1 |
27 |
unneback |
/*
|
2 |
|
|
* transupp.c
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 1997, Thomas G. Lane.
|
5 |
|
|
* This file is part of the Independent JPEG Group's software.
|
6 |
|
|
* For conditions of distribution and use, see the accompanying README file.
|
7 |
|
|
*
|
8 |
|
|
* This file contains image transformation routines and other utility code
|
9 |
|
|
* used by the jpegtran sample application. These are NOT part of the core
|
10 |
|
|
* JPEG library. But we keep these routines separate from jpegtran.c to
|
11 |
|
|
* ease the task of maintaining jpegtran-like programs that have other user
|
12 |
|
|
* interfaces.
|
13 |
|
|
*/
|
14 |
|
|
|
15 |
|
|
/* Although this file really shouldn't have access to the library internals,
|
16 |
|
|
* it's helpful to let it call jround_up() and jcopy_block_row().
|
17 |
|
|
*/
|
18 |
|
|
#define JPEG_INTERNALS
|
19 |
|
|
|
20 |
|
|
#include "jinclude.h"
|
21 |
|
|
#include "jpeglib.h"
|
22 |
|
|
#include "transupp.h" /* My own external interface */
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#if TRANSFORMS_SUPPORTED
|
26 |
|
|
|
27 |
|
|
/*
|
28 |
|
|
* Lossless image transformation routines. These routines work on DCT
|
29 |
|
|
* coefficient arrays and thus do not require any lossy decompression
|
30 |
|
|
* or recompression of the image.
|
31 |
|
|
* Thanks to Guido Vollbeding for the initial design and code of this feature.
|
32 |
|
|
*
|
33 |
|
|
* Horizontal flipping is done in-place, using a single top-to-bottom
|
34 |
|
|
* pass through the virtual source array. It will thus be much the
|
35 |
|
|
* fastest option for images larger than main memory.
|
36 |
|
|
*
|
37 |
|
|
* The other routines require a set of destination virtual arrays, so they
|
38 |
|
|
* need twice as much memory as jpegtran normally does. The destination
|
39 |
|
|
* arrays are always written in normal scan order (top to bottom) because
|
40 |
|
|
* the virtual array manager expects this. The source arrays will be scanned
|
41 |
|
|
* in the corresponding order, which means multiple passes through the source
|
42 |
|
|
* arrays for most of the transforms. That could result in much thrashing
|
43 |
|
|
* if the image is larger than main memory.
|
44 |
|
|
*
|
45 |
|
|
* Some notes about the operating environment of the individual transform
|
46 |
|
|
* routines:
|
47 |
|
|
* 1. Both the source and destination virtual arrays are allocated from the
|
48 |
|
|
* source JPEG object, and therefore should be manipulated by calling the
|
49 |
|
|
* source's memory manager.
|
50 |
|
|
* 2. The destination's component count should be used. It may be smaller
|
51 |
|
|
* than the source's when forcing to grayscale.
|
52 |
|
|
* 3. Likewise the destination's sampling factors should be used. When
|
53 |
|
|
* forcing to grayscale the destination's sampling factors will be all 1,
|
54 |
|
|
* and we may as well take that as the effective iMCU size.
|
55 |
|
|
* 4. When "trim" is in effect, the destination's dimensions will be the
|
56 |
|
|
* trimmed values but the source's will be untrimmed.
|
57 |
|
|
* 5. All the routines assume that the source and destination buffers are
|
58 |
|
|
* padded out to a full iMCU boundary. This is true, although for the
|
59 |
|
|
* source buffer it is an undocumented property of jdcoefct.c.
|
60 |
|
|
* Notes 2,3,4 boil down to this: generally we should use the destination's
|
61 |
|
|
* dimensions and ignore the source's.
|
62 |
|
|
*/
|
63 |
|
|
|
64 |
|
|
|
65 |
|
|
LOCAL(void)
|
66 |
|
|
do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
67 |
|
|
jvirt_barray_ptr *src_coef_arrays)
|
68 |
|
|
/* Horizontal flip; done in-place, so no separate dest array is required */
|
69 |
|
|
{
|
70 |
|
|
JDIMENSION MCU_cols, comp_width, blk_x, blk_y;
|
71 |
|
|
int ci, k, offset_y;
|
72 |
|
|
JBLOCKARRAY buffer;
|
73 |
|
|
JCOEFPTR ptr1, ptr2;
|
74 |
|
|
JCOEF temp1, temp2;
|
75 |
|
|
jpeg_component_info *compptr;
|
76 |
|
|
|
77 |
|
|
/* Horizontal mirroring of DCT blocks is accomplished by swapping
|
78 |
|
|
* pairs of blocks in-place. Within a DCT block, we perform horizontal
|
79 |
|
|
* mirroring by changing the signs of odd-numbered columns.
|
80 |
|
|
* Partial iMCUs at the right edge are left untouched.
|
81 |
|
|
*/
|
82 |
|
|
MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
|
83 |
|
|
|
84 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
85 |
|
|
compptr = dstinfo->comp_info + ci;
|
86 |
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
87 |
|
|
for (blk_y = 0; blk_y < compptr->height_in_blocks;
|
88 |
|
|
blk_y += compptr->v_samp_factor) {
|
89 |
|
|
buffer = (*srcinfo->mem->access_virt_barray)
|
90 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
|
91 |
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
92 |
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
93 |
|
|
for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
|
94 |
|
|
ptr1 = buffer[offset_y][blk_x];
|
95 |
|
|
ptr2 = buffer[offset_y][comp_width - blk_x - 1];
|
96 |
|
|
/* this unrolled loop doesn't need to know which row it's on... */
|
97 |
|
|
for (k = 0; k < DCTSIZE2; k += 2) {
|
98 |
|
|
temp1 = *ptr1; /* swap even column */
|
99 |
|
|
temp2 = *ptr2;
|
100 |
|
|
*ptr1++ = temp2;
|
101 |
|
|
*ptr2++ = temp1;
|
102 |
|
|
temp1 = *ptr1; /* swap odd column with sign change */
|
103 |
|
|
temp2 = *ptr2;
|
104 |
|
|
*ptr1++ = -temp2;
|
105 |
|
|
*ptr2++ = -temp1;
|
106 |
|
|
}
|
107 |
|
|
}
|
108 |
|
|
}
|
109 |
|
|
}
|
110 |
|
|
}
|
111 |
|
|
}
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
LOCAL(void)
|
115 |
|
|
do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
116 |
|
|
jvirt_barray_ptr *src_coef_arrays,
|
117 |
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
118 |
|
|
/* Vertical flip */
|
119 |
|
|
{
|
120 |
|
|
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
|
121 |
|
|
int ci, i, j, offset_y;
|
122 |
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
123 |
|
|
JBLOCKROW src_row_ptr, dst_row_ptr;
|
124 |
|
|
JCOEFPTR src_ptr, dst_ptr;
|
125 |
|
|
jpeg_component_info *compptr;
|
126 |
|
|
|
127 |
|
|
/* We output into a separate array because we can't touch different
|
128 |
|
|
* rows of the source virtual array simultaneously. Otherwise, this
|
129 |
|
|
* is a pretty straightforward analog of horizontal flip.
|
130 |
|
|
* Within a DCT block, vertical mirroring is done by changing the signs
|
131 |
|
|
* of odd-numbered rows.
|
132 |
|
|
* Partial iMCUs at the bottom edge are copied verbatim.
|
133 |
|
|
*/
|
134 |
|
|
MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
|
135 |
|
|
|
136 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
137 |
|
|
compptr = dstinfo->comp_info + ci;
|
138 |
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
139 |
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
140 |
|
|
dst_blk_y += compptr->v_samp_factor) {
|
141 |
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
142 |
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
143 |
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
144 |
|
|
if (dst_blk_y < comp_height) {
|
145 |
|
|
/* Row is within the mirrorable area. */
|
146 |
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
147 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
148 |
|
|
comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
|
149 |
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
150 |
|
|
} else {
|
151 |
|
|
/* Bottom-edge blocks will be copied verbatim. */
|
152 |
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
153 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
|
154 |
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
155 |
|
|
}
|
156 |
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
157 |
|
|
if (dst_blk_y < comp_height) {
|
158 |
|
|
/* Row is within the mirrorable area. */
|
159 |
|
|
dst_row_ptr = dst_buffer[offset_y];
|
160 |
|
|
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
|
161 |
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
162 |
|
|
dst_blk_x++) {
|
163 |
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
164 |
|
|
src_ptr = src_row_ptr[dst_blk_x];
|
165 |
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
166 |
|
|
/* copy even row */
|
167 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
168 |
|
|
*dst_ptr++ = *src_ptr++;
|
169 |
|
|
/* copy odd row with sign change */
|
170 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
171 |
|
|
*dst_ptr++ = - *src_ptr++;
|
172 |
|
|
}
|
173 |
|
|
}
|
174 |
|
|
} else {
|
175 |
|
|
/* Just copy row verbatim. */
|
176 |
|
|
jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y],
|
177 |
|
|
compptr->width_in_blocks);
|
178 |
|
|
}
|
179 |
|
|
}
|
180 |
|
|
}
|
181 |
|
|
}
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
|
185 |
|
|
LOCAL(void)
|
186 |
|
|
do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
187 |
|
|
jvirt_barray_ptr *src_coef_arrays,
|
188 |
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
189 |
|
|
/* Transpose source into destination */
|
190 |
|
|
{
|
191 |
|
|
JDIMENSION dst_blk_x, dst_blk_y;
|
192 |
|
|
int ci, i, j, offset_x, offset_y;
|
193 |
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
194 |
|
|
JCOEFPTR src_ptr, dst_ptr;
|
195 |
|
|
jpeg_component_info *compptr;
|
196 |
|
|
|
197 |
|
|
/* Transposing pixels within a block just requires transposing the
|
198 |
|
|
* DCT coefficients.
|
199 |
|
|
* Partial iMCUs at the edges require no special treatment; we simply
|
200 |
|
|
* process all the available DCT blocks for every component.
|
201 |
|
|
*/
|
202 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
203 |
|
|
compptr = dstinfo->comp_info + ci;
|
204 |
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
205 |
|
|
dst_blk_y += compptr->v_samp_factor) {
|
206 |
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
207 |
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
208 |
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
209 |
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
210 |
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
211 |
|
|
dst_blk_x += compptr->h_samp_factor) {
|
212 |
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
213 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
|
214 |
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
215 |
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
216 |
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
|
217 |
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
218 |
|
|
for (i = 0; i < DCTSIZE; i++)
|
219 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
220 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
221 |
|
|
}
|
222 |
|
|
}
|
223 |
|
|
}
|
224 |
|
|
}
|
225 |
|
|
}
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
LOCAL(void)
|
230 |
|
|
do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
231 |
|
|
jvirt_barray_ptr *src_coef_arrays,
|
232 |
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
233 |
|
|
/* 90 degree rotation is equivalent to
|
234 |
|
|
* 1. Transposing the image;
|
235 |
|
|
* 2. Horizontal mirroring.
|
236 |
|
|
* These two steps are merged into a single processing routine.
|
237 |
|
|
*/
|
238 |
|
|
{
|
239 |
|
|
JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
|
240 |
|
|
int ci, i, j, offset_x, offset_y;
|
241 |
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
242 |
|
|
JCOEFPTR src_ptr, dst_ptr;
|
243 |
|
|
jpeg_component_info *compptr;
|
244 |
|
|
|
245 |
|
|
/* Because of the horizontal mirror step, we can't process partial iMCUs
|
246 |
|
|
* at the (output) right edge properly. They just get transposed and
|
247 |
|
|
* not mirrored.
|
248 |
|
|
*/
|
249 |
|
|
MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
|
250 |
|
|
|
251 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
252 |
|
|
compptr = dstinfo->comp_info + ci;
|
253 |
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
254 |
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
255 |
|
|
dst_blk_y += compptr->v_samp_factor) {
|
256 |
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
257 |
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
258 |
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
259 |
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
260 |
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
261 |
|
|
dst_blk_x += compptr->h_samp_factor) {
|
262 |
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
263 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
|
264 |
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
265 |
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
266 |
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
|
267 |
|
|
if (dst_blk_x < comp_width) {
|
268 |
|
|
/* Block is within the mirrorable area. */
|
269 |
|
|
dst_ptr = dst_buffer[offset_y]
|
270 |
|
|
[comp_width - dst_blk_x - offset_x - 1];
|
271 |
|
|
for (i = 0; i < DCTSIZE; i++) {
|
272 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
273 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
274 |
|
|
i++;
|
275 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
276 |
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
277 |
|
|
}
|
278 |
|
|
} else {
|
279 |
|
|
/* Edge blocks are transposed but not mirrored. */
|
280 |
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
281 |
|
|
for (i = 0; i < DCTSIZE; i++)
|
282 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
283 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
284 |
|
|
}
|
285 |
|
|
}
|
286 |
|
|
}
|
287 |
|
|
}
|
288 |
|
|
}
|
289 |
|
|
}
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
|
293 |
|
|
LOCAL(void)
|
294 |
|
|
do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
295 |
|
|
jvirt_barray_ptr *src_coef_arrays,
|
296 |
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
297 |
|
|
/* 270 degree rotation is equivalent to
|
298 |
|
|
* 1. Horizontal mirroring;
|
299 |
|
|
* 2. Transposing the image.
|
300 |
|
|
* These two steps are merged into a single processing routine.
|
301 |
|
|
*/
|
302 |
|
|
{
|
303 |
|
|
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
|
304 |
|
|
int ci, i, j, offset_x, offset_y;
|
305 |
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
306 |
|
|
JCOEFPTR src_ptr, dst_ptr;
|
307 |
|
|
jpeg_component_info *compptr;
|
308 |
|
|
|
309 |
|
|
/* Because of the horizontal mirror step, we can't process partial iMCUs
|
310 |
|
|
* at the (output) bottom edge properly. They just get transposed and
|
311 |
|
|
* not mirrored.
|
312 |
|
|
*/
|
313 |
|
|
MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
|
314 |
|
|
|
315 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
316 |
|
|
compptr = dstinfo->comp_info + ci;
|
317 |
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
318 |
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
319 |
|
|
dst_blk_y += compptr->v_samp_factor) {
|
320 |
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
321 |
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
322 |
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
323 |
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
324 |
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
325 |
|
|
dst_blk_x += compptr->h_samp_factor) {
|
326 |
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
327 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
|
328 |
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
329 |
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
330 |
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
331 |
|
|
if (dst_blk_y < comp_height) {
|
332 |
|
|
/* Block is within the mirrorable area. */
|
333 |
|
|
src_ptr = src_buffer[offset_x]
|
334 |
|
|
[comp_height - dst_blk_y - offset_y - 1];
|
335 |
|
|
for (i = 0; i < DCTSIZE; i++) {
|
336 |
|
|
for (j = 0; j < DCTSIZE; j++) {
|
337 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
338 |
|
|
j++;
|
339 |
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
340 |
|
|
}
|
341 |
|
|
}
|
342 |
|
|
} else {
|
343 |
|
|
/* Edge blocks are transposed but not mirrored. */
|
344 |
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
|
345 |
|
|
for (i = 0; i < DCTSIZE; i++)
|
346 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
347 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
348 |
|
|
}
|
349 |
|
|
}
|
350 |
|
|
}
|
351 |
|
|
}
|
352 |
|
|
}
|
353 |
|
|
}
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
|
357 |
|
|
LOCAL(void)
|
358 |
|
|
do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
359 |
|
|
jvirt_barray_ptr *src_coef_arrays,
|
360 |
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
361 |
|
|
/* 180 degree rotation is equivalent to
|
362 |
|
|
* 1. Vertical mirroring;
|
363 |
|
|
* 2. Horizontal mirroring.
|
364 |
|
|
* These two steps are merged into a single processing routine.
|
365 |
|
|
*/
|
366 |
|
|
{
|
367 |
|
|
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
|
368 |
|
|
int ci, i, j, offset_y;
|
369 |
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
370 |
|
|
JBLOCKROW src_row_ptr, dst_row_ptr;
|
371 |
|
|
JCOEFPTR src_ptr, dst_ptr;
|
372 |
|
|
jpeg_component_info *compptr;
|
373 |
|
|
|
374 |
|
|
MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
|
375 |
|
|
MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
|
376 |
|
|
|
377 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
378 |
|
|
compptr = dstinfo->comp_info + ci;
|
379 |
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
380 |
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
381 |
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
382 |
|
|
dst_blk_y += compptr->v_samp_factor) {
|
383 |
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
384 |
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
385 |
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
386 |
|
|
if (dst_blk_y < comp_height) {
|
387 |
|
|
/* Row is within the vertically mirrorable area. */
|
388 |
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
389 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
390 |
|
|
comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
|
391 |
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
392 |
|
|
} else {
|
393 |
|
|
/* Bottom-edge rows are only mirrored horizontally. */
|
394 |
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
395 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
|
396 |
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
397 |
|
|
}
|
398 |
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
399 |
|
|
if (dst_blk_y < comp_height) {
|
400 |
|
|
/* Row is within the mirrorable area. */
|
401 |
|
|
dst_row_ptr = dst_buffer[offset_y];
|
402 |
|
|
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
|
403 |
|
|
/* Process the blocks that can be mirrored both ways. */
|
404 |
|
|
for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
|
405 |
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
406 |
|
|
src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
|
407 |
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
408 |
|
|
/* For even row, negate every odd column. */
|
409 |
|
|
for (j = 0; j < DCTSIZE; j += 2) {
|
410 |
|
|
*dst_ptr++ = *src_ptr++;
|
411 |
|
|
*dst_ptr++ = - *src_ptr++;
|
412 |
|
|
}
|
413 |
|
|
/* For odd row, negate every even column. */
|
414 |
|
|
for (j = 0; j < DCTSIZE; j += 2) {
|
415 |
|
|
*dst_ptr++ = - *src_ptr++;
|
416 |
|
|
*dst_ptr++ = *src_ptr++;
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
}
|
420 |
|
|
/* Any remaining right-edge blocks are only mirrored vertically. */
|
421 |
|
|
for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
|
422 |
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
423 |
|
|
src_ptr = src_row_ptr[dst_blk_x];
|
424 |
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
425 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
426 |
|
|
*dst_ptr++ = *src_ptr++;
|
427 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
428 |
|
|
*dst_ptr++ = - *src_ptr++;
|
429 |
|
|
}
|
430 |
|
|
}
|
431 |
|
|
} else {
|
432 |
|
|
/* Remaining rows are just mirrored horizontally. */
|
433 |
|
|
dst_row_ptr = dst_buffer[offset_y];
|
434 |
|
|
src_row_ptr = src_buffer[offset_y];
|
435 |
|
|
/* Process the blocks that can be mirrored. */
|
436 |
|
|
for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
|
437 |
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
438 |
|
|
src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
|
439 |
|
|
for (i = 0; i < DCTSIZE2; i += 2) {
|
440 |
|
|
*dst_ptr++ = *src_ptr++;
|
441 |
|
|
*dst_ptr++ = - *src_ptr++;
|
442 |
|
|
}
|
443 |
|
|
}
|
444 |
|
|
/* Any remaining right-edge blocks are only copied. */
|
445 |
|
|
for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
|
446 |
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
447 |
|
|
src_ptr = src_row_ptr[dst_blk_x];
|
448 |
|
|
for (i = 0; i < DCTSIZE2; i++)
|
449 |
|
|
*dst_ptr++ = *src_ptr++;
|
450 |
|
|
}
|
451 |
|
|
}
|
452 |
|
|
}
|
453 |
|
|
}
|
454 |
|
|
}
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
|
458 |
|
|
LOCAL(void)
|
459 |
|
|
do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
460 |
|
|
jvirt_barray_ptr *src_coef_arrays,
|
461 |
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
462 |
|
|
/* Transverse transpose is equivalent to
|
463 |
|
|
* 1. 180 degree rotation;
|
464 |
|
|
* 2. Transposition;
|
465 |
|
|
* or
|
466 |
|
|
* 1. Horizontal mirroring;
|
467 |
|
|
* 2. Transposition;
|
468 |
|
|
* 3. Horizontal mirroring.
|
469 |
|
|
* These steps are merged into a single processing routine.
|
470 |
|
|
*/
|
471 |
|
|
{
|
472 |
|
|
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
|
473 |
|
|
int ci, i, j, offset_x, offset_y;
|
474 |
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
475 |
|
|
JCOEFPTR src_ptr, dst_ptr;
|
476 |
|
|
jpeg_component_info *compptr;
|
477 |
|
|
|
478 |
|
|
MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
|
479 |
|
|
MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
|
480 |
|
|
|
481 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
482 |
|
|
compptr = dstinfo->comp_info + ci;
|
483 |
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
484 |
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
485 |
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
486 |
|
|
dst_blk_y += compptr->v_samp_factor) {
|
487 |
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
488 |
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
489 |
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
490 |
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
491 |
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
492 |
|
|
dst_blk_x += compptr->h_samp_factor) {
|
493 |
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
494 |
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
|
495 |
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
496 |
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
497 |
|
|
if (dst_blk_y < comp_height) {
|
498 |
|
|
src_ptr = src_buffer[offset_x]
|
499 |
|
|
[comp_height - dst_blk_y - offset_y - 1];
|
500 |
|
|
if (dst_blk_x < comp_width) {
|
501 |
|
|
/* Block is within the mirrorable area. */
|
502 |
|
|
dst_ptr = dst_buffer[offset_y]
|
503 |
|
|
[comp_width - dst_blk_x - offset_x - 1];
|
504 |
|
|
for (i = 0; i < DCTSIZE; i++) {
|
505 |
|
|
for (j = 0; j < DCTSIZE; j++) {
|
506 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
507 |
|
|
j++;
|
508 |
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
509 |
|
|
}
|
510 |
|
|
i++;
|
511 |
|
|
for (j = 0; j < DCTSIZE; j++) {
|
512 |
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
513 |
|
|
j++;
|
514 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
515 |
|
|
}
|
516 |
|
|
}
|
517 |
|
|
} else {
|
518 |
|
|
/* Right-edge blocks are mirrored in y only */
|
519 |
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
520 |
|
|
for (i = 0; i < DCTSIZE; i++) {
|
521 |
|
|
for (j = 0; j < DCTSIZE; j++) {
|
522 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
523 |
|
|
j++;
|
524 |
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
525 |
|
|
}
|
526 |
|
|
}
|
527 |
|
|
}
|
528 |
|
|
} else {
|
529 |
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
|
530 |
|
|
if (dst_blk_x < comp_width) {
|
531 |
|
|
/* Bottom-edge blocks are mirrored in x only */
|
532 |
|
|
dst_ptr = dst_buffer[offset_y]
|
533 |
|
|
[comp_width - dst_blk_x - offset_x - 1];
|
534 |
|
|
for (i = 0; i < DCTSIZE; i++) {
|
535 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
536 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
537 |
|
|
i++;
|
538 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
539 |
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
540 |
|
|
}
|
541 |
|
|
} else {
|
542 |
|
|
/* At lower right corner, just transpose, no mirroring */
|
543 |
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
544 |
|
|
for (i = 0; i < DCTSIZE; i++)
|
545 |
|
|
for (j = 0; j < DCTSIZE; j++)
|
546 |
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
547 |
|
|
}
|
548 |
|
|
}
|
549 |
|
|
}
|
550 |
|
|
}
|
551 |
|
|
}
|
552 |
|
|
}
|
553 |
|
|
}
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
|
557 |
|
|
/* Request any required workspace.
|
558 |
|
|
*
|
559 |
|
|
* We allocate the workspace virtual arrays from the source decompression
|
560 |
|
|
* object, so that all the arrays (both the original data and the workspace)
|
561 |
|
|
* will be taken into account while making memory management decisions.
|
562 |
|
|
* Hence, this routine must be called after jpeg_read_header (which reads
|
563 |
|
|
* the image dimensions) and before jpeg_read_coefficients (which realizes
|
564 |
|
|
* the source's virtual arrays).
|
565 |
|
|
*/
|
566 |
|
|
|
567 |
|
|
GLOBAL(void)
|
568 |
|
|
jtransform_request_workspace (j_decompress_ptr srcinfo,
|
569 |
|
|
jpeg_transform_info *info)
|
570 |
|
|
{
|
571 |
|
|
jvirt_barray_ptr *coef_arrays = NULL;
|
572 |
|
|
jpeg_component_info *compptr;
|
573 |
|
|
int ci;
|
574 |
|
|
|
575 |
|
|
if (info->force_grayscale &&
|
576 |
|
|
srcinfo->jpeg_color_space == JCS_YCbCr &&
|
577 |
|
|
srcinfo->num_components == 3) {
|
578 |
|
|
/* We'll only process the first component */
|
579 |
|
|
info->num_components = 1;
|
580 |
|
|
} else {
|
581 |
|
|
/* Process all the components */
|
582 |
|
|
info->num_components = srcinfo->num_components;
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
switch (info->transform) {
|
586 |
|
|
case JXFORM_NONE:
|
587 |
|
|
case JXFORM_FLIP_H:
|
588 |
|
|
/* Don't need a workspace array */
|
589 |
|
|
break;
|
590 |
|
|
case JXFORM_FLIP_V:
|
591 |
|
|
case JXFORM_ROT_180:
|
592 |
|
|
/* Need workspace arrays having same dimensions as source image.
|
593 |
|
|
* Note that we allocate arrays padded out to the next iMCU boundary,
|
594 |
|
|
* so that transform routines need not worry about missing edge blocks.
|
595 |
|
|
*/
|
596 |
|
|
coef_arrays = (jvirt_barray_ptr *)
|
597 |
|
|
(*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
|
598 |
|
|
SIZEOF(jvirt_barray_ptr) * info->num_components);
|
599 |
|
|
for (ci = 0; ci < info->num_components; ci++) {
|
600 |
|
|
compptr = srcinfo->comp_info + ci;
|
601 |
|
|
coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
|
602 |
|
|
((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
|
603 |
|
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
604 |
|
|
(long) compptr->h_samp_factor),
|
605 |
|
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
606 |
|
|
(long) compptr->v_samp_factor),
|
607 |
|
|
(JDIMENSION) compptr->v_samp_factor);
|
608 |
|
|
}
|
609 |
|
|
break;
|
610 |
|
|
case JXFORM_TRANSPOSE:
|
611 |
|
|
case JXFORM_TRANSVERSE:
|
612 |
|
|
case JXFORM_ROT_90:
|
613 |
|
|
case JXFORM_ROT_270:
|
614 |
|
|
/* Need workspace arrays having transposed dimensions.
|
615 |
|
|
* Note that we allocate arrays padded out to the next iMCU boundary,
|
616 |
|
|
* so that transform routines need not worry about missing edge blocks.
|
617 |
|
|
*/
|
618 |
|
|
coef_arrays = (jvirt_barray_ptr *)
|
619 |
|
|
(*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
|
620 |
|
|
SIZEOF(jvirt_barray_ptr) * info->num_components);
|
621 |
|
|
for (ci = 0; ci < info->num_components; ci++) {
|
622 |
|
|
compptr = srcinfo->comp_info + ci;
|
623 |
|
|
coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
|
624 |
|
|
((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
|
625 |
|
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
626 |
|
|
(long) compptr->v_samp_factor),
|
627 |
|
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
628 |
|
|
(long) compptr->h_samp_factor),
|
629 |
|
|
(JDIMENSION) compptr->h_samp_factor);
|
630 |
|
|
}
|
631 |
|
|
break;
|
632 |
|
|
}
|
633 |
|
|
info->workspace_coef_arrays = coef_arrays;
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
|
637 |
|
|
/* Transpose destination image parameters */
|
638 |
|
|
|
639 |
|
|
LOCAL(void)
|
640 |
|
|
transpose_critical_parameters (j_compress_ptr dstinfo)
|
641 |
|
|
{
|
642 |
|
|
int tblno, i, j, ci, itemp;
|
643 |
|
|
jpeg_component_info *compptr;
|
644 |
|
|
JQUANT_TBL *qtblptr;
|
645 |
|
|
JDIMENSION dtemp;
|
646 |
|
|
UINT16 qtemp;
|
647 |
|
|
|
648 |
|
|
/* Transpose basic image dimensions */
|
649 |
|
|
dtemp = dstinfo->image_width;
|
650 |
|
|
dstinfo->image_width = dstinfo->image_height;
|
651 |
|
|
dstinfo->image_height = dtemp;
|
652 |
|
|
|
653 |
|
|
/* Transpose sampling factors */
|
654 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
655 |
|
|
compptr = dstinfo->comp_info + ci;
|
656 |
|
|
itemp = compptr->h_samp_factor;
|
657 |
|
|
compptr->h_samp_factor = compptr->v_samp_factor;
|
658 |
|
|
compptr->v_samp_factor = itemp;
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
/* Transpose quantization tables */
|
662 |
|
|
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
663 |
|
|
qtblptr = dstinfo->quant_tbl_ptrs[tblno];
|
664 |
|
|
if (qtblptr != NULL) {
|
665 |
|
|
for (i = 0; i < DCTSIZE; i++) {
|
666 |
|
|
for (j = 0; j < i; j++) {
|
667 |
|
|
qtemp = qtblptr->quantval[i*DCTSIZE+j];
|
668 |
|
|
qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
|
669 |
|
|
qtblptr->quantval[j*DCTSIZE+i] = qtemp;
|
670 |
|
|
}
|
671 |
|
|
}
|
672 |
|
|
}
|
673 |
|
|
}
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
|
677 |
|
|
/* Trim off any partial iMCUs on the indicated destination edge */
|
678 |
|
|
|
679 |
|
|
LOCAL(void)
|
680 |
|
|
trim_right_edge (j_compress_ptr dstinfo)
|
681 |
|
|
{
|
682 |
|
|
int ci, max_h_samp_factor;
|
683 |
|
|
JDIMENSION MCU_cols;
|
684 |
|
|
|
685 |
|
|
/* We have to compute max_h_samp_factor ourselves,
|
686 |
|
|
* because it hasn't been set yet in the destination
|
687 |
|
|
* (and we don't want to use the source's value).
|
688 |
|
|
*/
|
689 |
|
|
max_h_samp_factor = 1;
|
690 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
691 |
|
|
int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor;
|
692 |
|
|
max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor);
|
693 |
|
|
}
|
694 |
|
|
MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE);
|
695 |
|
|
if (MCU_cols > 0) /* can't trim to 0 pixels */
|
696 |
|
|
dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE);
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
LOCAL(void)
|
700 |
|
|
trim_bottom_edge (j_compress_ptr dstinfo)
|
701 |
|
|
{
|
702 |
|
|
int ci, max_v_samp_factor;
|
703 |
|
|
JDIMENSION MCU_rows;
|
704 |
|
|
|
705 |
|
|
/* We have to compute max_v_samp_factor ourselves,
|
706 |
|
|
* because it hasn't been set yet in the destination
|
707 |
|
|
* (and we don't want to use the source's value).
|
708 |
|
|
*/
|
709 |
|
|
max_v_samp_factor = 1;
|
710 |
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
711 |
|
|
int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor;
|
712 |
|
|
max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor);
|
713 |
|
|
}
|
714 |
|
|
MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE);
|
715 |
|
|
if (MCU_rows > 0) /* can't trim to 0 pixels */
|
716 |
|
|
dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE);
|
717 |
|
|
}
|
718 |
|
|
|
719 |
|
|
|
720 |
|
|
/* Adjust output image parameters as needed.
|
721 |
|
|
*
|
722 |
|
|
* This must be called after jpeg_copy_critical_parameters()
|
723 |
|
|
* and before jpeg_write_coefficients().
|
724 |
|
|
*
|
725 |
|
|
* The return value is the set of virtual coefficient arrays to be written
|
726 |
|
|
* (either the ones allocated by jtransform_request_workspace, or the
|
727 |
|
|
* original source data arrays). The caller will need to pass this value
|
728 |
|
|
* to jpeg_write_coefficients().
|
729 |
|
|
*/
|
730 |
|
|
|
731 |
|
|
GLOBAL(jvirt_barray_ptr *)
|
732 |
|
|
jtransform_adjust_parameters (j_decompress_ptr srcinfo,
|
733 |
|
|
j_compress_ptr dstinfo,
|
734 |
|
|
jvirt_barray_ptr *src_coef_arrays,
|
735 |
|
|
jpeg_transform_info *info)
|
736 |
|
|
{
|
737 |
|
|
/* If force-to-grayscale is requested, adjust destination parameters */
|
738 |
|
|
if (info->force_grayscale) {
|
739 |
|
|
/* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
|
740 |
|
|
* properly. Among other things, the target h_samp_factor & v_samp_factor
|
741 |
|
|
* will get set to 1, which typically won't match the source.
|
742 |
|
|
* In fact we do this even if the source is already grayscale; that
|
743 |
|
|
* provides an easy way of coercing a grayscale JPEG with funny sampling
|
744 |
|
|
* factors to the customary 1,1. (Some decoders fail on other factors.)
|
745 |
|
|
*/
|
746 |
|
|
if ((dstinfo->jpeg_color_space == JCS_YCbCr &&
|
747 |
|
|
dstinfo->num_components == 3) ||
|
748 |
|
|
(dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
|
749 |
|
|
dstinfo->num_components == 1)) {
|
750 |
|
|
/* We have to preserve the source's quantization table number. */
|
751 |
|
|
int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
|
752 |
|
|
jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
|
753 |
|
|
dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
|
754 |
|
|
} else {
|
755 |
|
|
/* Sorry, can't do it */
|
756 |
|
|
ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
|
757 |
|
|
}
|
758 |
|
|
}
|
759 |
|
|
|
760 |
|
|
/* Correct the destination's image dimensions etc if necessary */
|
761 |
|
|
switch (info->transform) {
|
762 |
|
|
case JXFORM_NONE:
|
763 |
|
|
/* Nothing to do */
|
764 |
|
|
break;
|
765 |
|
|
case JXFORM_FLIP_H:
|
766 |
|
|
if (info->trim)
|
767 |
|
|
trim_right_edge(dstinfo);
|
768 |
|
|
break;
|
769 |
|
|
case JXFORM_FLIP_V:
|
770 |
|
|
if (info->trim)
|
771 |
|
|
trim_bottom_edge(dstinfo);
|
772 |
|
|
break;
|
773 |
|
|
case JXFORM_TRANSPOSE:
|
774 |
|
|
transpose_critical_parameters(dstinfo);
|
775 |
|
|
/* transpose does NOT have to trim anything */
|
776 |
|
|
break;
|
777 |
|
|
case JXFORM_TRANSVERSE:
|
778 |
|
|
transpose_critical_parameters(dstinfo);
|
779 |
|
|
if (info->trim) {
|
780 |
|
|
trim_right_edge(dstinfo);
|
781 |
|
|
trim_bottom_edge(dstinfo);
|
782 |
|
|
}
|
783 |
|
|
break;
|
784 |
|
|
case JXFORM_ROT_90:
|
785 |
|
|
transpose_critical_parameters(dstinfo);
|
786 |
|
|
if (info->trim)
|
787 |
|
|
trim_right_edge(dstinfo);
|
788 |
|
|
break;
|
789 |
|
|
case JXFORM_ROT_180:
|
790 |
|
|
if (info->trim) {
|
791 |
|
|
trim_right_edge(dstinfo);
|
792 |
|
|
trim_bottom_edge(dstinfo);
|
793 |
|
|
}
|
794 |
|
|
break;
|
795 |
|
|
case JXFORM_ROT_270:
|
796 |
|
|
transpose_critical_parameters(dstinfo);
|
797 |
|
|
if (info->trim)
|
798 |
|
|
trim_bottom_edge(dstinfo);
|
799 |
|
|
break;
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
/* Return the appropriate output data set */
|
803 |
|
|
if (info->workspace_coef_arrays != NULL)
|
804 |
|
|
return info->workspace_coef_arrays;
|
805 |
|
|
return src_coef_arrays;
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
|
809 |
|
|
/* Execute the actual transformation, if any.
|
810 |
|
|
*
|
811 |
|
|
* This must be called *after* jpeg_write_coefficients, because it depends
|
812 |
|
|
* on jpeg_write_coefficients to have computed subsidiary values such as
|
813 |
|
|
* the per-component width and height fields in the destination object.
|
814 |
|
|
*
|
815 |
|
|
* Note that some transformations will modify the source data arrays!
|
816 |
|
|
*/
|
817 |
|
|
|
818 |
|
|
GLOBAL(void)
|
819 |
|
|
jtransform_execute_transformation (j_decompress_ptr srcinfo,
|
820 |
|
|
j_compress_ptr dstinfo,
|
821 |
|
|
jvirt_barray_ptr *src_coef_arrays,
|
822 |
|
|
jpeg_transform_info *info)
|
823 |
|
|
{
|
824 |
|
|
jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
|
825 |
|
|
|
826 |
|
|
switch (info->transform) {
|
827 |
|
|
case JXFORM_NONE:
|
828 |
|
|
break;
|
829 |
|
|
case JXFORM_FLIP_H:
|
830 |
|
|
do_flip_h(srcinfo, dstinfo, src_coef_arrays);
|
831 |
|
|
break;
|
832 |
|
|
case JXFORM_FLIP_V:
|
833 |
|
|
do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
834 |
|
|
break;
|
835 |
|
|
case JXFORM_TRANSPOSE:
|
836 |
|
|
do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
837 |
|
|
break;
|
838 |
|
|
case JXFORM_TRANSVERSE:
|
839 |
|
|
do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
840 |
|
|
break;
|
841 |
|
|
case JXFORM_ROT_90:
|
842 |
|
|
do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
843 |
|
|
break;
|
844 |
|
|
case JXFORM_ROT_180:
|
845 |
|
|
do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
846 |
|
|
break;
|
847 |
|
|
case JXFORM_ROT_270:
|
848 |
|
|
do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
849 |
|
|
break;
|
850 |
|
|
}
|
851 |
|
|
}
|
852 |
|
|
|
853 |
|
|
#endif /* TRANSFORMS_SUPPORTED */
|
854 |
|
|
|
855 |
|
|
|
856 |
|
|
/* Setup decompression object to save desired markers in memory.
|
857 |
|
|
* This must be called before jpeg_read_header() to have the desired effect.
|
858 |
|
|
*/
|
859 |
|
|
|
860 |
|
|
GLOBAL(void)
|
861 |
|
|
jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
|
862 |
|
|
{
|
863 |
|
|
#ifdef SAVE_MARKERS_SUPPORTED
|
864 |
|
|
int m;
|
865 |
|
|
|
866 |
|
|
/* Save comments except under NONE option */
|
867 |
|
|
if (option != JCOPYOPT_NONE) {
|
868 |
|
|
jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
|
869 |
|
|
}
|
870 |
|
|
/* Save all types of APPn markers iff ALL option */
|
871 |
|
|
if (option == JCOPYOPT_ALL) {
|
872 |
|
|
for (m = 0; m < 16; m++)
|
873 |
|
|
jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
|
874 |
|
|
}
|
875 |
|
|
#endif /* SAVE_MARKERS_SUPPORTED */
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
/* Copy markers saved in the given source object to the destination object.
|
879 |
|
|
* This should be called just after jpeg_start_compress() or
|
880 |
|
|
* jpeg_write_coefficients().
|
881 |
|
|
* Note that those routines will have written the SOI, and also the
|
882 |
|
|
* JFIF APP0 or Adobe APP14 markers if selected.
|
883 |
|
|
*/
|
884 |
|
|
|
885 |
|
|
GLOBAL(void)
|
886 |
|
|
jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
887 |
|
|
JCOPY_OPTION option)
|
888 |
|
|
{
|
889 |
|
|
jpeg_saved_marker_ptr marker;
|
890 |
|
|
|
891 |
|
|
/* In the current implementation, we don't actually need to examine the
|
892 |
|
|
* option flag here; we just copy everything that got saved.
|
893 |
|
|
* But to avoid confusion, we do not output JFIF and Adobe APP14 markers
|
894 |
|
|
* if the encoder library already wrote one.
|
895 |
|
|
*/
|
896 |
|
|
for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
|
897 |
|
|
if (dstinfo->write_JFIF_header &&
|
898 |
|
|
marker->marker == JPEG_APP0 &&
|
899 |
|
|
marker->data_length >= 5 &&
|
900 |
|
|
GETJOCTET(marker->data[0]) == 0x4A &&
|
901 |
|
|
GETJOCTET(marker->data[1]) == 0x46 &&
|
902 |
|
|
GETJOCTET(marker->data[2]) == 0x49 &&
|
903 |
|
|
GETJOCTET(marker->data[3]) == 0x46 &&
|
904 |
|
|
GETJOCTET(marker->data[4]) == 0)
|
905 |
|
|
continue; /* reject duplicate JFIF */
|
906 |
|
|
if (dstinfo->write_Adobe_marker &&
|
907 |
|
|
marker->marker == JPEG_APP0+14 &&
|
908 |
|
|
marker->data_length >= 5 &&
|
909 |
|
|
GETJOCTET(marker->data[0]) == 0x41 &&
|
910 |
|
|
GETJOCTET(marker->data[1]) == 0x64 &&
|
911 |
|
|
GETJOCTET(marker->data[2]) == 0x6F &&
|
912 |
|
|
GETJOCTET(marker->data[3]) == 0x62 &&
|
913 |
|
|
GETJOCTET(marker->data[4]) == 0x65)
|
914 |
|
|
continue; /* reject duplicate Adobe */
|
915 |
|
|
#ifdef NEED_FAR_POINTERS
|
916 |
|
|
/* We could use jpeg_write_marker if the data weren't FAR... */
|
917 |
|
|
{
|
918 |
|
|
unsigned int i;
|
919 |
|
|
jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
|
920 |
|
|
for (i = 0; i < marker->data_length; i++)
|
921 |
|
|
jpeg_write_m_byte(dstinfo, marker->data[i]);
|
922 |
|
|
}
|
923 |
|
|
#else
|
924 |
|
|
jpeg_write_marker(dstinfo, marker->marker,
|
925 |
|
|
marker->data, marker->data_length);
|
926 |
|
|
#endif
|
927 |
|
|
}
|
928 |
|
|
}
|