in case user changes dithering mode.
343
   */
344
  if (cinfo->dither_mode == JDITHER_ORDERED) {
345
    pad = MAXJSAMPLE*2;
346
    cquantize->is_padded = TRUE;
347
  } else {
348
    pad = 0;
349
    cquantize->is_padded = FALSE;
350
  }
351
 
352
  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
353
    ((j_common_ptr) cinfo, JPOOL_IMAGE,
354
     (JDIMENSION) (MAXJSAMPLE+1 + pad),
355
     (JDIMENSION) cinfo->out_color_components);
356
 
357
  /* blksize is number of adjacent repeated entries for a component */
358
  blksize = cquantize->sv_actual;
359
 
360
  for (i = 0; i < cinfo->out_color_components; i++) {
361
    /* fill in colorindex entries for i'th color component */
362
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
363
    blksize = blksize / nci;
364
 
365
    /* adjust colorindex pointers to provide padding at negative indexes. */
366
    if (pad)
367
      cquantize->colorindex[i] += MAXJSAMPLE;
368
 
369
    /* in loop, val = index of current output value, */
370
    /* and k = largest j that maps to current val */
371
    indexptr = cquantize->colorindex[i];
372
    val = 0;
373
    k = largest_input_value(cinfo, i, 0, nci-1);
374
    for (j = 0; j <= MAXJSAMPLE; j++) {
375
      while (j > k)             /* advance val if past boundary */
376
        k = largest_input_value(cinfo, i, ++val, nci-1);
377
      /* premultiply so that no multiplication needed in main processing */
378
      indexptr[j] = (JSAMPLE) (val * blksize);
379
    }
380
    /* Pad at both ends if necessary */
381
    if (pad)
382
      for (j = 1; j <= MAXJSAMPLE; j++) {
383
        indexptr[-j] = indexptr[0];
384
        indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
385
      }
386
  }
387
}
388
 
389
 
390
/*
391
 * Create an ordered-dither array for a component having ncolors
392
 * distinct output values.
393
 */
394
 
395
LOCAL(ODITHER_MATRIX_PTR)
396
make_odither_array (j_decompress_ptr cinfo, int ncolors)
397
{
398
  ODITHER_MATRIX_PTR odither;
399
  int j,k;
400
  INT32 num,den;
401
 
402
  odither = (ODITHER_MATRIX_PTR)
403
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
404
                                SIZEOF(ODITHER_MATRIX));
405
  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
406
   * Hence the dither value for the matrix cell with fill order f
407
   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
408
   * On 16-bit-int machine, be careful to avoid overflow.
409
   */
410
  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
411
  for (j = 0; j < ODITHER_SIZE; j++) {
412
    for (k = 0; k < ODITHER_SIZE; k++) {
413
      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
414
            * MAXJSAMPLE;
415
      /* Ensure round towards zero despite C's lack of consistency
416
       * about rounding negative values in integer division...
417
       */
418
      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
419
    }
420
  }
421
  return odither;
422
}
423
 
424
 
425
/*
426
 * Create the ordered-dither tables.
427
 * Components having the same number of representative colors may
428
 * share a dither table.
429
 */
430
 
431
LOCAL(void)
432
create_odither_tables (j_decompress_ptr cinfo)
433
{
434
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
435
  ODITHER_MATRIX_PTR odither;
436
  int i, j, nci;
437
 
438
  for (i = 0; i < cinfo->out_color_components; i++) {
439
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
440
    odither = NULL;             /* search for matching prior component */
441
    for (j = 0; j < i; j++) {
442
      if (nci == cquantize->Ncolors[j]) {
443
        odither = cquantize->odither[j];
444
        break;
445
      }
446
    }
447
    if (odither == NULL)        /* need a new table? */
448
      odither = make_odither_array(cinfo, nci);
449
    cquantize->odither[i] = odither;
450
  }
451
}
452
 
453
 
454
/*
455
 * Map some rows of pixels to the output colormapped representation.
456
 */
457
 
458
METHODDEF(void)
459
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
460
                JSAMPARRAY output_buf, int num_rows)
461
/* General case, no dithering */
462
{
463
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
464
  JSAMPARRAY colorindex = cquantize->colorindex;
465
  register int pixcode, ci;
466
  register JSAMPROW ptrin, ptrout;
467
  int row;
468
  JDIMENSION col;
469
  JDIMENSION width = cinfo->output_width;
470
  register int nc = cinfo->out_color_components;
471
 
472
  for (row = 0; row < num_rows; row++) {
473
    ptrin = input_buf[row];
474
    ptrout = output_buf[row];
475
    for (col = width; col > 0; col--) {
476
      pixcode = 0;
477
      for (ci = 0; ci < nc; ci++) {
478
        pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
479
      }
480
      *ptrout++ = (JSAMPLE) pixcode;
481
    }
482
  }
483
}
484
 
485
 
486
METHODDEF(void)
487
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
488
                 JSAMPARRAY output_buf, int num_rows)
489
/* Fast path for out_color_components==3, no dithering */
490
{
491
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
492
  register int pixcode;
493
  register JSAMPROW ptrin, ptrout;
494
  JSAMPROW colorindex0 = cquantize->colorindex[0];
495
  JSAMPROW colorindex1 = cquantize->colorindex[1];
496
  JSAMPROW colorindex2 = cquantize->colorindex[2];
497
  int row;
498
  JDIMENSION col;
499
  JDIMENSION width = cinfo->output_width;
500
 
501
  for (row = 0; row < num_rows; row++) {
502
    ptrin = input_buf[row];
503
    ptrout = output_buf[row];
504
    for (col = width; col > 0; col--) {
505
      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
506
      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
507
      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
508
      *ptrout++ = (JSAMPLE) pixcode;
509
    }
510
  }
511
}
512
 
513
 
514
METHODDEF(void)
515
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
516
                     JSAMPARRAY output_buf, int num_rows)
517
/* General case, with ordered dithering */
518
{
519
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
520
  register JSAMPROW input_ptr;
521
  register JSAMPROW output_ptr;
522
  JSAMPROW colorindex_ci;
523
  int * dither;                 /* points to active row of dither matrix */
524
  int row_index, col_index;     /* current indexes into dither matrix */
525
  int nc = cinfo->out_color_components;
526
  int ci;
527
  int row;
528
  JDIMENSION col;
529
  JDIMENSION width = cinfo->output_width;
530
 
531
  for (row = 0; row < num_rows; row++) {
532
    /* Initialize output values to 0 so can process components separately */
533
    jzero_far((void FAR *) output_buf[row],
534
              (size_t) (width * SIZEOF(JSAMPLE)));
535
    row_index = cquantize->row_index;
536
    for (ci = 0; ci < nc; ci++) {
537
      input_ptr = input_buf[row] + ci;
538
      output_ptr = output_buf[row];
539
      colorindex_ci = cquantize->colorindex[ci];
540
      dither = cquantize->odither[ci][row_index];
541
      col_index = 0;
542
 
543
      for (col = width; col > 0; col--) {
544
        /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
545
         * select output value, accumulate into output code for this pixel.
546
         * Range-limiting need not be done explicitly, as we have extended
547
         * the colorindex table to produce the right answers for out-of-range
548
         * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
549
         * required amount of padding.
550
         */
551
        *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
552
        input_ptr += nc;
553
        output_ptr++;
554
        col_index = (col_index + 1) & ODITHER_MASK;
555
      }
556
    }
557
    /* Advance row index for next row */
558
    row_index = (row_index + 1) & ODITHER_MASK;
559
    cquantize->row_index = row_index;
560
  }
561
}
562
 
563
 
564
METHODDEF(void)
565
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
566
                      JSAMPARRAY output_buf, int num_rows)
567
/* Fast path for out_color_components==3, with ordered dithering */
568
{
569
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
570
  register int pixcode;
571
  register JSAMPROW input_ptr;
572
  register JSAMPROW output_ptr;
573
  JSAMPROW colorindex0 = cquantize->colorindex[0];
574
  JSAMPROW colorindex1 = cquantize->colorindex[1];
575
  JSAMPROW colorindex2 = cquantize->colorindex[2];
576
  int * dither0;                /* points to active row of dither matrix */
577
  int * dither1;
578
  int * dither2;
579
  int row_index, col_index;     /* current indexes into dither matrix */
580
  int row;
581
  JDIMENSION col;
582
  JDIMENSION width = cinfo->output_width;
583
 
584
  for (row = 0; row < num_rows; row++) {
585
    row_index = cquantize->row_index;
586
    input_ptr = input_buf[row];
587
    output_ptr = output_buf[row];
588
    dither0 = cquantize->odither[0][row_index];
589
    dither1 = cquantize->odither[1][row_index];
590
    dither2 = cquantize->odither[2][row_index];
591
    col_index = 0;
592
 
593
    for (col = width; col > 0; col--) {
594
      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
595
                                        dither0[col_index]]);
596
      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
597
                                        dither1[col_index]]);
598
      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
599
                                        dither2[col_index]]);
600
      *output_ptr++ = (JSAMPLE) pixcode;
601
      col_index = (col_index + 1) & ODITHER_MASK;
602
    }
603
    row_index = (row_index + 1) & ODITHER_MASK;
604
    cquantize->row_index = row_index;
605
  }
606
}
607
 
608
 
609
METHODDEF(void)
610
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
611
                    JSAMPARRAY output_buf, int num_rows)
612
/* General case, with Floyd-Steinberg dithering */
613
{
614
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
615
  register LOCFSERROR cur;      /* current error or pixel value */
616
  LOCFSERROR belowerr;          /* error for pixel below cur */
617
  LOCFSERROR bpreverr;          /* error for below/prev col */
618
  LOCFSERROR bnexterr;          /* error for below/next col */
619
  LOCFSERROR delta;
620
  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
621
  register JSAMPROW input_ptr;
622
  register JSAMPROW output_ptr;
623
  JSAMPROW colorindex_ci;
624
  JSAMPROW colormap_ci;
625
  int pixcode;
626
  int nc = cinfo->out_color_components;
627
  int dir;                      /* 1 for left-to-right, -1 for right-to-left */
628
  int dirnc;                    /* dir * nc */
629
  int ci;
630
  int row;
631
  JDIMENSION col;
632
  JDIMENSION width = cinfo->output_width;
633
  JSAMPLE *range_limit = cinfo->sample_range_limit;
634
  SHIFT_TEMPS
635
 
636
  for (row = 0; row < num_rows; row++) {
637
    /* Initialize output values to 0 so can process components separately */
638
    jzero_far((void FAR *) output_buf[row],
639
              (size_t) (width * SIZEOF(JSAMPLE)));
640
    for (ci = 0; ci < nc; ci++) {
641
      input_ptr = input_buf[row] + ci;
642
      output_ptr = output_buf[row];
643
      if (cquantize->on_odd_row) {
644
        /* work right to left in this row */
645
        input_ptr += (width-1) * nc; /* so point to rightmost pixel */
646
        output_ptr += width-1;
647
        dir = -1;
648
        dirnc = -nc;
649
        errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
650
      } else {
651
        /* work left to right in this row */
652
        dir = 1;
653
        dirnc = nc;
654
        errorptr = cquantize->fserrors[ci]; /* => entry before first column */
655
      }
656
      colorindex_ci = cquantize->colorindex[ci];
657
      colormap_ci = cquantize->sv_colormap[ci];
658
      /* Preset error values: no error propagated to first pixel from left */
659
      cur = 0;
660
      /* and no error propagated to row below yet */
661
      belowerr = bpreverr = 0;
662
 
663
      for (col = width; col > 0; col--) {
664
        /* cur holds the error propagated from the previous pixel on the
665
         * current line.  Add the error propagated from the previous line
666
         * to form the complete error correction term for this pixel, and
667
         * round the error term (which is expressed * 16) to an integer.
668
         * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
669
         * for either sign of the error value.
670
         * Note: errorptr points to *previous* column's array entry.
671
         */
672
        cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
673
        /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
674
         * The maximum error is +- MAXJSAMPLE; this sets the required size
675
         * of the range_limit array.
676
         */
677
        cur += GETJSAMPLE(*input_ptr);
678
        cur = GETJSAMPLE(range_limit[cur]);
679
        /* Select output value, accumulate into output code for this pixel */
680
        pixcode = GETJSAMPLE(colorindex_ci[cur]);
681
        *output_ptr += (JSAMPLE) pixcode;
682
        /* Compute actual representation error at this pixel */
683
        /* Note: we can do this even though we don't have the final */
684
        /* pixel code, because the colormap is orthogonal. */
685
        cur -= GETJSAMPLE(colormap_ci[pixcode]);
686
        /* Compute error fractions to be propagated to adjacent pixels.
687
         * Add these into the running sums, and simultaneously shift the
688
         * next-line error sums left by 1 column.
689
         */
690
        bnexterr = cur;
691
        delta = cur * 2;
692
        cur += delta;           /* form error * 3 */
693
        errorptr[0] = (FSERROR) (bpreverr + cur);
694
        cur += delta;           /* form error * 5 */
695
        bpreverr = belowerr + cur;
696
        belowerr = bnexterr;
697
        cur += delta;           /* form error * 7 */
698
        /* At this point cur contains the 7/16 error value to be propagated
699
         * to the next pixel on the current line, and all the errors for the
700
         * next line have been shifted over. We are therefore ready to move on.
701
         */
702
        input_ptr += dirnc;     /* advance input ptr to next column */
703
        output_ptr += dir;      /* advance output ptr to next column */
704
        errorptr += dir;        /* advance errorptr to current column */
705
      }
706
      /* Post-loop cleanup: we must unload the final error value into the
707
       * final fserrors[] entry.  Note we need not unload belowerr because
708
       * it is for the dummy column before or after the actual array.
709
       */
710
      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
711
    }
712
    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
713
  }
714
}
715
 
716
 
717
/*
718
 * Allocate workspace for Floyd-Steinberg errors.
719
 */
720
 
721
LOCAL(void)
722
alloc_fs_workspace (j_decompress_ptr cinfo)
723
{
724
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
725
  size_t arraysize;
726
  int i;
727
 
728
  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
729
  for (i = 0; i < cinfo->out_color_components; i++) {
730
    cquantize->fserrors[i] = (FSERRPTR)
731
      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
732
  }
733
}
734
 
735
 
736
/*
737
 * Initialize for one-pass color quantization.
738
 */
739
 
740
METHODDEF(void)
741
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
742
{
743
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
744
  size_t arraysize;
745
  int i;
746
 
747
  /* Install my colormap. */
748
  cinfo->colormap = cquantize->sv_colormap;
749
  cinfo->actual_number_of_colors = cquantize->sv_actual;
750
 
751
  /* Initialize for desired dithering mode. */
752
  switch (cinfo->dither_mode) {
753
  case JDITHER_NONE:
754
    if (cinfo->out_color_components == 3)
755
      cquantize->pub.color_quantize = color_quantize3;
756
    else
757
      cquantize->pub.color_quantize = color_quantize;
758
    break;
759
  case JDITHER_ORDERED:
760
    if (cinfo->out_color_components == 3)
761
      cquantize->pub.color_quantize = quantize3_ord_dither;
762
    else
763
      cquantize->pub.color_quantize = quantize_ord_dither;
764
    cquantize->row_index = 0;    /* initialize state for ordered dither */
765
    /* If user changed to ordered dither from another mode,
766
     * we must recreate the color index table with padding.
767
     * This will cost extra space, but probably isn't very likely.
768
     */
769
    if (! cquantize->is_padded)
770
      create_colorindex(cinfo);
771
    /* Create ordered-dither tables if we didn't already. */
772
    if (cquantize->odither[0] == NULL)
773
      create_odither_tables(cinfo);
774
    break;
775
  case JDITHER_FS:
776
    cquantize->pub.color_quantize = quantize_fs_dither;
777
    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
778
    /* Allocate Floyd-Steinberg workspace if didn't already. */
779
    if (cquantize->fserrors[0] == NULL)
780
      alloc_fs_workspace(cinfo);
781
    /* Initialize the propagated errors to zero. */
782
    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
783
    for (i = 0; i < cinfo->out_color_components; i++)
784
      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
785
    break;
786
  default:
787
    ERREXIT(cinfo, JERR_NOT_COMPILED);
788
    break;
789
  }
790
}
791
 
792
 
793
/*
794
 * Finish up at the end of the pass.
795
 */
796
 
797
METHODDEF(void)
798
finish_pass_1_quant (j_decompress_ptr cinfo)
799
{
800
  /* no work in 1-pass case */
801
}
802
 
803
 
804
/*
805
 * Switch to a new external colormap between output passes.
806
 * Shouldn't get to this module!
807
 */
808
 
809
METHODDEF(void)
810
new_color_map_1_quant (j_decompress_ptr cinfo)
811
{
812
  ERREXIT(cinfo, JERR_MODE_CHANGE);
813
}
814
 
815
 
816
/*
817
 * Module initialization routine for 1-pass color quantization.
818
 */
819
 
820
GLOBAL(void)
821
jinit_1pass_quantizer (j_decompress_ptr cinfo)
822
{
823
  my_cquantize_ptr cquantize;
824
 
825
  cquantize = (my_cquantize_ptr)
826
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
827
                                SIZEOF(my_cquantizer));
828
  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
829
  cquantize->pub.start_pass = start_pass_1_quant;
830
  cquantize->pub.finish_pass = finish_pass_1_quant;
831
  cquantize->pub.new_color_map = new_color_map_1_quant;
832
  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
833
  cquantize->odither[0] = NULL;  /* Also flag odither arrays not allocated */
834
 
835
  /* Make sure my internal arrays won't overflow */
836
  if (cinfo->out_color_components > MAX_Q_COMPS)
837
    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
838
  /* Make sure colormap indexes can be represented by JSAMPLEs */
839
  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
840
    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
841
 
842
  /* Create the colormap and color index table. */
843
  create_colormap(cinfo);
844
  create_colorindex(cinfo);
845
 
846
  /* Allocate Floyd-Steinberg workspace now if requested.
847
   * We do this now since it is FAR storage and may affect the memory
848
   * manager's space calculations.  If the user changes to FS dither
849
   * mode in a later pass, we will allocate the space then, and will
850
   * possibly overrun the max_memory_to_use setting.
851
   */
852
  if (cinfo->dither_mode == JDITHER_FS)
853
    alloc_fs_workspace(cinfo);
854
}
855
 
856
#endif /* QUANT_1PASS_SUPPORTED */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.