OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [services/] [gfx/] [mw/] [v2_0/] [src/] [jpeg-6b/] [jquant2.c] - Blame information for rev 174

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
/*
2
 * jquant2.c
3
 *
4
 * Copyright (C) 1991-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains 2-pass color quantization (color mapping) routines.
9
 * These routines provide selection of a custom color map for an image,
10
 * followed by mapping of the image to that color map, with optional
11
 * Floyd-Steinberg dithering.
12
 * It is also possible to use just the second pass to map to an arbitrary
13
 * externally-given color map.
14
 *
15
 * Note: ordered dithering is not supported, since there isn't any fast
16
 * way to compute intercolor distances; it's unclear that ordered dither's
17
 * fundamental assumptions even hold with an irregularly spaced color map.
18
 */
19
 
20
#define JPEG_INTERNALS
21
#include "jinclude.h"
22
#include "jpeglib.h"
23
 
24
#ifdef QUANT_2PASS_SUPPORTED
25
 
26
 
27
/*
28
 * This module implements the well-known Heckbert paradigm for color
29
 * quantization.  Most of the ideas used here can be traced back to
30
 * Heckbert's seminal paper
31
 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
32
 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
33
 *
34
 * In the first pass over the image, we accumulate a histogram showing the
35
 * usage count of each possible color.  To keep the histogram to a reasonable
36
 * size, we reduce the precision of the input; typical practice is to retain
37
 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
38
 * in the same histogram cell.
39
 *
40
 * Next, the color-selection step begins with a box representing the whole
41
 * color space, and repeatedly splits the "largest" remaining box until we
42
 * have as many boxes as desired colors.  Then the mean color in each
43
 * remaining box becomes one of the possible output colors.
44
 *
45
 * The second pass over the image maps each input pixel to the closest output
46
 * color (optionally after applying a Floyd-Steinberg dithering correction).
47
 * This mapping is logically trivial, but making it go fast enough requires
48
 * considerable care.
49
 *
50
 * Heckbert-style quantizers vary a good deal in their policies for choosing
51
 * the "largest" box and deciding where to cut it.  The particular policies
52
 * used here have proved out well in experimental comparisons, but better ones
53
 * may yet be found.
54
 *
55
 * In earlier versions of the IJG code, this module quantized in YCbCr color
56
 * space, processing the raw upsampled data without a color conversion step.
57
 * This allowed the color conversion math to be done only once per colormap
58
 * entry, not once per pixel.  However, that optimization precluded other
59
 * useful optimizations (such as merging color conversion with upsampling)
60
 * and it also interfered with desired capabilities such as quantizing to an
61
 * externally-supplied colormap.  We have therefore abandoned that approach.
62
 * The present code works in the post-conversion color space, typically RGB.
63
 *
64
 * To improve the visual quality of the results, we actually work in scaled
65
 * RGB space, giving G distances more weight than R, and R in turn more than
66
 * B.  To do everything in integer math, we must use integer scale factors.
67
 * The 2/3/1 scale factors used here correspond loosely to the relative
68
 * weights of the colors in the NTSC grayscale equation.
69
 * If you want to use this code to quantize a non-RGB color space, you'll
70
 * probably need to change these scale factors.
71
 */
72
 
73
#define R_SCALE 2               /* scale R distances by this much */
74
#define G_SCALE 3               /* scale G distances by this much */
75
#define B_SCALE 1               /* and B by this much */
76
 
77
/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
78
 * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
79
 * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
80
 * you'll get compile errors until you extend this logic.  In that case
81
 * you'll probably want to tweak the histogram sizes too.
82
 */
83
 
84
#if RGB_RED == 0
85
#define C0_SCALE R_SCALE
86
#endif
87
#if RGB_BLUE == 0
88
#define C0_SCALE B_SCALE
89
#endif
90
#if RGB_GREEN == 1
91
#define C1_SCALE G_SCALE
92
#endif
93
#if RGB_RED == 2
94
#define C2_SCALE R_SCALE
95
#endif
96
#if RGB_BLUE == 2
97
#define C2_SCALE B_SCALE
98
#endif
99
 
100
 
101
/*
102
 * First we have the histogram data structure and routines for creating it.
103
 *
104
 * The number of bits of precision can be adjusted by changing these symbols.
105
 * We recommend keeping 6 bits for G and 5 each for R and B.
106
 * If you have plenty of memory and cycles, 6 bits all around gives marginally
107
 * better results; if you are short of memory, 5 bits all around will save
108
 * some space but degrade the results.
109
 * To maintain a fully accurate histogram, we'd need to allocate a "long"
110
 * (preferably unsigned long) for each cell.  In practice this is overkill;
111
 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
112
 * and clamping those that do overflow to the maximum value will give close-
113
 * enough results.  This reduces the recommended histogram size from 256Kb
114
 * to 128Kb, which is a useful savings on PC-class machines.
115
 * (In the second pass the histogram space is re-used for pixel mapping data;
116
 * in that capacity, each cell must be able to store zero to the number of
117
 * desired colors.  16 bits/cell is plenty for that too.)
118
 * Since the JPEG code is intended to run in small memory model on 80x86
119
 * machines, we can't just allocate the histogram in one chunk.  Instead
120
 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
121
 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
122
 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
123
 * on 80x86 machines, the pointer row is in near memory but the actual
124
 * arrays are in far memory (same arrangement as we use for image arrays).
125
 */
126
 
127
#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
128
 
129
/* These will do the right thing for either R,G,B or B,G,R color order,
130
 * but you may not like the results for other color orders.
131
 */
132
#define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
133
#define HIST_C1_BITS  6         /* bits of precision in G histogram */
134
#define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
135
 
136
/* Number of elements along histogram axes. */
137
#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
138
#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
139
#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
140
 
141
/* These are the amounts to shift an input value to get a histogram index. */
142
#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
143
#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
144
#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
145
 
146
 
147
typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
148
 
149
typedef histcell FAR * histptr; /* for pointers to histogram cells */
150
 
151
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
152
typedef hist1d FAR * hist2d;    /* type for the 2nd-level pointers */
153
typedef hist2d * hist3d;        /* type for top-level pointer */
154
 
155
 
156
/* Declarations for Floyd-Steinberg dithering.
157
 *
158
 * Errors are accumulated into the array fserrors[], at a resolution of
159
 * 1/16th of a pixel count.  The error at a given pixel is propagated
160
 * to its not-yet-processed neighbors using the standard F-S fractions,
161
 *              ...     (here)  7/16
162
 *              3/16    5/16    1/16
163
 * We work left-to-right on even rows, right-to-left on odd rows.
164
 *
165
 * We can get away with a single array (holding one row's worth of errors)
166
 * by using it to store the current row's errors at pixel columns not yet
167
 * processed, but the next row's errors at columns already processed.  We
168
 * need only a few extra variables to hold the errors immediately around the
169
 * current column.  (If we are lucky, those variables are in registers, but
170
 * even if not, they're probably cheaper to access than array elements are.)
171
 *
172
 * The fserrors[] array has (#columns + 2) entries; the extra entry at
173
 * each end saves us from special-casing the first and last pixels.
174
 * Each entry is three values long, one value for each color component.
175
 *
176
 * Note: on a wide image, we might not have enough room in a PC's near data
177
 * segment to hold the error array; so it is allocated with alloc_large.
178
 */
179
 
180
#if BITS_IN_JSAMPLE == 8
181
typedef INT16 FSERROR;          /* 16 bits should be enough */
182
typedef int LOCFSERROR;         /* use 'int' for calculation temps */
183
#else
184
typedef INT32 FSERROR;          /* may need more than 16 bits */
185
typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
186
#endif
187
 
188
typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
189
 
190
 
191
/* Private subobject */
192
 
193
typedef struct {
194
  struct jpeg_color_quantizer pub; /* public fields */
195
 
196
  /* Space for the eventually created colormap is stashed here */
197
  JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
198
  int desired;                  /* desired # of colors = size of colormap */
199
 
200
  /* Variables for accumulating image statistics */
201
  hist3d histogram;             /* pointer to the histogram */
202
 
203
  boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
204
 
205
  /* Variables for Floyd-Steinberg dithering */
206
  FSERRPTR fserrors;            /* accumulated errors */
207
  boolean on_odd_row;           /* flag to remember which row we are on */
208
  int * error_limiter;          /* table for clamping the applied error */
209
} my_cquantizer;
210
 
211
typedef my_cquantizer * my_cquantize_ptr;
212
 
213
 
214
/*
215
 * Prescan some rows of pixels.
216
 * In this module the prescan simply updates the histogram, which has been
217
 * initialized to zeroes by start_pass.
218
 * An output_buf parameter is required by the method signature, but no data
219
 * is actually output (in fact the buffer controller is probably passing a
220
 * NULL pointer).
221
 */
222
 
223
METHODDEF(void)
224
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
225
                  JSAMPARRAY output_buf, int num_rows)
226
{
227
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
228
  register JSAMPROW ptr;
229
  register histptr histp;
230
  register hist3d histogram = cquantize->histogram;
231
  int row;
232
  JDIMENSION col;
233
  JDIMENSION width = cinfo->output_width;
234
 
235
  for (row = 0; row < num_rows; row++) {
236
    ptr = input_buf[row];
237
    for (col = width; col > 0; col--) {
238
      /* get pixel value and index into the histogram */
239
      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
240
                         [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
241
                         [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
242
      /* increment, check for overflow and undo increment if so. */
243
      if (++(*histp) <= 0)
244
        (*histp)--;
245
      ptr += 3;
246
    }
247
  }
248
}
249
 
250
 
251
/*
252
 * Next we have the really interesting routines: selection of a colormap
253
 * given the completed histogram.
254
 * These routines work with a list of "boxes", each representing a rectangular
255
 * subset of the input color space (to histogram precision).
256
 */
257
 
258
typedef struct {
259
  /* The bounds of the box (inclusive); expressed as histogram indexes */
260
  int c0min, c0max;
261
  int c1min, c1max;
262
  int c2min, c2max;
263
  /* The volume (actually 2-norm) of the box */
264
  INT32 volume;
265
  /* The number of nonzero histogram cells within this box */
266
  long colorcount;
267
} box;
268
 
269
typedef box * boxptr;
270
 
271
 
272
LOCAL(boxptr)
273
find_biggest_color_pop (boxptr boxlist, int numboxes)
274
/* Find the splittable box with the largest color population */
275
/* Returns NULL if no splittable boxes remain */
276
{
277
  register boxptr boxp;
278
  register int i;
279
  register long maxc = 0;
280
  boxptr which = NULL;
281
 
282
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
283
    if (boxp->colorcount > maxc && boxp->volume > 0) {
284
      which = boxp;
285
      maxc = boxp->colorcount;
286
    }
287
  }
288
  return which;
289
}
290
 
291
 
292
LOCAL(boxptr)
293
find_biggest_volume (boxptr boxlist, int numboxes)
294
/* Find the splittable box with the largest (scaled) volume */
295
/* Returns NULL if no splittable boxes remain */
296
{
297
  register boxptr boxp;
298
  register int i;
299
  register INT32 maxv = 0;
300
  boxptr which = NULL;
301
 
302
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
303
    if (boxp->volume > maxv) {
304
      which = boxp;
305
      maxv = boxp->volume;
306
    }
307
  }
308
  return which;
309
}
310
 
311
 
312
LOCAL(void)
313
update_box (j_decompress_ptr cinfo, boxptr boxp)
314
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
315
/* and recompute its volume and population */
316
{
317
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
318
  hist3d histogram = cquantize->histogram;
319
  histptr histp;
320
  int c0,c1,c2;
321
  int c0min,c0max,c1min,c1max,c2min,c2max;
322
  INT32 dist0,dist1,dist2;
323
  long ccount;
324
 
325
  c0min = boxp->c0min;  c0max = boxp->c0max;
326
  c1min = boxp->c1min;  c1max = boxp->c1max;
327
  c2min = boxp->c2min;  c2max = boxp->c2max;
328
 
329
  if (c0max > c0min)
330
    for (c0 = c0min; c0 <= c0max; c0++)
331
      for (c1 = c1min; c1 <= c1max; c1++) {
332
        histp = & histogram[c0][c1][c2min];
333
        for (c2 = c2min; c2 <= c2max; c2++)
334
          if (*histp++ != 0) {
335
            boxp->c0min = c0min = c0;
336
            goto have_c0min;
337
          }
338
      }
339
 have_c0min:
340
  if (c0max > c0min)
341
    for (c0 = c0max; c0 >= c0min; c0--)
342
      for (c1 = c1min; c1 <= c1max; c1++) {
343
        histp = & histogram[c0][c1][c2min];
344
        for (c2 = c2min; c2 <= c2max; c2++)
345
          if (*histp++ != 0) {
346
            boxp->c0max = c0max = c0;
347
            goto have_c0max;
348
          }
349
      }
350
 have_c0max:
351
  if (c1max > c1min)
352
    for (c1 = c1min; c1 <= c1max; c1++)
353
      for (c0 = c0min; c0 <= c0max; c0++) {
354
        histp = & histogram[c0][c1][c2min];
355
        for (c2 = c2min; c2 <= c2max; c2++)
356
          if (*histp++ != 0) {
357
            boxp->c1min = c1min = c1;
358
            goto have_c1min;
359
          }
360
      }
361
 have_c1min:
362
  if (c1max > c1min)
363
    for (c1 = c1max; c1 >= c1min; c1--)
364
      for (c0 = c0min; c0 <= c0max; c0++) {
365
        histp = & histogram[c0][c1][c2min];
366
        for (c2 = c2min; c2 <= c2max; c2++)
367
          if (*histp++ != 0) {
368
            boxp->c1max = c1max = c1;
369
            goto have_c1max;
370
          }
371
      }
372
 have_c1max:
373
  if (c2max > c2min)
374
    for (c2 = c2min; c2 <= c2max; c2++)
375
      for (c0 = c0min; c0 <= c0max; c0++) {
376
        histp = & histogram[c0][c1min][c2];
377
        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
378
          if (*histp != 0) {
379
            boxp->c2min = c2min = c2;
380
            goto have_c2min;
381
          }
382
      }
383
 have_c2min:
384
  if (c2max > c2min)
385
    for (c2 = c2max; c2 >= c2min; c2--)
386
      for (c0 = c0min; c0 <= c0max; c0++) {
387
        histp = & histogram[c0][c1min][c2];
388
        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
389
          if (*histp != 0) {
390
            boxp->c2max = c2max = c2;
391
            goto have_c2max;
392
          }
393
      }
394
 have_c2max:
395
 
396
  /* Update box volume.
397
   * We use 2-norm rather than real volume here; this biases the method
398
   * against making long narrow boxes, and it has the side benefit that
399
   * a box is splittable iff norm > 0.
400
   * Since the differences are expressed in histogram-cell units,
401
   * we have to shift back to JSAMPLE units to get consistent distances;
402
   * after which, we scale according to the selected distance scale factors.
403
   */
404
  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
405
  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
406
  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
407
  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
408
 
409
  /* Now scan remaining volume of box and compute population */
410
  ccount = 0;
411
  for (c0 = c0min; c0 <= c0max; c0++)
412
    for (c1 = c1min; c1 <= c1max; c1++) {
413
      histp = & histogram[c0][c1][c2min];
414
      for (c2 = c2min; c2 <= c2max; c2++, histp++)
415
        if (*histp != 0) {
416
          ccount++;
417
        }
418
    }
419
  boxp->colorcount = ccount;
420
}
421
 
422
 
423
LOCAL(int)
424
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
425
            int desired_colors)
426
/* Repeatedly select and split the largest box until we have enough boxes */
427
{
428
  int n,lb;
429
  int c0,c1,c2,cmax;
430
  register boxptr b1,b2;
431
 
432
  while (numboxes < desired_colors) {
433
    /* Select box to split.
434
     * Current algorithm: by population for first half, then by volume.
435
     */
436
    if (numboxes*2 <= desired_colors) {
437
      b1 = find_biggest_color_pop(boxlist, numboxes);
438
    } else {
439
      b1 = find_biggest_volume(boxlist, numboxes);
440
    }
441
    if (b1 == NULL)             /* no splittable boxes left! */
442
      break;
443
    b2 = &boxlist[numboxes];    /* where new box will go */
444
    /* Copy the color bounds to the new box. */
445
    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
446
    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
447
    /* Choose which axis to split the box on.
448
     * Current algorithm: longest scaled axis.
449
     * See notes in update_box about scaling distances.
450
     */
451
    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
452
    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
453
    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
454
    /* We want to break any ties in favor of green, then red, blue last.
455
     * This code does the right thing for R,G,B or B,G,R color orders only.
456
     */
457
#if RGB_RED == 0
458
    cmax = c1; n = 1;
459
    if (c0 > cmax) { cmax = c0; n = 0; }
460
    if (c2 > cmax) { n = 2; }
461
#else
462
    cmax = c1; n = 1;
463
    if (c2 > cmax) { cmax = c2; n = 2; }
464
    if (c0 > cmax) { n = 0; }
465
#endif
466
    /* Choose split point along selected axis, and update box bounds.
467
     * Current algorithm: split at halfway point.
468
     * (Since the box has been shrunk to minimum volume,
469
     * any split will produce two nonempty subboxes.)
470
     * Note that lb value is max for lower box, so must be < old max.
471
     */
472
    switch (n) {
473
    case 0:
474
      lb = (b1->c0max + b1->c0min) / 2;
475
      b1->c0max = lb;
476
      b2->c0min = lb+1;
477
      break;
478
    case 1:
479
      lb = (b1->c1max + b1->c1min) / 2;
480
      b1->c1max = lb;
481
      b2->c1min = lb+1;
482
      break;
483
    case 2:
484
      lb = (b1->c2max + b1->c2min) / 2;
485
      b1->c2max = lb;
486
      b2->c2min = lb+1;
487
      break;
488
    }
489
    /* Update stats for boxes */
490
    update_box(cinfo, b1);
491
    update_box(cinfo, b2);
492
    numboxes++;
493
  }
494
  return numboxes;
495
}
496
 
497
 
498
LOCAL(void)
499
compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
500
/* Compute representative color for a box, put it in colormap[icolor] */
501
{
502
  /* Current algorithm: mean weighted by pixels (not colors) */
503
  /* Note it is important to get the rounding correct! */
504
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
505
  hist3d histogram = cquantize->histogram;
506
  histptr histp;
507
  int c0,c1,c2;
508
  int c0min,c0max,c1min,c1max,c2min,c2max;
509
  long count;
510
  long total = 0;
511
  long c0total = 0;
512
  long c1total = 0;
513
  long c2total = 0;
514
 
515
  c0min = boxp->c0min;  c0max = boxp->c0max;
516
  c1min = boxp->c1min;  c1max = boxp->c1max;
517
  c2min = boxp->c2min;  c2max = boxp->c2max;
518
 
519
  for (c0 = c0min; c0 <= c0max; c0++)
520
    for (c1 = c1min; c1 <= c1max; c1++) {
521
      histp = & histogram[c0][c1][c2min];
522
      for (c2 = c2min; c2 <= c2max; c2++) {
523
        if ((count = *histp++) != 0) {
524
          total += count;
525
          c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
526
          c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
527
          c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
528
        }
529
      }
530
    }
531
 
532
  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
533
  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
534
  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
535
}
536
 
537
 
538
LOCAL(void)
539
select_colors (j_decompress_ptr cinfo, int desired_colors)
540
/* Master routine for color selection */
541
{
542
  boxptr boxlist;
543
  int numboxes;
544
  int i;
545
 
546
  /* Allocate workspace for box list */
547
  boxlist = (boxptr) (*cinfo->mem->alloc_small)
548
    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
549
  /* Initialize one box containing whole space */
550
  numboxes = 1;
551
  boxlist[0].c0min = 0;
552
  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
553
  boxlist[0].c1min = 0;
554
  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
555
  boxlist[0].c2min = 0;
556
  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
557
  /* Shrink it to actually-used volume and set its statistics */
558
  update_box(cinfo, & boxlist[0]);
559
  /* Perform median-cut to produce final box list */
560
  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
561
  /* Compute the representative color for each box, fill colormap */
562
  for (i = 0; i < numboxes; i++)
563
    compute_color(cinfo, & boxlist[i], i);
564
  cinfo->actual_number_of_colors = numboxes;
565
  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
566
}
567
 
568
 
569
/*
570
 * These routines are concerned with the time-critical task of mapping input
571
 * colors to the nearest color in the selected colormap.
572
 *
573
 * We re-use the histogram space as an "inverse color map", essentially a
574
 * cache for the results of nearest-color searches.  All colors within a
575
 * histogram cell will be mapped to the same colormap entry, namely the one
576
 * closest to the cell's center.  This may not be quite the closest entry to
577
 * the actual input color, but it's almost as good.  A zero in the cache
578
 * indicates we haven't found the nearest color for that cell yet; the array
579
 * is cleared to zeroes before starting the mapping pass.  When we find the
580
 * nearest color for a cell, its colormap index plus one is recorded in the
581
 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
582
 * when they need to use an unfilled entry in the cache.
583
 *
584
 * Our method of efficiently finding nearest colors is based on the "locally
585
 * sorted search" idea described by Heckbert and on the incremental distance
586
 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
587
 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
588
 * the distances from a given colormap entry to each cell of the histogram can
589
 * be computed quickly using an incremental method: the differences between
590
 * distances to adjacent cells themselves differ by a constant.  This allows a
591
 * fairly fast implementation of the "brute force" approach of computing the
592
 * distance from every colormap entry to every histogram cell.  Unfortunately,
593
 * it needs a work array to hold the best-distance-so-far for each histogram
594
 * cell (because the inner loop has to be over cells, not colormap entries).
595
 * The work array elements have to be INT32s, so the work array would need
596
 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
597
 *
598
 * To get around these problems, we apply Thomas' method to compute the
599
 * nearest colors for only the cells within a small subbox of the histogram.
600
 * The work array need be only as big as the subbox, so the memory usage
601
 * problem is solved.  Furthermore, we need not fill subboxes that are never
602
 * referenced in pass2; many images use only part of the color gamut, so a
603
 * fair amount of work is saved.  An additional advantage of this
604
 * approach is that we can apply Heckbert's locality criterion to quickly
605
 * eliminate colormap entries that are far away from the subbox; typically
606
 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
607
 * and we need not compute their distances to individual cells in the subbox.
608
 * The speed of this approach is heavily influenced by the subbox size: too
609
 * small means too much overhead, too big loses because Heckbert's criterion
610
 * can't eliminate as many colormap entries.  Empirically the best subbox
611
 * size seems to be about 1/512th of the histogram (1/8th in each direction).
612
 *
613
 * Thomas' article also describes a refined method which is asymptotically
614
 * faster than the brute-force method, but it is also far more complex and
615
 * cannot efficiently be applied to small subboxes.  It is therefore not
616
 * useful for programs intended to be portable to DOS machines.  On machines
617
 * with plenty of memory, filling the whole histogram in one shot with Thomas'
618
 * refined method might be faster than the present code --- but then again,
619
 * it might not be any faster, and it's certainly more complicated.
620
 */
621
 
622
 
623
/* log2(histogram cells in update box) for each axis; this can be adjusted */
624
#define BOX_C0_LOG  (HIST_C0_BITS-3)
625
#define BOX_C1_LOG  (HIST_C1_BITS-3)
626
#define BOX_C2_LOG  (HIST_C2_BITS-3)
627
 
628
#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
629
#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
630
#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
631
 
632
#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
633
#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
634
#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
635
 
636
 
637
/*
638
 * The next three routines implement inverse colormap filling.  They could
639
 * all be folded into one big routine, but splitting them up this way saves
640
 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
641
 * and may allow some compilers to produce better code by registerizing more
642
 * inner-loop variables.
643
 */
644
 
645
LOCAL(int)
646
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
647
                    JSAMPLE colorlist[])
648
/* Locate the colormap entries close enough to an update box to be candidates
649
 * for the nearest entry to some cell(s) in the update box.  The update box
650
 * is specified by the center coordinates of its first cell.  The number of
651
 * candidate colormap entries is returned, and their colormap indexes are
652
 * placed in colorlist[].
653
 * This routine uses Heckbert's "locally sorted search" criterion to select
654
 * the colors that need further consideration.
655
 */
656
{
657
  int numcolors = cinfo->actual_number_of_colors;
658
  int maxc0, maxc1, maxc2;
659
  int centerc0, centerc1, centerc2;
660
  int i, x, ncolors;
661
  INT32 minmaxdist, min_dist, max_dist, tdist;
662
  INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
663
 
664
  /* Compute true coordinates of update box's upper corner and center.
665
   * Actually we compute the coordinates of the center of the upper-corner
666
   * histogram cell, which are the upper bounds of the volume we care about.
667
   * Note that since ">>" rounds down, the "center" values may be closer to
668
   * min than to max; hence comparisons to them must be "<=", not "<".
669
   */
670
  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
671
  centerc0 = (minc0 + maxc0) >> 1;
672
  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
673
  centerc1 = (minc1 + maxc1) >> 1;
674
  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
675
  centerc2 = (minc2 + maxc2) >> 1;
676
 
677
  /* For each color in colormap, find:
678
   *  1. its minimum squared-distance to any point in the update box
679
   *     (zero if color is within update box);
680
   *  2. its maximum squared-distance to any point in the update box.
681
   * Both of these can be found by considering only the corners of the box.
682
   * We save the minimum distance for each color in mindist[];
683
   * only the smallest maximum distance is of interest.
684
   */
685
  minmaxdist = 0x7FFFFFFFL;
686
 
687
  for (i = 0; i < numcolors; i++) {
688
    /* We compute the squared-c0-distance term, then add in the other two. */
689
    x = GETJSAMPLE(cinfo->colormap[0][i]);
690
    if (x < minc0) {
691
      tdist = (x - minc0) * C0_SCALE;
692
      min_dist = tdist*tdist;
693
      tdist = (x - maxc0) * C0_SCALE;
694
      max_dist = tdist*tdist;
695
    } else if (x > maxc0) {
696
      tdist = (x - maxc0) * C0_SCALE;
697
      min_dist = tdist*tdist;
698
      tdist = (x - minc0) * C0_SCALE;
699
      max_dist = tdist*tdist;
700
    } else {
701
      /* within cell range so no contribution to min_dist */
702
      min_dist = 0;
703
      if (x <= centerc0) {
704
        tdist = (x - maxc0) * C0_SCALE;
705
        max_dist = tdist*tdist;
706
      } else {
707
        tdist = (x - minc0) * C0_SCALE;
708
        max_dist = tdist*tdist;
709
      }
710
    }
711
 
712
    x = GETJSAMPLE(cinfo->colormap[1][i]);
713
    if (x < minc1) {
714
      tdist = (x - minc1) * C1_SCALE;
715
      min_dist += tdist*tdist;
716
      tdist = (x - maxc1) * C1_SCALE;
717
      max_dist += tdist*tdist;
718
    } else if (x > maxc1) {
719
      tdist = (x - maxc1) * C1_SCALE;
720
      min_dist += tdist*tdist;
721
      tdist = (x - minc1) * C1_SCALE;
722
      max_dist += tdist*tdist;
723
    } else {
724
      /* within cell range so no contribution to min_dist */
725
      if (x <= centerc1) {
726
        tdist = (x - maxc1) * C1_SCALE;
727
        max_dist += tdist*tdist;
728
      } else {
729
        tdist = (x - minc1) * C1_SCALE;
730
        max_dist += tdist*tdist;
731
      }
732
    }
733
 
734
    x = GETJSAMPLE(cinfo->colormap[2][i]);
735
    if (x < minc2) {
736
      tdist = (x - minc2) * C2_SCALE;
737
      min_dist += tdist*tdist;
738
      tdist = (x - maxc2) * C2_SCALE;
739
      max_dist += tdist*tdist;
740
    } else if (x > maxc2) {
741
      tdist = (x - maxc2) * C2_SCALE;
742
      min_dist += tdist*tdist;
743
      tdist = (x - minc2) * C2_SCALE;
744
      max_dist += tdist*tdist;
745
    } else {
746
      /* within cell range so no contribution to min_dist */
747
      if (x <= centerc2) {
748
        tdist = (x - maxc2) * C2_SCALE;
749
        max_dist += tdist*tdist;
750
      } else {
751
        tdist = (x - minc2) * C2_SCALE;
752
        max_dist += tdist*tdist;
753
      }
754
    }
755
 
756
    mindist[i] = min_dist;      /* save away the results */
757
    if (max_dist < minmaxdist)
758
      minmaxdist = max_dist;
759
  }
760
 
761
  /* Now we know that no cell in the update box is more than minmaxdist
762
   * away from some colormap entry.  Therefore, only colors that are
763
   * within minmaxdist of some part of the box need be considered.
764
   */
765
  ncolors = 0;
766
  for (i = 0; i < numcolors; i++) {
767
    if (mindist[i] <= minmaxdist)
768
      colorlist[ncolors++] = (JSAMPLE) i;
769
  }
770
  return ncolors;
771
}
772
 
773
 
774
LOCAL(void)
775
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
776
                  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
777
/* Find the closest colormap entry for each cell in the update box,
778
 * given the list of candidate colors prepared by find_nearby_colors.
779
 * Return the indexes of the closest entries in the bestcolor[] array.
780
 * This routine uses Thomas' incremental distance calculation method to
781
 * find the distance from a colormap entry to successive cells in the box.
782
 */
783
{
784
  int ic0, ic1, ic2;
785
  int i, icolor;
786
  register INT32 * bptr;        /* pointer into bestdist[] array */
787
  JSAMPLE * cptr;               /* pointer into bestcolor[] array */
788
  INT32 dist0, dist1;           /* initial distance values */
789
  register INT32 dist2;         /* current distance in inner loop */
790
  INT32 xx0, xx1;               /* distance increments */
791
  register INT32 xx2;
792
  INT32 inc0, inc1, inc2;       /* initial values for increments */
793
  /* This array holds the distance to the nearest-so-far color for each cell */
794
  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
795
 
796
  /* Initialize best-distance for each cell of the update box */
797
  bptr = bestdist;
798
  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
799
    *bptr++ = 0x7FFFFFFFL;
800
 
801
  /* For each color selected by find_nearby_colors,
802
   * compute its distance to the center of each cell in the box.
803
   * If that's less than best-so-far, update best distance and color number.
804
   */
805
 
806
  /* Nominal steps between cell centers ("x" in Thomas article) */
807
#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
808
#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
809
#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
810
 
811
  for (i = 0; i < numcolors; i++) {
812
    icolor = GETJSAMPLE(colorlist[i]);
813
    /* Compute (square of) distance from minc0/c1/c2 to this color */
814
    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
815
    dist0 = inc0*inc0;
816
    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
817
    dist0 += inc1*inc1;
818
    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
819
    dist0 += inc2*inc2;
820
    /* Form the initial difference increments */
821
    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
822
    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
823
    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
824
    /* Now loop over all cells in box, updating distance per Thomas method */
825
    bptr = bestdist;
826
    cptr = bestcolor;
827
    xx0 = inc0;
828
    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
829
      dist1 = dist0;
830
      xx1 = inc1;
831
      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
832
        dist2 = dist1;
833
        xx2 = inc2;
834
        for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
835
          if (dist2 < *bptr) {
836
            *bptr = dist2;
837
            *cptr = (JSAMPLE) icolor;
838
          }
839
          dist2 += xx2;
840
          xx2 += 2 * STEP_C2 * STEP_C2;
841
          bptr++;
842
          cptr++;
843
        }
844
        dist1 += xx1;
845
        xx1 += 2 * STEP_C1 * STEP_C1;
846
      }
847
      dist0 += xx0;
848
      xx0 += 2 * STEP_C0 * STEP_C0;
849
    }
850
  }
851
}
852
 
853
 
854
LOCAL(void)
855
fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
856
/* Fill the inverse-colormap entries in the update box that contains */
857
/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
858
/* we can fill as many others as we wish.) */
859
{
860
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
861
  hist3d histogram = cquantize->histogram;
862
  int minc0, minc1, minc2;      /* lower left corner of update box */
863
  int ic0, ic1, ic2;
864
  register JSAMPLE * cptr;      /* pointer into bestcolor[] array */
865
  register histptr cachep;      /* pointer into main cache array */
866
  /* This array lists the candidate colormap indexes. */
867
  JSAMPLE colorlist[MAXNUMCOLORS];
868
  int numcolors;                /* number of candidate colors */
869
  /* This array holds the actually closest colormap index for each cell. */
870
  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
871
 
872
  /* Convert cell coordinates to update box ID */
873
  c0 >>= BOX_C0_LOG;
874
  c1 >>= BOX_C1_LOG;
875
  c2 >>= BOX_C2_LOG;
876
 
877
  /* Compute true coordinates of update box's origin corner.
878
   * Actually we compute the coordinates of the center of the corner
879
   * histogram cell, which are the lower bounds of the volume we care about.
880
   */
881
  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
882
  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
883
  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
884
 
885
  /* Determine which colormap entries are close enough to be candidates
886
   * for the nearest entry to some cell in the update box.
887
   */
888
  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
889
 
890
  /* Determine the actually nearest colors. */
891
  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
892
                   bestcolor);
893
 
894
  /* Save the best color numbers (plus 1) in the main cache array */
895
  c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
896
  c1 <<= BOX_C1_LOG;
897
  c2 <<= BOX_C2_LOG;
898
  cptr = bestcolor;
899
  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
900
    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
901
      cachep = & histogram[c0+ic0][c1+ic1][c2];
902
      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
903
        *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
904
      }
905
    }
906
  }
907
}
908
 
909
 
910
/*
911
 * Map some rows of pixels to the output colormapped representation.
912
 */
913
 
914
METHODDEF(void)
915
pass2_no_dither (j_decompress_ptr cinfo,
916
                 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
917
/* This version performs no dithering */
918
{
919
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
920
  hist3d histogram = cquantize->histogram;
921
  register JSAMPROW inptr, outptr;
922
  register histptr cachep;
923
  register int c0, c1, c2;
924
  int row;
925
  JDIMENSION col;
926
  JDIMENSION width = cinfo->output_width;
927
 
928
  for (row = 0; row < num_rows; row++) {
929
    inptr = input_buf[row];
930
    outptr = output_buf[row];
931
    for (col = width; col > 0; col--) {
932
      /* get pixel value and index into the cache */
933
      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
934
      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
935
      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
936
      cachep = & histogram[c0][c1][c2];
937
      /* If we have not seen this color before, find nearest colormap entry */
938
      /* and update the cache */
939
      if (*cachep == 0)
940
        fill_inverse_cmap(cinfo, c0,c1,c2);
941
      /* Now emit the colormap index for this cell */
942
      *outptr++ = (JSAMPLE) (*cachep - 1);
943
    }
944
  }
945
}
946
 
947
 
948
METHODDEF(void)
949
pass2_fs_dither (j_decompress_ptr cinfo,
950
                 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
951
/* This version performs Floyd-Steinberg dithering */
952
{
953
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
954
  hist3d histogram = cquantize->histogram;
955
  register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
956
  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
957
  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
958
  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
959
  JSAMPROW inptr;               /* => current input pixel */
960
  JSAMPROW outptr;              /* => current output pixel */
961
  histptr cachep;
962
  int dir;                      /* +1 or -1 depending on direction */
963
  int dir3;                     /* 3*dir, for advancing inptr & errorptr */
964
  int row;
965
  JDIMENSION col;
966
  JDIMENSION width = cinfo->output_width;
967
  JSAMPLE *range_limit = cinfo->sample_range_limit;
968
  int *error_limit = cquantize->error_limiter;
969
  JSAMPROW colormap0 = cinfo->colormap[0];
970
  JSAMPROW colormap1 = cinfo->colormap[1];
971
  JSAMPROW colormap2 = cinfo->colormap[2];
972
  SHIFT_TEMPS
973
 
974
  for (row = 0; row < num_rows; row++) {
975
    inptr = input_buf[row];
976
    outptr = output_buf[row];
977
    if (cquantize->on_odd_row) {
978
      /* work right to left in this row */
979
      inptr += (width-1) * 3;   /* so point to rightmost pixel */
980
      outptr += width-1;
981
      dir = -1;
982
      dir3 = -3;
983
      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
984
      cquantize->on_odd_row = FALSE; /* flip for next time */
985
    } else {
986
      /* work left to right in this row */
987
      dir = 1;
988
      dir3 = 3;
989
      errorptr = cquantize->fserrors; /* => entry before first real column */
990
      cquantize->on_odd_row = TRUE; /* flip for next time */
991
    }
992
    /* Preset error values: no error propagated to first pixel from left */
993
    cur0 = cur1 = cur2 = 0;
994
    /* and no error propagated to row below yet */
995
    belowerr0 = belowerr1 = belowerr2 = 0;
996
    bpreverr0 = bpreverr1 = bpreverr2 = 0;
997
 
998
    for (col = width; col > 0; col--) {
999
      /* curN holds the error propagated from the previous pixel on the
1000
       * current line.  Add the error propagated from the previous line
1001
       * to form the complete error correction term for this pixel, and
1002
       * round the error term (which is expressed * 16) to an integer.
1003
       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1004
       * for either sign of the error value.
1005
       * Note: errorptr points to *previous* column's array entry.
1006
       */
1007
      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1008
      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1009
      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1010
      /* Limit the error using transfer function set by init_error_limit.
1011
       * See comments with init_error_limit for rationale.
1012
       */
1013
      cur0 = error_limit[cur0];
1014
      cur1 = error_limit[cur1];
1015
      cur2 = error_limit[cur2];
1016
      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1017
       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1018
       * this sets the required size of the range_limit array.
1019
       */
1020
      cur0 += GETJSAMPLE(inptr[0]);
1021
      cur1 += GETJSAMPLE(inptr[1]);
1022
      cur2 += GETJSAMPLE(inptr[2]);
1023
      cur0 = GETJSAMPLE(range_limit[cur0]);
1024
      cur1 = GETJSAMPLE(range_limit[cur1]);
1025
      cur2 = GETJSAMPLE(range_limit[cur2]);
1026
      /* Index into the cache with adjusted pixel value */
1027
      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1028
      /* If we have not seen this color before, find nearest colormap */
1029
      /* entry and update the cache */
1030
      if (*cachep == 0)
1031
        fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1032
      /* Now emit the colormap index for this cell */
1033
      { register int pixcode = *cachep - 1;
1034
        *outptr = (JSAMPLE) pixcode;
1035
        /* Compute representation error for this pixel */
1036
        cur0 -= GETJSAMPLE(colormap0[pixcode]);
1037
        cur1 -= GETJSAMPLE(colormap1[pixcode]);
1038
        cur2 -= GETJSAMPLE(colormap2[pixcode]);
1039
      }
1040
      /* Compute error fractions to be propagated to adjacent pixels.
1041
       * Add these into the running sums, and simultaneously shift the
1042
       * next-line error sums left by 1 column.
1043
       */
1044
      { register LOCFSERROR bnexterr, delta;
1045
 
1046
        bnexterr = cur0;        /* Process component 0 */
1047
        delta = cur0 * 2;
1048
        cur0 += delta;          /* form error * 3 */
1049
        errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1050
        cur0 += delta;          /* form error * 5 */
1051
        bpreverr0 = belowerr0 + cur0;
1052
        belowerr0 = bnexterr;
1053
        cur0 += delta;          /* form error * 7 */
1054
        bnexterr = cur1;        /* Process component 1 */
1055
        delta = cur1 * 2;
1056
        cur1 += delta;          /* form error * 3 */
1057
        errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1058
        cur1 += delta;          /* form error * 5 */
1059
        bpreverr1 = belowerr1 + cur1;
1060
        belowerr1 = bnexterr;
1061
        cur1 += delta;          /* form error * 7 */
1062
        bnexterr = cur2;        /* Process component 2 */
1063
        delta = cur2 * 2;
1064
        cur2 += delta;          /* form error * 3 */
1065
        errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1066
        cur2 += delta;          /* form error * 5 */
1067
        bpreverr2 = belowerr2 + cur2;
1068
        belowerr2 = bnexterr;
1069
        cur2 += delta;          /* form error * 7 */
1070
      }
1071
      /* At this point curN contains the 7/16 error value to be propagated
1072
       * to the next pixel on the current line, and all the errors for the
1073
       * next line have been shifted over.  We are therefore ready to move on.
1074
       */
1075
      inptr += dir3;            /* Advance pixel pointers to next column */
1076
      outptr += dir;
1077
      errorptr += dir3;         /* advance errorptr to current column */
1078
    }
1079
    /* Post-loop cleanup: we must unload the final error values into the
1080
     * final fserrors[] entry.  Note we need not unload belowerrN because
1081
     * it is for the dummy column before or after the actual array.
1082
     */
1083
    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1084
    errorptr[1] = (FSERROR) bpreverr1;
1085
    errorptr[2] = (FSERROR) bpreverr2;
1086
  }
1087
}
1088
 
1089
 
1090
/*
1091
 * Initialize the error-limiting transfer function (lookup table).
1092
 * The raw F-S error computation can potentially compute error values of up to
1093
 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1094
 * much less, otherwise obviously wrong pixels will be created.  (Typical
1095
 * effects include weird fringes at color-area boundaries, isolated bright
1096
 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1097
 * is to ensure that the "corners" of the color cube are allocated as output
1098
 * colors; then repeated errors in the same direction cannot cause cascading
1099
 * error buildup.  However, that only prevents the error from getting
1100
 * completely out of hand; Aaron Giles reports that error limiting improves
1101
 * the results even with corner colors allocated.
1102
 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1103
 * well, but the smoother transfer function used below is even better.  Thanks
1104
 * to Aaron Giles for this idea.
1105
 */
1106
 
1107
LOCAL(void)
1108
init_error_limit (j_decompress_ptr cinfo)
1109
/* Allocate and fill in the error_limiter table */
1110
{
1111
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1112
  int * table;
1113
  int in, out;
1114
 
1115
  table = (int *) (*cinfo->mem->alloc_small)
1116
    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1117
  table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1118
  cquantize->error_limiter = table;
1119
 
1120
#define STEPSIZE ((MAXJSAMPLE+1)/16)
1121
  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1122
  out = 0;
1123
  for (in = 0; in < STEPSIZE; in++, out++) {
1124
    table[in] = out; table[-in] = -out;
1125
  }
1126
  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1127
  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1128
    table[in] = out; table[-in] = -out;
1129
  }
1130
  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1131
  for (; in <= MAXJSAMPLE; in++) {
1132
    table[in] = out; table[-in] = -out;
1133
  }
1134
#undef STEPSIZE
1135
}
1136
 
1137
 
1138
/*
1139
 * Finish up at the end of each pass.
1140
 */
1141
 
1142
METHODDEF(void)
1143
finish_pass1 (j_decompress_ptr cinfo)
1144
{
1145
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1146
 
1147
  /* Select the representative colors and fill in cinfo->colormap */
1148
  cinfo->colormap = cquantize->sv_colormap;
1149
  select_colors(cinfo, cquantize->desired);
1150
  /* Force next pass to zero the color index table */
1151
  cquantize->needs_zeroed = TRUE;
1152
}
1153
 
1154
 
1155
METHODDEF(void)
1156
finish_pass2 (j_decompress_ptr cinfo)
1157
{
1158
  /* no work */
1159
}
1160
 
1161
 
1162
/*
1163
 * Initialize for each processing pass.
1164
 */
1165
 
1166
METHODDEF(void)
1167
start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1168
{
1169
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1170
  hist3d histogram = cquantize->histogram;
1171
  int i;
1172
 
1173
  /* Only F-S dithering or no dithering is supported. */
1174
  /* If user asks for ordered dither, give him F-S. */
1175
  if (cinfo->dither_mode != JDITHER_NONE)
1176
    cinfo->dither_mode = JDITHER_FS;
1177
 
1178
  if (is_pre_scan) {
1179
    /* Set up method pointers */
1180
    cquantize->pub.color_quantize = prescan_quantize;
1181
    cquantize->pub.finish_pass = finish_pass1;
1182
    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1183
  } else {
1184
    /* Set up method pointers */
1185
    if (cinfo->dither_mode == JDITHER_FS)
1186
      cquantize->pub.color_quantize = pass2_fs_dither;
1187
    else
1188
      cquantize->pub.color_quantize = pass2_no_dither;
1189
    cquantize->pub.finish_pass = finish_pass2;
1190
 
1191
    /* Make sure color count is acceptable */
1192
    i = cinfo->actual_number_of_colors;
1193
    if (i < 1)
1194
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1195
    if (i > MAXNUMCOLORS)
1196
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1197
 
1198
    if (cinfo->dither_mode == JDITHER_FS) {
1199
      size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1200
                                   (3 * SIZEOF(FSERROR)));
1201
      /* Allocate Floyd-Steinberg workspace if we didn't already. */
1202
      if (cquantize->fserrors == NULL)
1203
        cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1204
          ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1205
      /* Initialize the propagated errors to zero. */
1206
      jzero_far((void FAR *) cquantize->fserrors, arraysize);
1207
      /* Make the error-limit table if we didn't already. */
1208
      if (cquantize->error_limiter == NULL)
1209
        init_error_limit(cinfo);
1210
      cquantize->on_odd_row = FALSE;
1211
    }
1212
 
1213
  }
1214
  /* Zero the histogram or inverse color map, if necessary */
1215
  if (cquantize->needs_zeroed) {
1216
    for (i = 0; i < HIST_C0_ELEMS; i++) {
1217
      jzero_far((void FAR *) histogram[i],
1218
                HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1219
    }
1220
    cquantize->needs_zeroed = FALSE;
1221
  }
1222
}
1223
 
1224
 
1225
/*
1226
 * Switch to a new external colormap between output passes.
1227
 */
1228
 
1229
METHODDEF(void)
1230
new_color_map_2_quant (j_decompress_ptr cinfo)
1231
{
1232
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1233
 
1234
  /* Reset the inverse color map */
1235
  cquantize->needs_zeroed = TRUE;
1236
}
1237
 
1238
 
1239
/*
1240
 * Module initialization routine for 2-pass color quantization.
1241
 */
1242
 
1243
GLOBAL(void)
1244
jinit_2pass_quantizer (j_decompress_ptr cinfo)
1245
{
1246
  my_cquantize_ptr cquantize;
1247
  int i;
1248
 
1249
  cquantize = (my_cquantize_ptr)
1250
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1251
                                SIZEOF(my_cquantizer));
1252
  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1253
  cquantize->pub.start_pass = start_pass_2_quant;
1254
  cquantize->pub.new_color_map = new_color_map_2_quant;
1255
  cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1256
  cquantize->error_limiter = NULL;
1257
 
1258
  /* Make sure jdmaster didn't give me a case I can't handle */
1259
  if (cinfo->out_color_components != 3)
1260
    ERREXIT(cinfo, JERR_NOTIMPL);
1261
 
1262
  /* Allocate the histogram/inverse colormap storage */
1263
  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1264
    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1265
  for (i = 0; i < HIST_C0_ELEMS; i++) {
1266
    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1267
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1268
       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1269
  }
1270
  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1271
 
1272
  /* Allocate storage for the completed colormap, if required.
1273
   * We do this now since it is FAR storage and may affect
1274
   * the memory manager's space calculations.
1275
   */
1276
  if (cinfo->enable_2pass_quant) {
1277
    /* Make sure color count is acceptable */
1278
    int desired = cinfo->desired_number_of_colors;
1279
    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1280
    if (desired < 8)
1281
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1282
    /* Make sure colormap indexes can be represented by JSAMPLEs */
1283
    if (desired > MAXNUMCOLORS)
1284
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1285
    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1286
      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1287
    cquantize->desired = desired;
1288
  } else
1289
    cquantize->sv_colormap = NULL;
1290
 
1291
  /* Only F-S dithering or no dithering is supported. */
1292
  /* If user asks for ordered dither, give him F-S. */
1293
  if (cinfo->dither_mode != JDITHER_NONE)
1294
    cinfo->dither_mode = JDITHER_FS;
1295
 
1296
  /* Allocate Floyd-Steinberg workspace if necessary.
1297
   * This isn't really needed until pass 2, but again it is FAR storage.
1298
   * Although we will cope with a later change in dither_mode,
1299
   * we do not promise to honor max_memory_to_use if dither_mode changes.
1300
   */
1301
  if (cinfo->dither_mode == JDITHER_FS) {
1302
    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1303
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1304
       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1305
    /* Might as well create the error-limiting table too. */
1306
    init_error_limit(cinfo);
1307
  }
1308
}
1309
 
1310
#endif /* QUANT_2PASS_SUPPORTED */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.