OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [services/] [memalloc/] [common/] [v2_0/] [doc/] [dlmalloc/] [dlmalloc-2.6.6.c] - Blame information for rev 825

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 unneback
/* ---------- To make a malloc.h, start cutting here ------------ */
2
 
3
/*
4
  A version of malloc/free/realloc written by Doug Lea and released to the
5
  public domain.  Send questions/comments/complaints/performance data
6
  to dl@cs.oswego.edu
7
 
8
* VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
9
 
10
   Note: There may be an updated version of this malloc obtainable at
11
           ftp://g.oswego.edu/pub/misc/malloc.c
12
         Check before installing!
13
 
14
* Why use this malloc?
15
 
16
  This is not the fastest, most space-conserving, most portable, or
17
  most tunable malloc ever written. However it is among the fastest
18
  while also being among the most space-conserving, portable and tunable.
19
  Consistent balance across these factors results in a good general-purpose
20
  allocator. For a high-level description, see
21
     http://g.oswego.edu/dl/html/malloc.html
22
 
23
* Synopsis of public routines
24
 
25
  (Much fuller descriptions are contained in the program documentation below.)
26
 
27
  malloc(size_t n);
28
     Return a pointer to a newly allocated chunk of at least n bytes, or null
29
     if no space is available.
30
  free(Void_t* p);
31
     Release the chunk of memory pointed to by p, or no effect if p is null.
32
  realloc(Void_t* p, size_t n);
33
     Return a pointer to a chunk of size n that contains the same data
34
     as does chunk p up to the minimum of (n, p's size) bytes, or null
35
     if no space is available. The returned pointer may or may not be
36
     the same as p. If p is null, equivalent to malloc.  Unless the
37
     #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
38
     size argument of zero (re)allocates a minimum-sized chunk.
39
  memalign(size_t alignment, size_t n);
40
     Return a pointer to a newly allocated chunk of n bytes, aligned
41
     in accord with the alignment argument, which must be a power of
42
     two.
43
  valloc(size_t n);
44
     Equivalent to memalign(pagesize, n), where pagesize is the page
45
     size of the system (or as near to this as can be figured out from
46
     all the includes/defines below.)
47
  pvalloc(size_t n);
48
     Equivalent to valloc(minimum-page-that-holds(n)), that is,
49
     round up n to nearest pagesize.
50
  calloc(size_t unit, size_t quantity);
51
     Returns a pointer to quantity * unit bytes, with all locations
52
     set to zero.
53
  cfree(Void_t* p);
54
     Equivalent to free(p).
55
  malloc_trim(size_t pad);
56
     Release all but pad bytes of freed top-most memory back
57
     to the system. Return 1 if successful, else 0.
58
  malloc_usable_size(Void_t* p);
59
     Report the number usable allocated bytes associated with allocated
60
     chunk p. This may or may not report more bytes than were requested,
61
     due to alignment and minimum size constraints.
62
  malloc_stats();
63
     Prints brief summary statistics on stderr.
64
  mallinfo()
65
     Returns (by copy) a struct containing various summary statistics.
66
  mallopt(int parameter_number, int parameter_value)
67
     Changes one of the tunable parameters described below. Returns
68
     1 if successful in changing the parameter, else 0.
69
 
70
* Vital statistics:
71
 
72
  Alignment:                            8-byte
73
       8 byte alignment is currently hardwired into the design.  This
74
       seems to suffice for all current machines and C compilers.
75
 
76
  Assumed pointer representation:       4 or 8 bytes
77
       Code for 8-byte pointers is untested by me but has worked
78
       reliably by Wolfram Gloger, who contributed most of the
79
       changes supporting this.
80
 
81
  Assumed size_t  representation:       4 or 8 bytes
82
       Note that size_t is allowed to be 4 bytes even if pointers are 8.
83
 
84
  Minimum overhead per allocated chunk: 4 or 8 bytes
85
       Each malloced chunk has a hidden overhead of 4 bytes holding size
86
       and status information.
87
 
88
  Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
89
                          8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
90
 
91
       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
92
       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
93
       needed; 4 (8) for a trailing size field
94
       and 8 (16) bytes for free list pointers. Thus, the minimum
95
       allocatable size is 16/24/32 bytes.
96
 
97
       Even a request for zero bytes (i.e., malloc(0)) returns a
98
       pointer to something of the minimum allocatable size.
99
 
100
  Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
101
                          8-byte size_t: 2^63 - 16 bytes
102
 
103
       It is assumed that (possibly signed) size_t bit values suffice to
104
       represent chunk sizes. `Possibly signed' is due to the fact
105
       that `size_t' may be defined on a system as either a signed or
106
       an unsigned type. To be conservative, values that would appear
107
       as negative numbers are avoided.
108
       Requests for sizes with a negative sign bit when the request
109
       size is treaded as a long will return null.
110
 
111
  Maximum overhead wastage per allocated chunk: normally 15 bytes
112
 
113
       Alignnment demands, plus the minimum allocatable size restriction
114
       make the normal worst-case wastage 15 bytes (i.e., up to 15
115
       more bytes will be allocated than were requested in malloc), with
116
       two exceptions:
117
         1. Because requests for zero bytes allocate non-zero space,
118
            the worst case wastage for a request of zero bytes is 24 bytes.
119
         2. For requests >= mmap_threshold that are serviced via
120
            mmap(), the worst case wastage is 8 bytes plus the remainder
121
            from a system page (the minimal mmap unit); typically 4096 bytes.
122
 
123
* Limitations
124
 
125
    Here are some features that are NOT currently supported
126
 
127
    * No user-definable hooks for callbacks and the like.
128
    * No automated mechanism for fully checking that all accesses
129
      to malloced memory stay within their bounds.
130
    * No support for compaction.
131
 
132
* Synopsis of compile-time options:
133
 
134
    People have reported using previous versions of this malloc on all
135
    versions of Unix, sometimes by tweaking some of the defines
136
    below. It has been tested most extensively on Solaris and
137
    Linux. It is also reported to work on WIN32 platforms.
138
    People have also reported adapting this malloc for use in
139
    stand-alone embedded systems.
140
 
141
    The implementation is in straight, hand-tuned ANSI C.  Among other
142
    consequences, it uses a lot of macros.  Because of this, to be at
143
    all usable, this code should be compiled using an optimizing compiler
144
    (for example gcc -O2) that can simplify expressions and control
145
    paths.
146
 
147
  __STD_C                  (default: derived from C compiler defines)
148
     Nonzero if using ANSI-standard C compiler, a C++ compiler, or
149
     a C compiler sufficiently close to ANSI to get away with it.
150
  DEBUG                    (default: NOT defined)
151
     Define to enable debugging. Adds fairly extensive assertion-based
152
     checking to help track down memory errors, but noticeably slows down
153
     execution.
154
  REALLOC_ZERO_BYTES_FREES (default: NOT defined)
155
     Define this if you think that realloc(p, 0) should be equivalent
156
     to free(p). Otherwise, since malloc returns a unique pointer for
157
     malloc(0), so does realloc(p, 0).
158
  HAVE_MEMCPY               (default: defined)
159
     Define if you are not otherwise using ANSI STD C, but still
160
     have memcpy and memset in your C library and want to use them.
161
     Otherwise, simple internal versions are supplied.
162
  USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
163
     Define as 1 if you want the C library versions of memset and
164
     memcpy called in realloc and calloc (otherwise macro versions are used).
165
     At least on some platforms, the simple macro versions usually
166
     outperform libc versions.
167
  HAVE_MMAP                 (default: defined as 1)
168
     Define to non-zero to optionally make malloc() use mmap() to
169
     allocate very large blocks.
170
  HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
171
     Define to non-zero to optionally make realloc() use mremap() to
172
     reallocate very large blocks.
173
  malloc_getpagesize        (default: derived from system #includes)
174
     Either a constant or routine call returning the system page size.
175
  HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
176
     Optionally define if you are on a system with a /usr/include/malloc.h
177
     that declares struct mallinfo. It is not at all necessary to
178
     define this even if you do, but will ensure consistency.
179
  INTERNAL_SIZE_T           (default: size_t)
180
     Define to a 32-bit type (probably `unsigned int') if you are on a
181
     64-bit machine, yet do not want or need to allow malloc requests of
182
     greater than 2^31 to be handled. This saves space, especially for
183
     very small chunks.
184
  INTERNAL_LINUX_C_LIB      (default: NOT defined)
185
     Defined only when compiled as part of Linux libc.
186
     Also note that there is some odd internal name-mangling via defines
187
     (for example, internally, `malloc' is named `mALLOc') needed
188
     when compiling in this case. These look funny but don't otherwise
189
     affect anything.
190
  WIN32                     (default: undefined)
191
     Define this on MS win (95, nt) platforms to compile in sbrk emulation.
192
  LACKS_UNISTD_H            (default: undefined if not WIN32)
193
     Define this if your system does not have a <unistd.h>.
194
  LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
195
     Define this if your system does not have a <sys/param.h>.
196
  MORECORE                  (default: sbrk)
197
     The name of the routine to call to obtain more memory from the system.
198
  MORECORE_FAILURE          (default: -1)
199
     The value returned upon failure of MORECORE.
200
  MORECORE_CLEARS           (default 1)
201
     True (1) if the routine mapped to MORECORE zeroes out memory (which
202
     holds for sbrk).
203
  DEFAULT_TRIM_THRESHOLD
204
  DEFAULT_TOP_PAD
205
  DEFAULT_MMAP_THRESHOLD
206
  DEFAULT_MMAP_MAX
207
     Default values of tunable parameters (described in detail below)
208
     controlling interaction with host system routines (sbrk, mmap, etc).
209
     These values may also be changed dynamically via mallopt(). The
210
     preset defaults are those that give best performance for typical
211
     programs/systems.
212
  USE_DL_PREFIX             (default: undefined)
213
     Prefix all public routines with the string 'dl'.  Useful to
214
     quickly avoid procedure declaration conflicts and linker symbol
215
     conflicts with existing memory allocation routines.
216
 
217
 
218
*/
219
 
220
 
221
 
222
 
223
/* Preliminaries */
224
 
225
#ifndef __STD_C
226
#ifdef __STDC__
227
#define __STD_C     1
228
#else
229
#if __cplusplus
230
#define __STD_C     1
231
#else
232
#define __STD_C     0
233
#endif /*__cplusplus*/
234
#endif /*__STDC__*/
235
#endif /*__STD_C*/
236
 
237
#ifndef Void_t
238
#if (__STD_C || defined(WIN32))
239
#define Void_t      void
240
#else
241
#define Void_t      char
242
#endif
243
#endif /*Void_t*/
244
 
245
#if __STD_C
246
#include <stddef.h>   /* for size_t */
247
#else
248
#include <sys/types.h>
249
#endif
250
 
251
#ifdef __cplusplus
252
extern "C" {
253
#endif
254
 
255
#include <stdio.h>    /* needed for malloc_stats */
256
 
257
 
258
/*
259
  Compile-time options
260
*/
261
 
262
 
263
/*
264
    Debugging:
265
 
266
    Because freed chunks may be overwritten with link fields, this
267
    malloc will often die when freed memory is overwritten by user
268
    programs.  This can be very effective (albeit in an annoying way)
269
    in helping track down dangling pointers.
270
 
271
    If you compile with -DDEBUG, a number of assertion checks are
272
    enabled that will catch more memory errors. You probably won't be
273
    able to make much sense of the actual assertion errors, but they
274
    should help you locate incorrectly overwritten memory.  The
275
    checking is fairly extensive, and will slow down execution
276
    noticeably. Calling malloc_stats or mallinfo with DEBUG set will
277
    attempt to check every non-mmapped allocated and free chunk in the
278
    course of computing the summmaries. (By nature, mmapped regions
279
    cannot be checked very much automatically.)
280
 
281
    Setting DEBUG may also be helpful if you are trying to modify
282
    this code. The assertions in the check routines spell out in more
283
    detail the assumptions and invariants underlying the algorithms.
284
 
285
*/
286
 
287
#if DEBUG 
288
#include <assert.h>
289
#else
290
#define assert(x) ((void)0)
291
#endif
292
 
293
 
294
/*
295
  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
296
  of chunk sizes. On a 64-bit machine, you can reduce malloc
297
  overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
298
  at the expense of not being able to handle requests greater than
299
  2^31. This limitation is hardly ever a concern; you are encouraged
300
  to set this. However, the default version is the same as size_t.
301
*/
302
 
303
#ifndef INTERNAL_SIZE_T
304
#define INTERNAL_SIZE_T size_t
305
#endif
306
 
307
/*
308
  REALLOC_ZERO_BYTES_FREES should be set if a call to
309
  realloc with zero bytes should be the same as a call to free.
310
  Some people think it should. Otherwise, since this malloc
311
  returns a unique pointer for malloc(0), so does realloc(p, 0).
312
*/
313
 
314
 
315
/*   #define REALLOC_ZERO_BYTES_FREES */
316
 
317
 
318
/*
319
  WIN32 causes an emulation of sbrk to be compiled in
320
  mmap-based options are not currently supported in WIN32.
321
*/
322
 
323
/* #define WIN32 */
324
#ifdef WIN32
325
#define MORECORE wsbrk
326
#define HAVE_MMAP 0
327
 
328
#define LACKS_UNISTD_H
329
#define LACKS_SYS_PARAM_H
330
 
331
/*
332
  Include 'windows.h' to get the necessary declarations for the
333
  Microsoft Visual C++ data structures and routines used in the 'sbrk'
334
  emulation.
335
 
336
  Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
337
  Visual C++ header files are included.
338
*/
339
#define WIN32_LEAN_AND_MEAN
340
#include <windows.h>
341
#endif
342
 
343
 
344
/*
345
  HAVE_MEMCPY should be defined if you are not otherwise using
346
  ANSI STD C, but still have memcpy and memset in your C library
347
  and want to use them in calloc and realloc. Otherwise simple
348
  macro versions are defined here.
349
 
350
  USE_MEMCPY should be defined as 1 if you actually want to
351
  have memset and memcpy called. People report that the macro
352
  versions are often enough faster than libc versions on many
353
  systems that it is better to use them.
354
 
355
*/
356
 
357
#define HAVE_MEMCPY 
358
 
359
#ifndef USE_MEMCPY
360
#ifdef HAVE_MEMCPY
361
#define USE_MEMCPY 1
362
#else
363
#define USE_MEMCPY 0
364
#endif
365
#endif
366
 
367
#if (__STD_C || defined(HAVE_MEMCPY)) 
368
 
369
#if __STD_C
370
void* memset(void*, int, size_t);
371
void* memcpy(void*, const void*, size_t);
372
#else
373
#ifdef WIN32
374
// On Win32 platforms, 'memset()' and 'memcpy()' are already declared in
375
// 'windows.h'
376
#else
377
Void_t* memset();
378
Void_t* memcpy();
379
#endif
380
#endif
381
#endif
382
 
383
#if USE_MEMCPY
384
 
385
/* The following macros are only invoked with (2n+1)-multiples of
386
   INTERNAL_SIZE_T units, with a positive integer n. This is exploited
387
   for fast inline execution when n is small. */
388
 
389
#define MALLOC_ZERO(charp, nbytes)                                            \
390
do {                                                                          \
391
  INTERNAL_SIZE_T mzsz = (nbytes);                                            \
392
  if(mzsz <= 9*sizeof(mzsz)) {                                                \
393
    INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
394
    if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
395
                                     *mz++ = 0;                               \
396
      if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
397
                                     *mz++ = 0;                               \
398
        if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
399
                                     *mz++ = 0; }}}                           \
400
                                     *mz++ = 0;                               \
401
                                     *mz++ = 0;                               \
402
                                     *mz   = 0;                               \
403
  } else memset((charp), 0, mzsz);                                            \
404
} while(0)
405
 
406
#define MALLOC_COPY(dest,src,nbytes)                                          \
407
do {                                                                          \
408
  INTERNAL_SIZE_T mcsz = (nbytes);                                            \
409
  if(mcsz <= 9*sizeof(mcsz)) {                                                \
410
    INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
411
    INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
412
    if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
413
                                     *mcdst++ = *mcsrc++;                     \
414
      if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
415
                                     *mcdst++ = *mcsrc++;                     \
416
        if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
417
                                     *mcdst++ = *mcsrc++; }}}                 \
418
                                     *mcdst++ = *mcsrc++;                     \
419
                                     *mcdst++ = *mcsrc++;                     \
420
                                     *mcdst   = *mcsrc  ;                     \
421
  } else memcpy(dest, src, mcsz);                                             \
422
} while(0)
423
 
424
#else /* !USE_MEMCPY */
425
 
426
/* Use Duff's device for good zeroing/copying performance. */
427
 
428
#define MALLOC_ZERO(charp, nbytes)                                            \
429
do {                                                                          \
430
  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
431
  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
432
  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
433
  switch (mctmp) {                                                            \
434
    case 0: for(;;) { *mzp++ = 0;                                             \
435
    case 7:           *mzp++ = 0;                                             \
436
    case 6:           *mzp++ = 0;                                             \
437
    case 5:           *mzp++ = 0;                                             \
438
    case 4:           *mzp++ = 0;                                             \
439
    case 3:           *mzp++ = 0;                                             \
440
    case 2:           *mzp++ = 0;                                             \
441
    case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
442
  }                                                                           \
443
} while(0)
444
 
445
#define MALLOC_COPY(dest,src,nbytes)                                          \
446
do {                                                                          \
447
  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
448
  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
449
  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
450
  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
451
  switch (mctmp) {                                                            \
452
    case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
453
    case 7:           *mcdst++ = *mcsrc++;                                    \
454
    case 6:           *mcdst++ = *mcsrc++;                                    \
455
    case 5:           *mcdst++ = *mcsrc++;                                    \
456
    case 4:           *mcdst++ = *mcsrc++;                                    \
457
    case 3:           *mcdst++ = *mcsrc++;                                    \
458
    case 2:           *mcdst++ = *mcsrc++;                                    \
459
    case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
460
  }                                                                           \
461
} while(0)
462
 
463
#endif
464
 
465
 
466
/*
467
  Define HAVE_MMAP to optionally make malloc() use mmap() to
468
  allocate very large blocks.  These will be returned to the
469
  operating system immediately after a free().
470
*/
471
 
472
#ifndef HAVE_MMAP
473
#define HAVE_MMAP 1
474
#endif
475
 
476
/*
477
  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
478
  large blocks.  This is currently only possible on Linux with
479
  kernel versions newer than 1.3.77.
480
*/
481
 
482
#ifndef HAVE_MREMAP
483
#ifdef INTERNAL_LINUX_C_LIB
484
#define HAVE_MREMAP 1
485
#else
486
#define HAVE_MREMAP 0
487
#endif
488
#endif
489
 
490
#if HAVE_MMAP
491
 
492
#include <unistd.h>
493
#include <fcntl.h>
494
#include <sys/mman.h>
495
 
496
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
497
#define MAP_ANONYMOUS MAP_ANON
498
#endif
499
 
500
#endif /* HAVE_MMAP */
501
 
502
/*
503
  Access to system page size. To the extent possible, this malloc
504
  manages memory from the system in page-size units.
505
 
506
  The following mechanics for getpagesize were adapted from
507
  bsd/gnu getpagesize.h
508
*/
509
 
510
#ifndef LACKS_UNISTD_H
511
#  include <unistd.h>
512
#endif
513
 
514
#ifndef malloc_getpagesize
515
#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
516
#    ifndef _SC_PAGE_SIZE
517
#      define _SC_PAGE_SIZE _SC_PAGESIZE
518
#    endif
519
#  endif
520
#  ifdef _SC_PAGE_SIZE
521
#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
522
#  else
523
#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
524
       extern size_t getpagesize();
525
#      define malloc_getpagesize getpagesize()
526
#    else
527
#      ifdef WIN32
528
#        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
529
#      else
530
#        ifndef LACKS_SYS_PARAM_H
531
#          include <sys/param.h>
532
#        endif
533
#        ifdef EXEC_PAGESIZE
534
#          define malloc_getpagesize EXEC_PAGESIZE
535
#        else
536
#          ifdef NBPG
537
#            ifndef CLSIZE
538
#              define malloc_getpagesize NBPG
539
#            else
540
#              define malloc_getpagesize (NBPG * CLSIZE)
541
#            endif
542
#          else 
543
#            ifdef NBPC
544
#              define malloc_getpagesize NBPC
545
#            else
546
#              ifdef PAGESIZE
547
#                define malloc_getpagesize PAGESIZE
548
#              else
549
#                define malloc_getpagesize (4096) /* just guess */
550
#              endif
551
#            endif
552
#          endif 
553
#        endif
554
#      endif 
555
#    endif
556
#  endif
557
#endif
558
 
559
 
560
 
561
/*
562
 
563
  This version of malloc supports the standard SVID/XPG mallinfo
564
  routine that returns a struct containing the same kind of
565
  information you can get from malloc_stats. It should work on
566
  any SVID/XPG compliant system that has a /usr/include/malloc.h
567
  defining struct mallinfo. (If you'd like to install such a thing
568
  yourself, cut out the preliminary declarations as described above
569
  and below and save them in a malloc.h file. But there's no
570
  compelling reason to bother to do this.)
571
 
572
  The main declaration needed is the mallinfo struct that is returned
573
  (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
574
  bunch of fields, most of which are not even meaningful in this
575
  version of malloc. Some of these fields are are instead filled by
576
  mallinfo() with other numbers that might possibly be of interest.
577
 
578
  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
579
  /usr/include/malloc.h file that includes a declaration of struct
580
  mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
581
  version is declared below.  These must be precisely the same for
582
  mallinfo() to work.
583
 
584
*/
585
 
586
/* #define HAVE_USR_INCLUDE_MALLOC_H */
587
 
588
#if HAVE_USR_INCLUDE_MALLOC_H
589
#include "/usr/include/malloc.h"
590
#else
591
 
592
/* SVID2/XPG mallinfo structure */
593
 
594
struct mallinfo {
595
  int arena;    /* total space allocated from system */
596
  int ordblks;  /* number of non-inuse chunks */
597
  int smblks;   /* unused -- always zero */
598
  int hblks;    /* number of mmapped regions */
599
  int hblkhd;   /* total space in mmapped regions */
600
  int usmblks;  /* unused -- always zero */
601
  int fsmblks;  /* unused -- always zero */
602
  int uordblks; /* total allocated space */
603
  int fordblks; /* total non-inuse space */
604
  int keepcost; /* top-most, releasable (via malloc_trim) space */
605
};
606
 
607
/* SVID2/XPG mallopt options */
608
 
609
#define M_MXFAST  1    /* UNUSED in this malloc */
610
#define M_NLBLKS  2    /* UNUSED in this malloc */
611
#define M_GRAIN   3    /* UNUSED in this malloc */
612
#define M_KEEP    4    /* UNUSED in this malloc */
613
 
614
#endif
615
 
616
/* mallopt options that actually do something */
617
 
618
#define M_TRIM_THRESHOLD    -1
619
#define M_TOP_PAD           -2
620
#define M_MMAP_THRESHOLD    -3
621
#define M_MMAP_MAX          -4
622
 
623
 
624
 
625
#ifndef DEFAULT_TRIM_THRESHOLD
626
#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
627
#endif
628
 
629
/*
630
    M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
631
      to keep before releasing via malloc_trim in free().
632
 
633
      Automatic trimming is mainly useful in long-lived programs.
634
      Because trimming via sbrk can be slow on some systems, and can
635
      sometimes be wasteful (in cases where programs immediately
636
      afterward allocate more large chunks) the value should be high
637
      enough so that your overall system performance would improve by
638
      releasing.
639
 
640
      The trim threshold and the mmap control parameters (see below)
641
      can be traded off with one another. Trimming and mmapping are
642
      two different ways of releasing unused memory back to the
643
      system. Between these two, it is often possible to keep
644
      system-level demands of a long-lived program down to a bare
645
      minimum. For example, in one test suite of sessions measuring
646
      the XF86 X server on Linux, using a trim threshold of 128K and a
647
      mmap threshold of 192K led to near-minimal long term resource
648
      consumption.
649
 
650
      If you are using this malloc in a long-lived program, it should
651
      pay to experiment with these values.  As a rough guide, you
652
      might set to a value close to the average size of a process
653
      (program) running on your system.  Releasing this much memory
654
      would allow such a process to run in memory.  Generally, it's
655
      worth it to tune for trimming rather tham memory mapping when a
656
      program undergoes phases where several large chunks are
657
      allocated and released in ways that can reuse each other's
658
      storage, perhaps mixed with phases where there are no such
659
      chunks at all.  And in well-behaved long-lived programs,
660
      controlling release of large blocks via trimming versus mapping
661
      is usually faster.
662
 
663
      However, in most programs, these parameters serve mainly as
664
      protection against the system-level effects of carrying around
665
      massive amounts of unneeded memory. Since frequent calls to
666
      sbrk, mmap, and munmap otherwise degrade performance, the default
667
      parameters are set to relatively high values that serve only as
668
      safeguards.
669
 
670
      The default trim value is high enough to cause trimming only in
671
      fairly extreme (by current memory consumption standards) cases.
672
      It must be greater than page size to have any useful effect.  To
673
      disable trimming completely, you can set to (unsigned long)(-1);
674
 
675
 
676
*/
677
 
678
 
679
#ifndef DEFAULT_TOP_PAD
680
#define DEFAULT_TOP_PAD        (0)
681
#endif
682
 
683
/*
684
    M_TOP_PAD is the amount of extra `padding' space to allocate or
685
      retain whenever sbrk is called. It is used in two ways internally:
686
 
687
      * When sbrk is called to extend the top of the arena to satisfy
688
        a new malloc request, this much padding is added to the sbrk
689
        request.
690
 
691
      * When malloc_trim is called automatically from free(),
692
        it is used as the `pad' argument.
693
 
694
      In both cases, the actual amount of padding is rounded
695
      so that the end of the arena is always a system page boundary.
696
 
697
      The main reason for using padding is to avoid calling sbrk so
698
      often. Having even a small pad greatly reduces the likelihood
699
      that nearly every malloc request during program start-up (or
700
      after trimming) will invoke sbrk, which needlessly wastes
701
      time.
702
 
703
      Automatic rounding-up to page-size units is normally sufficient
704
      to avoid measurable overhead, so the default is 0.  However, in
705
      systems where sbrk is relatively slow, it can pay to increase
706
      this value, at the expense of carrying around more memory than
707
      the program needs.
708
 
709
*/
710
 
711
 
712
#ifndef DEFAULT_MMAP_THRESHOLD
713
#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
714
#endif
715
 
716
/*
717
 
718
    M_MMAP_THRESHOLD is the request size threshold for using mmap()
719
      to service a request. Requests of at least this size that cannot
720
      be allocated using already-existing space will be serviced via mmap.
721
      (If enough normal freed space already exists it is used instead.)
722
 
723
      Using mmap segregates relatively large chunks of memory so that
724
      they can be individually obtained and released from the host
725
      system. A request serviced through mmap is never reused by any
726
      other request (at least not directly; the system may just so
727
      happen to remap successive requests to the same locations).
728
 
729
      Segregating space in this way has the benefit that mmapped space
730
      can ALWAYS be individually released back to the system, which
731
      helps keep the system level memory demands of a long-lived
732
      program low. Mapped memory can never become `locked' between
733
      other chunks, as can happen with normally allocated chunks, which
734
      menas that even trimming via malloc_trim would not release them.
735
 
736
      However, it has the disadvantages that:
737
 
738
         1. The space cannot be reclaimed, consolidated, and then
739
            used to service later requests, as happens with normal chunks.
740
         2. It can lead to more wastage because of mmap page alignment
741
            requirements
742
         3. It causes malloc performance to be more dependent on host
743
            system memory management support routines which may vary in
744
            implementation quality and may impose arbitrary
745
            limitations. Generally, servicing a request via normal
746
            malloc steps is faster than going through a system's mmap.
747
 
748
      All together, these considerations should lead you to use mmap
749
      only for relatively large requests.
750
 
751
 
752
*/
753
 
754
 
755
 
756
#ifndef DEFAULT_MMAP_MAX
757
#if HAVE_MMAP
758
#define DEFAULT_MMAP_MAX       (64)
759
#else
760
#define DEFAULT_MMAP_MAX       (0)
761
#endif
762
#endif
763
 
764
/*
765
    M_MMAP_MAX is the maximum number of requests to simultaneously
766
      service using mmap. This parameter exists because:
767
 
768
         1. Some systems have a limited number of internal tables for
769
            use by mmap.
770
         2. In most systems, overreliance on mmap can degrade overall
771
            performance.
772
         3. If a program allocates many large regions, it is probably
773
            better off using normal sbrk-based allocation routines that
774
            can reclaim and reallocate normal heap memory. Using a
775
            small value allows transition into this mode after the
776
            first few allocations.
777
 
778
      Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
779
      the default value is 0, and attempts to set it to non-zero values
780
      in mallopt will fail.
781
*/
782
 
783
 
784
 
785
 
786
/*
787
    USE_DL_PREFIX will prefix all public routines with the string 'dl'.
788
      Useful to quickly avoid procedure declaration conflicts and linker
789
      symbol conflicts with existing memory allocation routines.
790
 
791
*/
792
 
793
/* #define USE_DL_PREFIX */
794
 
795
 
796
 
797
 
798
/*
799
 
800
  Special defines for linux libc
801
 
802
  Except when compiled using these special defines for Linux libc
803
  using weak aliases, this malloc is NOT designed to work in
804
  multithreaded applications.  No semaphores or other concurrency
805
  control are provided to ensure that multiple malloc or free calls
806
  don't run at the same time, which could be disasterous. A single
807
  semaphore could be used across malloc, realloc, and free (which is
808
  essentially the effect of the linux weak alias approach). It would
809
  be hard to obtain finer granularity.
810
 
811
*/
812
 
813
 
814
#ifdef INTERNAL_LINUX_C_LIB
815
 
816
#if __STD_C
817
 
818
Void_t * __default_morecore_init (ptrdiff_t);
819
Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
820
 
821
#else
822
 
823
Void_t * __default_morecore_init ();
824
Void_t *(*__morecore)() = __default_morecore_init;
825
 
826
#endif
827
 
828
#define MORECORE (*__morecore)
829
#define MORECORE_FAILURE 0
830
#define MORECORE_CLEARS 1 
831
 
832
#else /* INTERNAL_LINUX_C_LIB */
833
 
834
#if __STD_C
835
extern Void_t*     sbrk(ptrdiff_t);
836
#else
837
extern Void_t*     sbrk();
838
#endif
839
 
840
#ifndef MORECORE
841
#define MORECORE sbrk
842
#endif
843
 
844
#ifndef MORECORE_FAILURE
845
#define MORECORE_FAILURE -1
846
#endif
847
 
848
#ifndef MORECORE_CLEARS
849
#define MORECORE_CLEARS 1
850
#endif
851
 
852
#endif /* INTERNAL_LINUX_C_LIB */
853
 
854
#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
855
 
856
#define cALLOc          __libc_calloc
857
#define fREe            __libc_free
858
#define mALLOc          __libc_malloc
859
#define mEMALIGn        __libc_memalign
860
#define rEALLOc         __libc_realloc
861
#define vALLOc          __libc_valloc
862
#define pvALLOc         __libc_pvalloc
863
#define mALLINFo        __libc_mallinfo
864
#define mALLOPt         __libc_mallopt
865
 
866
#pragma weak calloc = __libc_calloc
867
#pragma weak free = __libc_free
868
#pragma weak cfree = __libc_free
869
#pragma weak malloc = __libc_malloc
870
#pragma weak memalign = __libc_memalign
871
#pragma weak realloc = __libc_realloc
872
#pragma weak valloc = __libc_valloc
873
#pragma weak pvalloc = __libc_pvalloc
874
#pragma weak mallinfo = __libc_mallinfo
875
#pragma weak mallopt = __libc_mallopt
876
 
877
#else
878
 
879
#ifdef USE_DL_PREFIX
880
#define cALLOc          dlcalloc
881
#define fREe            dlfree
882
#define mALLOc          dlmalloc
883
#define mEMALIGn        dlmemalign
884
#define rEALLOc         dlrealloc
885
#define vALLOc          dlvalloc
886
#define pvALLOc         dlpvalloc
887
#define mALLINFo        dlmallinfo
888
#define mALLOPt         dlmallopt
889
#else /* USE_DL_PREFIX */
890
#define cALLOc          calloc
891
#define fREe            free
892
#define mALLOc          malloc
893
#define mEMALIGn        memalign
894
#define rEALLOc         realloc
895
#define vALLOc          valloc
896
#define pvALLOc         pvalloc
897
#define mALLINFo        mallinfo
898
#define mALLOPt         mallopt
899
#endif /* USE_DL_PREFIX */
900
 
901
#endif
902
 
903
/* Public routines */
904
 
905
#if __STD_C
906
 
907
Void_t* mALLOc(size_t);
908
void    fREe(Void_t*);
909
Void_t* rEALLOc(Void_t*, size_t);
910
Void_t* mEMALIGn(size_t, size_t);
911
Void_t* vALLOc(size_t);
912
Void_t* pvALLOc(size_t);
913
Void_t* cALLOc(size_t, size_t);
914
void    cfree(Void_t*);
915
int     malloc_trim(size_t);
916
size_t  malloc_usable_size(Void_t*);
917
void    malloc_stats();
918
int     mALLOPt(int, int);
919
struct mallinfo mALLINFo(void);
920
#else
921
Void_t* mALLOc();
922
void    fREe();
923
Void_t* rEALLOc();
924
Void_t* mEMALIGn();
925
Void_t* vALLOc();
926
Void_t* pvALLOc();
927
Void_t* cALLOc();
928
void    cfree();
929
int     malloc_trim();
930
size_t  malloc_usable_size();
931
void    malloc_stats();
932
int     mALLOPt();
933
struct mallinfo mALLINFo();
934
#endif
935
 
936
 
937
#ifdef __cplusplus
938
};  /* end of extern "C" */
939
#endif
940
 
941
/* ---------- To make a malloc.h, end cutting here ------------ */
942
 
943
 
944
/*
945
  Emulation of sbrk for WIN32
946
  All code within the ifdef WIN32 is untested by me.
947
 
948
  Thanks to Martin Fong and others for supplying this.
949
*/
950
 
951
 
952
#ifdef WIN32
953
 
954
#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
955
~(malloc_getpagesize-1))
956
#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
957
 
958
/* resrve 64MB to insure large contiguous space */
959
#define RESERVED_SIZE (1024*1024*64)
960
#define NEXT_SIZE (2048*1024)
961
#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
962
 
963
struct GmListElement;
964
typedef struct GmListElement GmListElement;
965
 
966
struct GmListElement
967
{
968
        GmListElement* next;
969
        void* base;
970
};
971
 
972
static GmListElement* head = 0;
973
static unsigned int gNextAddress = 0;
974
static unsigned int gAddressBase = 0;
975
static unsigned int gAllocatedSize = 0;
976
 
977
static
978
GmListElement* makeGmListElement (void* bas)
979
{
980
        GmListElement* this;
981
        this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
982
        assert (this);
983
        if (this)
984
        {
985
                this->base = bas;
986
                this->next = head;
987
                head = this;
988
        }
989
        return this;
990
}
991
 
992
void gcleanup ()
993
{
994
        BOOL rval;
995
        assert ( (head == NULL) || (head->base == (void*)gAddressBase));
996
        if (gAddressBase && (gNextAddress - gAddressBase))
997
        {
998
                rval = VirtualFree ((void*)gAddressBase,
999
                                                        gNextAddress - gAddressBase,
1000
                                                        MEM_DECOMMIT);
1001
        assert (rval);
1002
        }
1003
        while (head)
1004
        {
1005
                GmListElement* next = head->next;
1006
                rval = VirtualFree (head->base, 0, MEM_RELEASE);
1007
                assert (rval);
1008
                LocalFree (head);
1009
                head = next;
1010
        }
1011
}
1012
 
1013
static
1014
void* findRegion (void* start_address, unsigned long size)
1015
{
1016
        MEMORY_BASIC_INFORMATION info;
1017
        if (size >= TOP_MEMORY) return NULL;
1018
 
1019
        while ((unsigned long)start_address + size < TOP_MEMORY)
1020
        {
1021
                VirtualQuery (start_address, &info, sizeof (info));
1022
                if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1023
                        return start_address;
1024
                else
1025
                {
1026
                        // Requested region is not available so see if the
1027
                        // next region is available.  Set 'start_address'
1028
                        // to the next region and call 'VirtualQuery()'
1029
                        // again.
1030
 
1031
                        start_address = (char*)info.BaseAddress + info.RegionSize;
1032
 
1033
                        // Make sure we start looking for the next region
1034
                        // on the *next* 64K boundary.  Otherwise, even if
1035
                        // the new region is free according to
1036
                        // 'VirtualQuery()', the subsequent call to
1037
                        // 'VirtualAlloc()' (which follows the call to
1038
                        // this routine in 'wsbrk()') will round *down*
1039
                        // the requested address to a 64K boundary which
1040
                        // we already know is an address in the
1041
                        // unavailable region.  Thus, the subsequent call
1042
                        // to 'VirtualAlloc()' will fail and bring us back
1043
                        // here, causing us to go into an infinite loop.
1044
 
1045
                        start_address =
1046
                                (void *) AlignPage64K((unsigned long) start_address);
1047
                }
1048
        }
1049
        return NULL;
1050
 
1051
}
1052
 
1053
 
1054
void* wsbrk (long size)
1055
{
1056
        void* tmp;
1057
        if (size > 0)
1058
        {
1059
                if (gAddressBase == 0)
1060
                {
1061
                        gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1062
                        gNextAddress = gAddressBase =
1063
                                (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1064
                                                                                        MEM_RESERVE, PAGE_NOACCESS);
1065
                } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1066
gAllocatedSize))
1067
                {
1068
                        long new_size = max (NEXT_SIZE, AlignPage (size));
1069
                        void* new_address = (void*)(gAddressBase+gAllocatedSize);
1070
                        do
1071
                        {
1072
                                new_address = findRegion (new_address, new_size);
1073
 
1074
                                if (new_address == 0)
1075
                                        return (void*)-1;
1076
 
1077
                                gAddressBase = gNextAddress =
1078
                                        (unsigned int)VirtualAlloc (new_address, new_size,
1079
                                                                                                MEM_RESERVE, PAGE_NOACCESS);
1080
                                // repeat in case of race condition
1081
                                // The region that we found has been snagged 
1082
                                // by another thread
1083
                        }
1084
                        while (gAddressBase == 0);
1085
 
1086
                        assert (new_address == (void*)gAddressBase);
1087
 
1088
                        gAllocatedSize = new_size;
1089
 
1090
                        if (!makeGmListElement ((void*)gAddressBase))
1091
                                return (void*)-1;
1092
                }
1093
                if ((size + gNextAddress) > AlignPage (gNextAddress))
1094
                {
1095
                        void* res;
1096
                        res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1097
                                                                (size + gNextAddress -
1098
                                                                 AlignPage (gNextAddress)),
1099
                                                                MEM_COMMIT, PAGE_READWRITE);
1100
                        if (res == 0)
1101
                                return (void*)-1;
1102
                }
1103
                tmp = (void*)gNextAddress;
1104
                gNextAddress = (unsigned int)tmp + size;
1105
                return tmp;
1106
        }
1107
        else if (size < 0)
1108
        {
1109
                unsigned int alignedGoal = AlignPage (gNextAddress + size);
1110
                /* Trim by releasing the virtual memory */
1111
                if (alignedGoal >= gAddressBase)
1112
                {
1113
                        VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1114
                                                 MEM_DECOMMIT);
1115
                        gNextAddress = gNextAddress + size;
1116
                        return (void*)gNextAddress;
1117
                }
1118
                else
1119
                {
1120
                        VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1121
                                                 MEM_DECOMMIT);
1122
                        gNextAddress = gAddressBase;
1123
                        return (void*)-1;
1124
                }
1125
        }
1126
        else
1127
        {
1128
                return (void*)gNextAddress;
1129
        }
1130
}
1131
 
1132
#endif
1133
 
1134
 
1135
 
1136
/*
1137
  Type declarations
1138
*/
1139
 
1140
 
1141
struct malloc_chunk
1142
{
1143
  INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1144
  INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1145
  struct malloc_chunk* fd;   /* double links -- used only if free. */
1146
  struct malloc_chunk* bk;
1147
};
1148
 
1149
typedef struct malloc_chunk* mchunkptr;
1150
 
1151
/*
1152
 
1153
   malloc_chunk details:
1154
 
1155
    (The following includes lightly edited explanations by Colin Plumb.)
1156
 
1157
    Chunks of memory are maintained using a `boundary tag' method as
1158
    described in e.g., Knuth or Standish.  (See the paper by Paul
1159
    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1160
    survey of such techniques.)  Sizes of free chunks are stored both
1161
    in the front of each chunk and at the end.  This makes
1162
    consolidating fragmented chunks into bigger chunks very fast.  The
1163
    size fields also hold bits representing whether chunks are free or
1164
    in use.
1165
 
1166
    An allocated chunk looks like this:
1167
 
1168
 
1169
    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1170
            |             Size of previous chunk, if allocated            | |
1171
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1172
            |             Size of chunk, in bytes                         |P|
1173
      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1174
            |             User data starts here...                          .
1175
            .                                                               .
1176
            .             (malloc_usable_space() bytes)                     .
1177
            .                                                               |
1178
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1179
            |             Size of chunk                                     |
1180
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181
 
1182
 
1183
    Where "chunk" is the front of the chunk for the purpose of most of
1184
    the malloc code, but "mem" is the pointer that is returned to the
1185
    user.  "Nextchunk" is the beginning of the next contiguous chunk.
1186
 
1187
    Chunks always begin on even word boundries, so the mem portion
1188
    (which is returned to the user) is also on an even word boundary, and
1189
    thus double-word aligned.
1190
 
1191
    Free chunks are stored in circular doubly-linked lists, and look like this:
1192
 
1193
    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1194
            |             Size of previous chunk                            |
1195
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1196
    `head:' |             Size of chunk, in bytes                         |P|
1197
      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1198
            |             Forward pointer to next chunk in list             |
1199
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1200
            |             Back pointer to previous chunk in list            |
1201
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1202
            |             Unused space (may be 0 bytes long)                .
1203
            .                                                               .
1204
            .                                                               |
1205
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1206
    `foot:' |             Size of chunk, in bytes                           |
1207
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1208
 
1209
    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1210
    chunk size (which is always a multiple of two words), is an in-use
1211
    bit for the *previous* chunk.  If that bit is *clear*, then the
1212
    word before the current chunk size contains the previous chunk
1213
    size, and can be used to find the front of the previous chunk.
1214
    (The very first chunk allocated always has this bit set,
1215
    preventing access to non-existent (or non-owned) memory.)
1216
 
1217
    Note that the `foot' of the current chunk is actually represented
1218
    as the prev_size of the NEXT chunk. (This makes it easier to
1219
    deal with alignments etc).
1220
 
1221
    The two exceptions to all this are
1222
 
1223
     1. The special chunk `top', which doesn't bother using the
1224
        trailing size field since there is no
1225
        next contiguous chunk that would have to index off it. (After
1226
        initialization, `top' is forced to always exist.  If it would
1227
        become less than MINSIZE bytes long, it is replenished via
1228
        malloc_extend_top.)
1229
 
1230
     2. Chunks allocated via mmap, which have the second-lowest-order
1231
        bit (IS_MMAPPED) set in their size fields.  Because they are
1232
        never merged or traversed from any other chunk, they have no
1233
        foot size or inuse information.
1234
 
1235
    Available chunks are kept in any of several places (all declared below):
1236
 
1237
    * `av': An array of chunks serving as bin headers for consolidated
1238
       chunks. Each bin is doubly linked.  The bins are approximately
1239
       proportionally (log) spaced.  There are a lot of these bins
1240
       (128). This may look excessive, but works very well in
1241
       practice.  All procedures maintain the invariant that no
1242
       consolidated chunk physically borders another one. Chunks in
1243
       bins are kept in size order, with ties going to the
1244
       approximately least recently used chunk.
1245
 
1246
       The chunks in each bin are maintained in decreasing sorted order by
1247
       size.  This is irrelevant for the small bins, which all contain
1248
       the same-sized chunks, but facilitates best-fit allocation for
1249
       larger chunks. (These lists are just sequential. Keeping them in
1250
       order almost never requires enough traversal to warrant using
1251
       fancier ordered data structures.)  Chunks of the same size are
1252
       linked with the most recently freed at the front, and allocations
1253
       are taken from the back.  This results in LRU or FIFO allocation
1254
       order, which tends to give each chunk an equal opportunity to be
1255
       consolidated with adjacent freed chunks, resulting in larger free
1256
       chunks and less fragmentation.
1257
 
1258
    * `top': The top-most available chunk (i.e., the one bordering the
1259
       end of available memory) is treated specially. It is never
1260
       included in any bin, is used only if no other chunk is
1261
       available, and is released back to the system if it is very
1262
       large (see M_TRIM_THRESHOLD).
1263
 
1264
    * `last_remainder': A bin holding only the remainder of the
1265
       most recently split (non-top) chunk. This bin is checked
1266
       before other non-fitting chunks, so as to provide better
1267
       locality for runs of sequentially allocated chunks.
1268
 
1269
    *  Implicitly, through the host system's memory mapping tables.
1270
       If supported, requests greater than a threshold are usually
1271
       serviced via calls to mmap, and then later released via munmap.
1272
 
1273
*/
1274
 
1275
 
1276
 
1277
 
1278
 
1279
 
1280
/*  sizes, alignments */
1281
 
1282
#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1283
#define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1284
#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1285
#define MINSIZE                (sizeof(struct malloc_chunk))
1286
 
1287
/* conversion from malloc headers to user pointers, and back */
1288
 
1289
#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1290
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1291
 
1292
/* pad request bytes into a usable size */
1293
 
1294
#define request2size(req) \
1295
 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1296
  (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1297
   (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1298
 
1299
/* Check if m has acceptable alignment */
1300
 
1301
#define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1302
 
1303
 
1304
 
1305
 
1306
/*
1307
  Physical chunk operations
1308
*/
1309
 
1310
 
1311
/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1312
 
1313
#define PREV_INUSE 0x1 
1314
 
1315
/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1316
 
1317
#define IS_MMAPPED 0x2
1318
 
1319
/* Bits to mask off when extracting size */
1320
 
1321
#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1322
 
1323
 
1324
/* Ptr to next physical malloc_chunk. */
1325
 
1326
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1327
 
1328
/* Ptr to previous physical malloc_chunk */
1329
 
1330
#define prev_chunk(p)\
1331
   ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1332
 
1333
 
1334
/* Treat space at ptr + offset as a chunk */
1335
 
1336
#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1337
 
1338
 
1339
 
1340
 
1341
/*
1342
  Dealing with use bits
1343
*/
1344
 
1345
/* extract p's inuse bit */
1346
 
1347
#define inuse(p)\
1348
((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1349
 
1350
/* extract inuse bit of previous chunk */
1351
 
1352
#define prev_inuse(p)  ((p)->size & PREV_INUSE)
1353
 
1354
/* check for mmap()'ed chunk */
1355
 
1356
#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1357
 
1358
/* set/clear chunk as in use without otherwise disturbing */
1359
 
1360
#define set_inuse(p)\
1361
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1362
 
1363
#define clear_inuse(p)\
1364
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1365
 
1366
/* check/set/clear inuse bits in known places */
1367
 
1368
#define inuse_bit_at_offset(p, s)\
1369
 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1370
 
1371
#define set_inuse_bit_at_offset(p, s)\
1372
 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1373
 
1374
#define clear_inuse_bit_at_offset(p, s)\
1375
 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1376
 
1377
 
1378
 
1379
 
1380
/*
1381
  Dealing with size fields
1382
*/
1383
 
1384
/* Get size, ignoring use bits */
1385
 
1386
#define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1387
 
1388
/* Set size at head, without disturbing its use bit */
1389
 
1390
#define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1391
 
1392
/* Set size/use ignoring previous bits in header */
1393
 
1394
#define set_head(p, s)        ((p)->size = (s))
1395
 
1396
/* Set size at footer (only when chunk is not in use) */
1397
 
1398
#define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1399
 
1400
 
1401
 
1402
 
1403
 
1404
/*
1405
   Bins
1406
 
1407
    The bins, `av_' are an array of pairs of pointers serving as the
1408
    heads of (initially empty) doubly-linked lists of chunks, laid out
1409
    in a way so that each pair can be treated as if it were in a
1410
    malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1411
    and chunks are the same).
1412
 
1413
    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1414
    8 bytes apart. Larger bins are approximately logarithmically
1415
    spaced. (See the table below.) The `av_' array is never mentioned
1416
    directly in the code, but instead via bin access macros.
1417
 
1418
    Bin layout:
1419
 
1420
    64 bins of size       8
1421
    32 bins of size      64
1422
    16 bins of size     512
1423
     8 bins of size    4096
1424
     4 bins of size   32768
1425
     2 bins of size  262144
1426
     1 bin  of size what's left
1427
 
1428
    There is actually a little bit of slop in the numbers in bin_index
1429
    for the sake of speed. This makes no difference elsewhere.
1430
 
1431
    The special chunks `top' and `last_remainder' get their own bins,
1432
    (this is implemented via yet more trickery with the av_ array),
1433
    although `top' is never properly linked to its bin since it is
1434
    always handled specially.
1435
 
1436
*/
1437
 
1438
#define NAV             128   /* number of bins */
1439
 
1440
typedef struct malloc_chunk* mbinptr;
1441
 
1442
/* access macros */
1443
 
1444
#define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1445
#define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1446
#define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1447
 
1448
/*
1449
   The first 2 bins are never indexed. The corresponding av_ cells are instead
1450
   used for bookkeeping. This is not to save space, but to simplify
1451
   indexing, maintain locality, and avoid some initialization tests.
1452
*/
1453
 
1454
#define top            (bin_at(0)->fd)   /* The topmost chunk */
1455
#define last_remainder (bin_at(1))       /* remainder from last split */
1456
 
1457
 
1458
/*
1459
   Because top initially points to its own bin with initial
1460
   zero size, thus forcing extension on the first malloc request,
1461
   we avoid having any special code in malloc to check whether
1462
   it even exists yet. But we still need to in malloc_extend_top.
1463
*/
1464
 
1465
#define initial_top    ((mchunkptr)(bin_at(0)))
1466
 
1467
/* Helper macro to initialize bins */
1468
 
1469
#define IAV(i)  bin_at(i), bin_at(i)
1470
 
1471
static mbinptr av_[NAV * 2 + 2] = {
1472
 0, 0,
1473
 IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1474
 IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1475
 IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1476
 IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1477
 IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1478
 IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1479
 IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1480
 IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1481
 IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1482
 IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1483
 IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1484
 IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1485
 IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1486
 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1487
 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1488
 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1489
};
1490
 
1491
 
1492
 
1493
/* field-extraction macros */
1494
 
1495
#define first(b) ((b)->fd)
1496
#define last(b)  ((b)->bk)
1497
 
1498
/*
1499
  Indexing into bins
1500
*/
1501
 
1502
#define bin_index(sz)                                                          \
1503
(((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1504
 ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1505
 ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1506
 ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1507
 ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1508
 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1509
                                          126)
1510
/*
1511
  bins for chunks < 512 are all spaced 8 bytes apart, and hold
1512
  identically sized chunks. This is exploited in malloc.
1513
*/
1514
 
1515
#define MAX_SMALLBIN         63
1516
#define MAX_SMALLBIN_SIZE   512
1517
#define SMALLBIN_WIDTH        8
1518
 
1519
#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1520
 
1521
/*
1522
   Requests are `small' if both the corresponding and the next bin are small
1523
*/
1524
 
1525
#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1526
 
1527
 
1528
 
1529
/*
1530
    To help compensate for the large number of bins, a one-level index
1531
    structure is used for bin-by-bin searching.  `binblocks' is a
1532
    one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1533
    have any (possibly) non-empty bins, so they can be skipped over
1534
    all at once during during traversals. The bits are NOT always
1535
    cleared as soon as all bins in a block are empty, but instead only
1536
    when all are noticed to be empty during traversal in malloc.
1537
*/
1538
 
1539
#define BINBLOCKWIDTH     4   /* bins per block */
1540
 
1541
#define binblocks      (bin_at(0)->size) /* bitvector of nonempty blocks */
1542
 
1543
/* bin<->block macros */
1544
 
1545
#define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1546
#define mark_binblock(ii)   (binblocks |= idx2binblock(ii))
1547
#define clear_binblock(ii)  (binblocks &= ~(idx2binblock(ii)))
1548
 
1549
 
1550
 
1551
 
1552
 
1553
/*  Other static bookkeeping data */
1554
 
1555
/* variables holding tunable values */
1556
 
1557
static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1558
static unsigned long top_pad          = DEFAULT_TOP_PAD;
1559
static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1560
static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1561
 
1562
/* The first value returned from sbrk */
1563
static char* sbrk_base = (char*)(-1);
1564
 
1565
/* The maximum memory obtained from system via sbrk */
1566
static unsigned long max_sbrked_mem = 0;
1567
 
1568
/* The maximum via either sbrk or mmap */
1569
static unsigned long max_total_mem = 0;
1570
 
1571
/* internal working copy of mallinfo */
1572
static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1573
 
1574
/* The total memory obtained from system via sbrk */
1575
#define sbrked_mem  (current_mallinfo.arena)
1576
 
1577
/* Tracking mmaps */
1578
 
1579
static unsigned int n_mmaps = 0;
1580
static unsigned int max_n_mmaps = 0;
1581
static unsigned long mmapped_mem = 0;
1582
static unsigned long max_mmapped_mem = 0;
1583
 
1584
 
1585
 
1586
/*
1587
  Debugging support
1588
*/
1589
 
1590
#if DEBUG
1591
 
1592
 
1593
/*
1594
  These routines make a number of assertions about the states
1595
  of data structures that should be true at all times. If any
1596
  are not true, it's very likely that a user program has somehow
1597
  trashed memory. (It's also possible that there is a coding error
1598
  in malloc. In which case, please report it!)
1599
*/
1600
 
1601
#if __STD_C
1602
static void do_check_chunk(mchunkptr p)
1603
#else
1604
static void do_check_chunk(p) mchunkptr p;
1605
#endif
1606
{
1607
  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1608
 
1609
  /* No checkable chunk is mmapped */
1610
  assert(!chunk_is_mmapped(p));
1611
 
1612
  /* Check for legal address ... */
1613
  assert((char*)p >= sbrk_base);
1614
  if (p != top)
1615
    assert((char*)p + sz <= (char*)top);
1616
  else
1617
    assert((char*)p + sz <= sbrk_base + sbrked_mem);
1618
 
1619
}
1620
 
1621
 
1622
#if __STD_C
1623
static void do_check_free_chunk(mchunkptr p)
1624
#else
1625
static void do_check_free_chunk(p) mchunkptr p;
1626
#endif
1627
{
1628
  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1629
  mchunkptr next = chunk_at_offset(p, sz);
1630
 
1631
  do_check_chunk(p);
1632
 
1633
  /* Check whether it claims to be free ... */
1634
  assert(!inuse(p));
1635
 
1636
  /* Unless a special marker, must have OK fields */
1637
  if ((long)sz >= (long)MINSIZE)
1638
  {
1639
    assert((sz & MALLOC_ALIGN_MASK) == 0);
1640
    assert(aligned_OK(chunk2mem(p)));
1641
    /* ... matching footer field */
1642
    assert(next->prev_size == sz);
1643
    /* ... and is fully consolidated */
1644
    assert(prev_inuse(p));
1645
    assert (next == top || inuse(next));
1646
 
1647
    /* ... and has minimally sane links */
1648
    assert(p->fd->bk == p);
1649
    assert(p->bk->fd == p);
1650
  }
1651
  else /* markers are always of size SIZE_SZ */
1652
    assert(sz == SIZE_SZ);
1653
}
1654
 
1655
#if __STD_C
1656
static void do_check_inuse_chunk(mchunkptr p)
1657
#else
1658
static void do_check_inuse_chunk(p) mchunkptr p;
1659
#endif
1660
{
1661
  mchunkptr next = next_chunk(p);
1662
  do_check_chunk(p);
1663
 
1664
  /* Check whether it claims to be in use ... */
1665
  assert(inuse(p));
1666
 
1667
  /* ... and is surrounded by OK chunks.
1668
    Since more things can be checked with free chunks than inuse ones,
1669
    if an inuse chunk borders them and debug is on, it's worth doing them.
1670
  */
1671
  if (!prev_inuse(p))
1672
  {
1673
    mchunkptr prv = prev_chunk(p);
1674
    assert(next_chunk(prv) == p);
1675
    do_check_free_chunk(prv);
1676
  }
1677
  if (next == top)
1678
  {
1679
    assert(prev_inuse(next));
1680
    assert(chunksize(next) >= MINSIZE);
1681
  }
1682
  else if (!inuse(next))
1683
    do_check_free_chunk(next);
1684
 
1685
}
1686
 
1687
#if __STD_C
1688
static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1689
#else
1690
static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1691
#endif
1692
{
1693
  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1694
  long room = sz - s;
1695
 
1696
  do_check_inuse_chunk(p);
1697
 
1698
  /* Legal size ... */
1699
  assert((long)sz >= (long)MINSIZE);
1700
  assert((sz & MALLOC_ALIGN_MASK) == 0);
1701
  assert(room >= 0);
1702
  assert(room < (long)MINSIZE);
1703
 
1704
  /* ... and alignment */
1705
  assert(aligned_OK(chunk2mem(p)));
1706
 
1707
 
1708
  /* ... and was allocated at front of an available chunk */
1709
  assert(prev_inuse(p));
1710
 
1711
}
1712
 
1713
 
1714
#define check_free_chunk(P)  do_check_free_chunk(P)
1715
#define check_inuse_chunk(P) do_check_inuse_chunk(P)
1716
#define check_chunk(P) do_check_chunk(P)
1717
#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1718
#else
1719
#define check_free_chunk(P) 
1720
#define check_inuse_chunk(P)
1721
#define check_chunk(P)
1722
#define check_malloced_chunk(P,N)
1723
#endif
1724
 
1725
 
1726
 
1727
/*
1728
  Macro-based internal utilities
1729
*/
1730
 
1731
 
1732
/*
1733
  Linking chunks in bin lists.
1734
  Call these only with variables, not arbitrary expressions, as arguments.
1735
*/
1736
 
1737
/*
1738
  Place chunk p of size s in its bin, in size order,
1739
  putting it ahead of others of same size.
1740
*/
1741
 
1742
 
1743
#define frontlink(P, S, IDX, BK, FD)                                          \
1744
{                                                                             \
1745
  if (S < MAX_SMALLBIN_SIZE)                                                  \
1746
  {                                                                           \
1747
    IDX = smallbin_index(S);                                                  \
1748
    mark_binblock(IDX);                                                       \
1749
    BK = bin_at(IDX);                                                         \
1750
    FD = BK->fd;                                                              \
1751
    P->bk = BK;                                                               \
1752
    P->fd = FD;                                                               \
1753
    FD->bk = BK->fd = P;                                                      \
1754
  }                                                                           \
1755
  else                                                                        \
1756
  {                                                                           \
1757
    IDX = bin_index(S);                                                       \
1758
    BK = bin_at(IDX);                                                         \
1759
    FD = BK->fd;                                                              \
1760
    if (FD == BK) mark_binblock(IDX);                                         \
1761
    else                                                                      \
1762
    {                                                                         \
1763
      while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1764
      BK = FD->bk;                                                            \
1765
    }                                                                         \
1766
    P->bk = BK;                                                               \
1767
    P->fd = FD;                                                               \
1768
    FD->bk = BK->fd = P;                                                      \
1769
  }                                                                           \
1770
}
1771
 
1772
 
1773
/* take a chunk off a list */
1774
 
1775
#define unlink(P, BK, FD)                                                     \
1776
{                                                                             \
1777
  BK = P->bk;                                                                 \
1778
  FD = P->fd;                                                                 \
1779
  FD->bk = BK;                                                                \
1780
  BK->fd = FD;                                                                \
1781
}                                                                             \
1782
 
1783
/* Place p as the last remainder */
1784
 
1785
#define link_last_remainder(P)                                                \
1786
{                                                                             \
1787
  last_remainder->fd = last_remainder->bk =  P;                               \
1788
  P->fd = P->bk = last_remainder;                                             \
1789
}
1790
 
1791
/* Clear the last_remainder bin */
1792
 
1793
#define clear_last_remainder \
1794
  (last_remainder->fd = last_remainder->bk = last_remainder)
1795
 
1796
 
1797
 
1798
 
1799
 
1800
 
1801
/* Routines dealing with mmap(). */
1802
 
1803
#if HAVE_MMAP
1804
 
1805
#if __STD_C
1806
static mchunkptr mmap_chunk(size_t size)
1807
#else
1808
static mchunkptr mmap_chunk(size) size_t size;
1809
#endif
1810
{
1811
  size_t page_mask = malloc_getpagesize - 1;
1812
  mchunkptr p;
1813
 
1814
#ifndef MAP_ANONYMOUS
1815
  static int fd = -1;
1816
#endif
1817
 
1818
  if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1819
 
1820
  /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1821
   * there is no following chunk whose prev_size field could be used.
1822
   */
1823
  size = (size + SIZE_SZ + page_mask) & ~page_mask;
1824
 
1825
#ifdef MAP_ANONYMOUS
1826
  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1827
                      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1828
#else /* !MAP_ANONYMOUS */
1829
  if (fd < 0)
1830
  {
1831
    fd = open("/dev/zero", O_RDWR);
1832
    if(fd < 0) return 0;
1833
  }
1834
  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1835
#endif
1836
 
1837
  if(p == (mchunkptr)-1) return 0;
1838
 
1839
  n_mmaps++;
1840
  if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1841
 
1842
  /* We demand that eight bytes into a page must be 8-byte aligned. */
1843
  assert(aligned_OK(chunk2mem(p)));
1844
 
1845
  /* The offset to the start of the mmapped region is stored
1846
   * in the prev_size field of the chunk; normally it is zero,
1847
   * but that can be changed in memalign().
1848
   */
1849
  p->prev_size = 0;
1850
  set_head(p, size|IS_MMAPPED);
1851
 
1852
  mmapped_mem += size;
1853
  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1854
    max_mmapped_mem = mmapped_mem;
1855
  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1856
    max_total_mem = mmapped_mem + sbrked_mem;
1857
  return p;
1858
}
1859
 
1860
#if __STD_C
1861
static void munmap_chunk(mchunkptr p)
1862
#else
1863
static void munmap_chunk(p) mchunkptr p;
1864
#endif
1865
{
1866
  INTERNAL_SIZE_T size = chunksize(p);
1867
  int ret;
1868
 
1869
  assert (chunk_is_mmapped(p));
1870
  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1871
  assert((n_mmaps > 0));
1872
  assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1873
 
1874
  n_mmaps--;
1875
  mmapped_mem -= (size + p->prev_size);
1876
 
1877
  ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1878
 
1879
  /* munmap returns non-zero on failure */
1880
  assert(ret == 0);
1881
}
1882
 
1883
#if HAVE_MREMAP
1884
 
1885
#if __STD_C
1886
static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1887
#else
1888
static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1889
#endif
1890
{
1891
  size_t page_mask = malloc_getpagesize - 1;
1892
  INTERNAL_SIZE_T offset = p->prev_size;
1893
  INTERNAL_SIZE_T size = chunksize(p);
1894
  char *cp;
1895
 
1896
  assert (chunk_is_mmapped(p));
1897
  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1898
  assert((n_mmaps > 0));
1899
  assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1900
 
1901
  /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1902
  new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1903
 
1904
  cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1905
 
1906
  if (cp == (char *)-1) return 0;
1907
 
1908
  p = (mchunkptr)(cp + offset);
1909
 
1910
  assert(aligned_OK(chunk2mem(p)));
1911
 
1912
  assert((p->prev_size == offset));
1913
  set_head(p, (new_size - offset)|IS_MMAPPED);
1914
 
1915
  mmapped_mem -= size + offset;
1916
  mmapped_mem += new_size;
1917
  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1918
    max_mmapped_mem = mmapped_mem;
1919
  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1920
    max_total_mem = mmapped_mem + sbrked_mem;
1921
  return p;
1922
}
1923
 
1924
#endif /* HAVE_MREMAP */
1925
 
1926
#endif /* HAVE_MMAP */
1927
 
1928
 
1929
 
1930
 
1931
/*
1932
  Extend the top-most chunk by obtaining memory from system.
1933
  Main interface to sbrk (but see also malloc_trim).
1934
*/
1935
 
1936
#if __STD_C
1937
static void malloc_extend_top(INTERNAL_SIZE_T nb)
1938
#else
1939
static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1940
#endif
1941
{
1942
  char*     brk;                  /* return value from sbrk */
1943
  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1944
  INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1945
  char*     new_brk;              /* return of 2nd sbrk call */
1946
  INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1947
 
1948
  mchunkptr old_top     = top;  /* Record state of old top */
1949
  INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1950
  char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1951
 
1952
  /* Pad request with top_pad plus minimal overhead */
1953
 
1954
  INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
1955
  unsigned long pagesz    = malloc_getpagesize;
1956
 
1957
  /* If not the first time through, round to preserve page boundary */
1958
  /* Otherwise, we need to correct to a page size below anyway. */
1959
  /* (We also correct below if an intervening foreign sbrk call.) */
1960
 
1961
  if (sbrk_base != (char*)(-1))
1962
    sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1963
 
1964
  brk = (char*)(MORECORE (sbrk_size));
1965
 
1966
  /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1967
  if (brk == (char*)(MORECORE_FAILURE) ||
1968
      (brk < old_end && old_top != initial_top))
1969
    return;
1970
 
1971
  sbrked_mem += sbrk_size;
1972
 
1973
  if (brk == old_end) /* can just add bytes to current top */
1974
  {
1975
    top_size = sbrk_size + old_top_size;
1976
    set_head(top, top_size | PREV_INUSE);
1977
  }
1978
  else
1979
  {
1980
    if (sbrk_base == (char*)(-1))  /* First time through. Record base */
1981
      sbrk_base = brk;
1982
    else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
1983
      sbrked_mem += brk - (char*)old_end;
1984
 
1985
    /* Guarantee alignment of first new chunk made from this space */
1986
    front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1987
    if (front_misalign > 0)
1988
    {
1989
      correction = (MALLOC_ALIGNMENT) - front_misalign;
1990
      brk += correction;
1991
    }
1992
    else
1993
      correction = 0;
1994
 
1995
    /* Guarantee the next brk will be at a page boundary */
1996
 
1997
    correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1998
                   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1999
 
2000
    /* Allocate correction */
2001
    new_brk = (char*)(MORECORE (correction));
2002
    if (new_brk == (char*)(MORECORE_FAILURE)) return;
2003
 
2004
    sbrked_mem += correction;
2005
 
2006
    top = (mchunkptr)brk;
2007
    top_size = new_brk - brk + correction;
2008
    set_head(top, top_size | PREV_INUSE);
2009
 
2010
    if (old_top != initial_top)
2011
    {
2012
 
2013
      /* There must have been an intervening foreign sbrk call. */
2014
      /* A double fencepost is necessary to prevent consolidation */
2015
 
2016
      /* If not enough space to do this, then user did something very wrong */
2017
      if (old_top_size < MINSIZE)
2018
      {
2019
        set_head(top, PREV_INUSE); /* will force null return from malloc */
2020
        return;
2021
      }
2022
 
2023
      /* Also keep size a multiple of MALLOC_ALIGNMENT */
2024
      old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2025
      set_head_size(old_top, old_top_size);
2026
      chunk_at_offset(old_top, old_top_size          )->size =
2027
        SIZE_SZ|PREV_INUSE;
2028
      chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2029
        SIZE_SZ|PREV_INUSE;
2030
      /* If possible, release the rest. */
2031
      if (old_top_size >= MINSIZE)
2032
        fREe(chunk2mem(old_top));
2033
    }
2034
  }
2035
 
2036
  if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2037
    max_sbrked_mem = sbrked_mem;
2038
  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2039
    max_total_mem = mmapped_mem + sbrked_mem;
2040
 
2041
  /* We always land on a page boundary */
2042
  assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2043
}
2044
 
2045
 
2046
 
2047
 
2048
/* Main public routines */
2049
 
2050
 
2051
/*
2052
  Malloc Algorthim:
2053
 
2054
    The requested size is first converted into a usable form, `nb'.
2055
    This currently means to add 4 bytes overhead plus possibly more to
2056
    obtain 8-byte alignment and/or to obtain a size of at least
2057
    MINSIZE (currently 16 bytes), the smallest allocatable size.
2058
    (All fits are considered `exact' if they are within MINSIZE bytes.)
2059
 
2060
    From there, the first successful of the following steps is taken:
2061
 
2062
      1. The bin corresponding to the request size is scanned, and if
2063
         a chunk of exactly the right size is found, it is taken.
2064
 
2065
      2. The most recently remaindered chunk is used if it is big
2066
         enough.  This is a form of (roving) first fit, used only in
2067
         the absence of exact fits. Runs of consecutive requests use
2068
         the remainder of the chunk used for the previous such request
2069
         whenever possible. This limited use of a first-fit style
2070
         allocation strategy tends to give contiguous chunks
2071
         coextensive lifetimes, which improves locality and can reduce
2072
         fragmentation in the long run.
2073
 
2074
      3. Other bins are scanned in increasing size order, using a
2075
         chunk big enough to fulfill the request, and splitting off
2076
         any remainder.  This search is strictly by best-fit; i.e.,
2077
         the smallest (with ties going to approximately the least
2078
         recently used) chunk that fits is selected.
2079
 
2080
      4. If large enough, the chunk bordering the end of memory
2081
         (`top') is split off. (This use of `top' is in accord with
2082
         the best-fit search rule.  In effect, `top' is treated as
2083
         larger (and thus less well fitting) than any other available
2084
         chunk since it can be extended to be as large as necessary
2085
         (up to system limitations).
2086
 
2087
      5. If the request size meets the mmap threshold and the
2088
         system supports mmap, and there are few enough currently
2089
         allocated mmapped regions, and a call to mmap succeeds,
2090
         the request is allocated via direct memory mapping.
2091
 
2092
      6. Otherwise, the top of memory is extended by
2093
         obtaining more space from the system (normally using sbrk,
2094
         but definable to anything else via the MORECORE macro).
2095
         Memory is gathered from the system (in system page-sized
2096
         units) in a way that allows chunks obtained across different
2097
         sbrk calls to be consolidated, but does not require
2098
         contiguous memory. Thus, it should be safe to intersperse
2099
         mallocs with other sbrk calls.
2100
 
2101
 
2102
      All allocations are made from the the `lowest' part of any found
2103
      chunk. (The implementation invariant is that prev_inuse is
2104
      always true of any allocated chunk; i.e., that each allocated
2105
      chunk borders either a previously allocated and still in-use chunk,
2106
      or the base of its memory arena.)
2107
 
2108
*/
2109
 
2110
#if __STD_C
2111
Void_t* mALLOc(size_t bytes)
2112
#else
2113
Void_t* mALLOc(bytes) size_t bytes;
2114
#endif
2115
{
2116
  mchunkptr victim;                  /* inspected/selected chunk */
2117
  INTERNAL_SIZE_T victim_size;       /* its size */
2118
  int       idx;                     /* index for bin traversal */
2119
  mbinptr   bin;                     /* associated bin */
2120
  mchunkptr remainder;               /* remainder from a split */
2121
  long      remainder_size;          /* its size */
2122
  int       remainder_index;         /* its bin index */
2123
  unsigned long block;               /* block traverser bit */
2124
  int       startidx;                /* first bin of a traversed block */
2125
  mchunkptr fwd;                     /* misc temp for linking */
2126
  mchunkptr bck;                     /* misc temp for linking */
2127
  mbinptr q;                         /* misc temp */
2128
 
2129
  INTERNAL_SIZE_T nb;
2130
 
2131
  if ((long)bytes < 0) return 0;
2132
 
2133
  nb = request2size(bytes);  /* padded request size; */
2134
 
2135
  /* Check for exact match in a bin */
2136
 
2137
  if (is_small_request(nb))  /* Faster version for small requests */
2138
  {
2139
    idx = smallbin_index(nb);
2140
 
2141
    /* No traversal or size check necessary for small bins.  */
2142
 
2143
    q = bin_at(idx);
2144
    victim = last(q);
2145
 
2146
    /* Also scan the next one, since it would have a remainder < MINSIZE */
2147
    if (victim == q)
2148
    {
2149
      q = next_bin(q);
2150
      victim = last(q);
2151
    }
2152
    if (victim != q)
2153
    {
2154
      victim_size = chunksize(victim);
2155
      unlink(victim, bck, fwd);
2156
      set_inuse_bit_at_offset(victim, victim_size);
2157
      check_malloced_chunk(victim, nb);
2158
      return chunk2mem(victim);
2159
    }
2160
 
2161
    idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2162
 
2163
  }
2164
  else
2165
  {
2166
    idx = bin_index(nb);
2167
    bin = bin_at(idx);
2168
 
2169
    for (victim = last(bin); victim != bin; victim = victim->bk)
2170
    {
2171
      victim_size = chunksize(victim);
2172
      remainder_size = victim_size - nb;
2173
 
2174
      if (remainder_size >= (long)MINSIZE) /* too big */
2175
      {
2176
        --idx; /* adjust to rescan below after checking last remainder */
2177
        break;
2178
      }
2179
 
2180
      else if (remainder_size >= 0) /* exact fit */
2181
      {
2182
        unlink(victim, bck, fwd);
2183
        set_inuse_bit_at_offset(victim, victim_size);
2184
        check_malloced_chunk(victim, nb);
2185
        return chunk2mem(victim);
2186
      }
2187
    }
2188
 
2189
    ++idx;
2190
 
2191
  }
2192
 
2193
  /* Try to use the last split-off remainder */
2194
 
2195
  if ( (victim = last_remainder->fd) != last_remainder)
2196
  {
2197
    victim_size = chunksize(victim);
2198
    remainder_size = victim_size - nb;
2199
 
2200
    if (remainder_size >= (long)MINSIZE) /* re-split */
2201
    {
2202
      remainder = chunk_at_offset(victim, nb);
2203
      set_head(victim, nb | PREV_INUSE);
2204
      link_last_remainder(remainder);
2205
      set_head(remainder, remainder_size | PREV_INUSE);
2206
      set_foot(remainder, remainder_size);
2207
      check_malloced_chunk(victim, nb);
2208
      return chunk2mem(victim);
2209
    }
2210
 
2211
    clear_last_remainder;
2212
 
2213
    if (remainder_size >= 0)  /* exhaust */
2214
    {
2215
      set_inuse_bit_at_offset(victim, victim_size);
2216
      check_malloced_chunk(victim, nb);
2217
      return chunk2mem(victim);
2218
    }
2219
 
2220
    /* Else place in bin */
2221
 
2222
    frontlink(victim, victim_size, remainder_index, bck, fwd);
2223
  }
2224
 
2225
  /*
2226
     If there are any possibly nonempty big-enough blocks,
2227
     search for best fitting chunk by scanning bins in blockwidth units.
2228
  */
2229
 
2230
  if ( (block = idx2binblock(idx)) <= binblocks)
2231
  {
2232
 
2233
    /* Get to the first marked block */
2234
 
2235
    if ( (block & binblocks) == 0)
2236
    {
2237
      /* force to an even block boundary */
2238
      idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2239
      block <<= 1;
2240
      while ((block & binblocks) == 0)
2241
      {
2242
        idx += BINBLOCKWIDTH;
2243
        block <<= 1;
2244
      }
2245
    }
2246
 
2247
    /* For each possibly nonempty block ... */
2248
    for (;;)
2249
    {
2250
      startidx = idx;          /* (track incomplete blocks) */
2251
      q = bin = bin_at(idx);
2252
 
2253
      /* For each bin in this block ... */
2254
      do
2255
      {
2256
        /* Find and use first big enough chunk ... */
2257
 
2258
        for (victim = last(bin); victim != bin; victim = victim->bk)
2259
        {
2260
          victim_size = chunksize(victim);
2261
          remainder_size = victim_size - nb;
2262
 
2263
          if (remainder_size >= (long)MINSIZE) /* split */
2264
          {
2265
            remainder = chunk_at_offset(victim, nb);
2266
            set_head(victim, nb | PREV_INUSE);
2267
            unlink(victim, bck, fwd);
2268
            link_last_remainder(remainder);
2269
            set_head(remainder, remainder_size | PREV_INUSE);
2270
            set_foot(remainder, remainder_size);
2271
            check_malloced_chunk(victim, nb);
2272
            return chunk2mem(victim);
2273
          }
2274
 
2275
          else if (remainder_size >= 0)  /* take */
2276
          {
2277
            set_inuse_bit_at_offset(victim, victim_size);
2278
            unlink(victim, bck, fwd);
2279
            check_malloced_chunk(victim, nb);
2280
            return chunk2mem(victim);
2281
          }
2282
 
2283
        }
2284
 
2285
       bin = next_bin(bin);
2286
 
2287
      } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2288
 
2289
      /* Clear out the block bit. */
2290
 
2291
      do   /* Possibly backtrack to try to clear a partial block */
2292
      {
2293
        if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2294
        {
2295
          binblocks &= ~block;
2296
          break;
2297
        }
2298
        --startidx;
2299
       q = prev_bin(q);
2300
      } while (first(q) == q);
2301
 
2302
      /* Get to the next possibly nonempty block */
2303
 
2304
      if ( (block <<= 1) <= binblocks && (block != 0) )
2305
      {
2306
        while ((block & binblocks) == 0)
2307
        {
2308
          idx += BINBLOCKWIDTH;
2309
          block <<= 1;
2310
        }
2311
      }
2312
      else
2313
        break;
2314
    }
2315
  }
2316
 
2317
 
2318
  /* Try to use top chunk */
2319
 
2320
  /* Require that there be a remainder, ensuring top always exists  */
2321
  if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2322
  {
2323
 
2324
#if HAVE_MMAP
2325
    /* If big and would otherwise need to extend, try to use mmap instead */
2326
    if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2327
        (victim = mmap_chunk(nb)) != 0)
2328
      return chunk2mem(victim);
2329
#endif
2330
 
2331
    /* Try to extend */
2332
    malloc_extend_top(nb);
2333
    if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2334
      return 0; /* propagate failure */
2335
  }
2336
 
2337
  victim = top;
2338
  set_head(victim, nb | PREV_INUSE);
2339
  top = chunk_at_offset(victim, nb);
2340
  set_head(top, remainder_size | PREV_INUSE);
2341
  check_malloced_chunk(victim, nb);
2342
  return chunk2mem(victim);
2343
 
2344
}
2345
 
2346
 
2347
 
2348
 
2349
/*
2350
 
2351
  free() algorithm :
2352
 
2353
    cases:
2354
 
2355
       1. free(0) has no effect.
2356
 
2357
       2. If the chunk was allocated via mmap, it is release via munmap().
2358
 
2359
       3. If a returned chunk borders the current high end of memory,
2360
          it is consolidated into the top, and if the total unused
2361
          topmost memory exceeds the trim threshold, malloc_trim is
2362
          called.
2363
 
2364
       4. Other chunks are consolidated as they arrive, and
2365
          placed in corresponding bins. (This includes the case of
2366
          consolidating with the current `last_remainder').
2367
 
2368
*/
2369
 
2370
 
2371
#if __STD_C
2372
void fREe(Void_t* mem)
2373
#else
2374
void fREe(mem) Void_t* mem;
2375
#endif
2376
{
2377
  mchunkptr p;         /* chunk corresponding to mem */
2378
  INTERNAL_SIZE_T hd;  /* its head field */
2379
  INTERNAL_SIZE_T sz;  /* its size */
2380
  int       idx;       /* its bin index */
2381
  mchunkptr next;      /* next contiguous chunk */
2382
  INTERNAL_SIZE_T nextsz; /* its size */
2383
  INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2384
  mchunkptr bck;       /* misc temp for linking */
2385
  mchunkptr fwd;       /* misc temp for linking */
2386
  int       islr;      /* track whether merging with last_remainder */
2387
 
2388
  if (mem == 0)                              /* free(0) has no effect */
2389
    return;
2390
 
2391
  p = mem2chunk(mem);
2392
  hd = p->size;
2393
 
2394
#if HAVE_MMAP
2395
  if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2396
  {
2397
    munmap_chunk(p);
2398
    return;
2399
  }
2400
#endif
2401
 
2402
  check_inuse_chunk(p);
2403
 
2404
  sz = hd & ~PREV_INUSE;
2405
  next = chunk_at_offset(p, sz);
2406
  nextsz = chunksize(next);
2407
 
2408
  if (next == top)                            /* merge with top */
2409
  {
2410
    sz += nextsz;
2411
 
2412
    if (!(hd & PREV_INUSE))                    /* consolidate backward */
2413
    {
2414
      prevsz = p->prev_size;
2415
      p = chunk_at_offset(p, -((long) prevsz));
2416
      sz += prevsz;
2417
      unlink(p, bck, fwd);
2418
    }
2419
 
2420
    set_head(p, sz | PREV_INUSE);
2421
    top = p;
2422
    if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2423
      malloc_trim(top_pad);
2424
    return;
2425
  }
2426
 
2427
  set_head(next, nextsz);                    /* clear inuse bit */
2428
 
2429
  islr = 0;
2430
 
2431
  if (!(hd & PREV_INUSE))                    /* consolidate backward */
2432
  {
2433
    prevsz = p->prev_size;
2434
    p = chunk_at_offset(p, -((long) prevsz));
2435
    sz += prevsz;
2436
 
2437
    if (p->fd == last_remainder)             /* keep as last_remainder */
2438
      islr = 1;
2439
    else
2440
      unlink(p, bck, fwd);
2441
  }
2442
 
2443
  if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2444
  {
2445
    sz += nextsz;
2446
 
2447
    if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2448
    {
2449
      islr = 1;
2450
      link_last_remainder(p);
2451
    }
2452
    else
2453
      unlink(next, bck, fwd);
2454
  }
2455
 
2456
 
2457
  set_head(p, sz | PREV_INUSE);
2458
  set_foot(p, sz);
2459
  if (!islr)
2460
    frontlink(p, sz, idx, bck, fwd);
2461
}
2462
 
2463
 
2464
 
2465
 
2466
 
2467
/*
2468
 
2469
  Realloc algorithm:
2470
 
2471
    Chunks that were obtained via mmap cannot be extended or shrunk
2472
    unless HAVE_MREMAP is defined, in which case mremap is used.
2473
    Otherwise, if their reallocation is for additional space, they are
2474
    copied.  If for less, they are just left alone.
2475
 
2476
    Otherwise, if the reallocation is for additional space, and the
2477
    chunk can be extended, it is, else a malloc-copy-free sequence is
2478
    taken.  There are several different ways that a chunk could be
2479
    extended. All are tried:
2480
 
2481
       * Extending forward into following adjacent free chunk.
2482
       * Shifting backwards, joining preceding adjacent space
2483
       * Both shifting backwards and extending forward.
2484
       * Extending into newly sbrked space
2485
 
2486
    Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2487
    size argument of zero (re)allocates a minimum-sized chunk.
2488
 
2489
    If the reallocation is for less space, and the new request is for
2490
    a `small' (<512 bytes) size, then the newly unused space is lopped
2491
    off and freed.
2492
 
2493
    The old unix realloc convention of allowing the last-free'd chunk
2494
    to be used as an argument to realloc is no longer supported.
2495
    I don't know of any programs still relying on this feature,
2496
    and allowing it would also allow too many other incorrect
2497
    usages of realloc to be sensible.
2498
 
2499
 
2500
*/
2501
 
2502
 
2503
#if __STD_C
2504
Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2505
#else
2506
Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2507
#endif
2508
{
2509
  INTERNAL_SIZE_T    nb;      /* padded request size */
2510
 
2511
  mchunkptr oldp;             /* chunk corresponding to oldmem */
2512
  INTERNAL_SIZE_T    oldsize; /* its size */
2513
 
2514
  mchunkptr newp;             /* chunk to return */
2515
  INTERNAL_SIZE_T    newsize; /* its size */
2516
  Void_t*   newmem;           /* corresponding user mem */
2517
 
2518
  mchunkptr next;             /* next contiguous chunk after oldp */
2519
  INTERNAL_SIZE_T  nextsize;  /* its size */
2520
 
2521
  mchunkptr prev;             /* previous contiguous chunk before oldp */
2522
  INTERNAL_SIZE_T  prevsize;  /* its size */
2523
 
2524
  mchunkptr remainder;        /* holds split off extra space from newp */
2525
  INTERNAL_SIZE_T  remainder_size;   /* its size */
2526
 
2527
  mchunkptr bck;              /* misc temp for linking */
2528
  mchunkptr fwd;              /* misc temp for linking */
2529
 
2530
#ifdef REALLOC_ZERO_BYTES_FREES
2531
  if (bytes == 0) { fREe(oldmem); return 0; }
2532
#endif
2533
 
2534
  if ((long)bytes < 0) return 0;
2535
 
2536
  /* realloc of null is supposed to be same as malloc */
2537
  if (oldmem == 0) return mALLOc(bytes);
2538
 
2539
  newp    = oldp    = mem2chunk(oldmem);
2540
  newsize = oldsize = chunksize(oldp);
2541
 
2542
 
2543
  nb = request2size(bytes);
2544
 
2545
#if HAVE_MMAP
2546
  if (chunk_is_mmapped(oldp))
2547
  {
2548
#if HAVE_MREMAP
2549
    newp = mremap_chunk(oldp, nb);
2550
    if(newp) return chunk2mem(newp);
2551
#endif
2552
    /* Note the extra SIZE_SZ overhead. */
2553
    if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2554
    /* Must alloc, copy, free. */
2555
    newmem = mALLOc(bytes);
2556
    if (newmem == 0) return 0; /* propagate failure */
2557
    MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2558
    munmap_chunk(oldp);
2559
    return newmem;
2560
  }
2561
#endif
2562
 
2563
  check_inuse_chunk(oldp);
2564
 
2565
  if ((long)(oldsize) < (long)(nb))
2566
  {
2567
 
2568
    /* Try expanding forward */
2569
 
2570
    next = chunk_at_offset(oldp, oldsize);
2571
    if (next == top || !inuse(next))
2572
    {
2573
      nextsize = chunksize(next);
2574
 
2575
      /* Forward into top only if a remainder */
2576
      if (next == top)
2577
      {
2578
        if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2579
        {
2580
          newsize += nextsize;
2581
          top = chunk_at_offset(oldp, nb);
2582
          set_head(top, (newsize - nb) | PREV_INUSE);
2583
          set_head_size(oldp, nb);
2584
          return chunk2mem(oldp);
2585
        }
2586
      }
2587
 
2588
      /* Forward into next chunk */
2589
      else if (((long)(nextsize + newsize) >= (long)(nb)))
2590
      {
2591
        unlink(next, bck, fwd);
2592
        newsize  += nextsize;
2593
        goto split;
2594
      }
2595
    }
2596
    else
2597
    {
2598
      next = 0;
2599
      nextsize = 0;
2600
    }
2601
 
2602
    /* Try shifting backwards. */
2603
 
2604
    if (!prev_inuse(oldp))
2605
    {
2606
      prev = prev_chunk(oldp);
2607
      prevsize = chunksize(prev);
2608
 
2609
      /* try forward + backward first to save a later consolidation */
2610
 
2611
      if (next != 0)
2612
      {
2613
        /* into top */
2614
        if (next == top)
2615
        {
2616
          if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2617
          {
2618
            unlink(prev, bck, fwd);
2619
            newp = prev;
2620
            newsize += prevsize + nextsize;
2621
            newmem = chunk2mem(newp);
2622
            MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2623
            top = chunk_at_offset(newp, nb);
2624
            set_head(top, (newsize - nb) | PREV_INUSE);
2625
            set_head_size(newp, nb);
2626
            return newmem;
2627
          }
2628
        }
2629
 
2630
        /* into next chunk */
2631
        else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2632
        {
2633
          unlink(next, bck, fwd);
2634
          unlink(prev, bck, fwd);
2635
          newp = prev;
2636
          newsize += nextsize + prevsize;
2637
          newmem = chunk2mem(newp);
2638
          MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2639
          goto split;
2640
        }
2641
      }
2642
 
2643
      /* backward only */
2644
      if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2645
      {
2646
        unlink(prev, bck, fwd);
2647
        newp = prev;
2648
        newsize += prevsize;
2649
        newmem = chunk2mem(newp);
2650
        MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2651
        goto split;
2652
      }
2653
    }
2654
 
2655
    /* Must allocate */
2656
 
2657
    newmem = mALLOc (bytes);
2658
 
2659
    if (newmem == 0)  /* propagate failure */
2660
      return 0;
2661
 
2662
    /* Avoid copy if newp is next chunk after oldp. */
2663
    /* (This can only happen when new chunk is sbrk'ed.) */
2664
 
2665
    if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2666
    {
2667
      newsize += chunksize(newp);
2668
      newp = oldp;
2669
      goto split;
2670
    }
2671
 
2672
    /* Otherwise copy, free, and exit */
2673
    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2674
    fREe(oldmem);
2675
    return newmem;
2676
  }
2677
 
2678
 
2679
 split:  /* split off extra room in old or expanded chunk */
2680
 
2681
  if (newsize - nb >= MINSIZE) /* split off remainder */
2682
  {
2683
    remainder = chunk_at_offset(newp, nb);
2684
    remainder_size = newsize - nb;
2685
    set_head_size(newp, nb);
2686
    set_head(remainder, remainder_size | PREV_INUSE);
2687
    set_inuse_bit_at_offset(remainder, remainder_size);
2688
    fREe(chunk2mem(remainder)); /* let free() deal with it */
2689
  }
2690
  else
2691
  {
2692
    set_head_size(newp, newsize);
2693
    set_inuse_bit_at_offset(newp, newsize);
2694
  }
2695
 
2696
  check_inuse_chunk(newp);
2697
  return chunk2mem(newp);
2698
}
2699
 
2700
 
2701
 
2702
 
2703
/*
2704
 
2705
  memalign algorithm:
2706
 
2707
    memalign requests more than enough space from malloc, finds a spot
2708
    within that chunk that meets the alignment request, and then
2709
    possibly frees the leading and trailing space.
2710
 
2711
    The alignment argument must be a power of two. This property is not
2712
    checked by memalign, so misuse may result in random runtime errors.
2713
 
2714
    8-byte alignment is guaranteed by normal malloc calls, so don't
2715
    bother calling memalign with an argument of 8 or less.
2716
 
2717
    Overreliance on memalign is a sure way to fragment space.
2718
 
2719
*/
2720
 
2721
 
2722
#if __STD_C
2723
Void_t* mEMALIGn(size_t alignment, size_t bytes)
2724
#else
2725
Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2726
#endif
2727
{
2728
  INTERNAL_SIZE_T    nb;      /* padded  request size */
2729
  char*     m;                /* memory returned by malloc call */
2730
  mchunkptr p;                /* corresponding chunk */
2731
  char*     brk;              /* alignment point within p */
2732
  mchunkptr newp;             /* chunk to return */
2733
  INTERNAL_SIZE_T  newsize;   /* its size */
2734
  INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2735
  mchunkptr remainder;        /* spare room at end to split off */
2736
  long      remainder_size;   /* its size */
2737
 
2738
  if ((long)bytes < 0) return 0;
2739
 
2740
  /* If need less alignment than we give anyway, just relay to malloc */
2741
 
2742
  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2743
 
2744
  /* Otherwise, ensure that it is at least a minimum chunk size */
2745
 
2746
  if (alignment <  MINSIZE) alignment = MINSIZE;
2747
 
2748
  /* Call malloc with worst case padding to hit alignment. */
2749
 
2750
  nb = request2size(bytes);
2751
  m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2752
 
2753
  if (m == 0) return 0; /* propagate failure */
2754
 
2755
  p = mem2chunk(m);
2756
 
2757
  if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2758
  {
2759
#if HAVE_MMAP
2760
    if(chunk_is_mmapped(p))
2761
      return chunk2mem(p); /* nothing more to do */
2762
#endif
2763
  }
2764
  else /* misaligned */
2765
  {
2766
    /*
2767
      Find an aligned spot inside chunk.
2768
      Since we need to give back leading space in a chunk of at
2769
      least MINSIZE, if the first calculation places us at
2770
      a spot with less than MINSIZE leader, we can move to the
2771
      next aligned spot -- we've allocated enough total room so that
2772
      this is always possible.
2773
    */
2774
 
2775
    brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2776
    if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2777
 
2778
    newp = (mchunkptr)brk;
2779
    leadsize = brk - (char*)(p);
2780
    newsize = chunksize(p) - leadsize;
2781
 
2782
#if HAVE_MMAP
2783
    if(chunk_is_mmapped(p))
2784
    {
2785
      newp->prev_size = p->prev_size + leadsize;
2786
      set_head(newp, newsize|IS_MMAPPED);
2787
      return chunk2mem(newp);
2788
    }
2789
#endif
2790
 
2791
    /* give back leader, use the rest */
2792
 
2793
    set_head(newp, newsize | PREV_INUSE);
2794
    set_inuse_bit_at_offset(newp, newsize);
2795
    set_head_size(p, leadsize);
2796
    fREe(chunk2mem(p));
2797
    p = newp;
2798
 
2799
    assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2800
  }
2801
 
2802
  /* Also give back spare room at the end */
2803
 
2804
  remainder_size = chunksize(p) - nb;
2805
 
2806
  if (remainder_size >= (long)MINSIZE)
2807
  {
2808
    remainder = chunk_at_offset(p, nb);
2809
    set_head(remainder, remainder_size | PREV_INUSE);
2810
    set_head_size(p, nb);
2811
    fREe(chunk2mem(remainder));
2812
  }
2813
 
2814
  check_inuse_chunk(p);
2815
  return chunk2mem(p);
2816
 
2817
}
2818
 
2819
 
2820
 
2821
 
2822
/*
2823
    valloc just invokes memalign with alignment argument equal
2824
    to the page size of the system (or as near to this as can
2825
    be figured out from all the includes/defines above.)
2826
*/
2827
 
2828
#if __STD_C
2829
Void_t* vALLOc(size_t bytes)
2830
#else
2831
Void_t* vALLOc(bytes) size_t bytes;
2832
#endif
2833
{
2834
  return mEMALIGn (malloc_getpagesize, bytes);
2835
}
2836
 
2837
/*
2838
  pvalloc just invokes valloc for the nearest pagesize
2839
  that will accommodate request
2840
*/
2841
 
2842
 
2843
#if __STD_C
2844
Void_t* pvALLOc(size_t bytes)
2845
#else
2846
Void_t* pvALLOc(bytes) size_t bytes;
2847
#endif
2848
{
2849
  size_t pagesize = malloc_getpagesize;
2850
  return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2851
}
2852
 
2853
/*
2854
 
2855
  calloc calls malloc, then zeroes out the allocated chunk.
2856
 
2857
*/
2858
 
2859
#if __STD_C
2860
Void_t* cALLOc(size_t n, size_t elem_size)
2861
#else
2862
Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2863
#endif
2864
{
2865
  mchunkptr p;
2866
  INTERNAL_SIZE_T csz;
2867
 
2868
  INTERNAL_SIZE_T sz = n * elem_size;
2869
 
2870
 
2871
  /* check if expand_top called, in which case don't need to clear */
2872
#if MORECORE_CLEARS
2873
  mchunkptr oldtop = top;
2874
  INTERNAL_SIZE_T oldtopsize = chunksize(top);
2875
#endif
2876
  Void_t* mem = mALLOc (sz);
2877
 
2878
  if ((long)n < 0) return 0;
2879
 
2880
  if (mem == 0)
2881
    return 0;
2882
  else
2883
  {
2884
    p = mem2chunk(mem);
2885
 
2886
    /* Two optional cases in which clearing not necessary */
2887
 
2888
 
2889
#if HAVE_MMAP
2890
    if (chunk_is_mmapped(p)) return mem;
2891
#endif
2892
 
2893
    csz = chunksize(p);
2894
 
2895
#if MORECORE_CLEARS
2896
    if (p == oldtop && csz > oldtopsize)
2897
    {
2898
      /* clear only the bytes from non-freshly-sbrked memory */
2899
      csz = oldtopsize;
2900
    }
2901
#endif
2902
 
2903
    MALLOC_ZERO(mem, csz - SIZE_SZ);
2904
    return mem;
2905
  }
2906
}
2907
 
2908
/*
2909
 
2910
  cfree just calls free. It is needed/defined on some systems
2911
  that pair it with calloc, presumably for odd historical reasons.
2912
 
2913
*/
2914
 
2915
#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2916
#if __STD_C
2917
void cfree(Void_t *mem)
2918
#else
2919
void cfree(mem) Void_t *mem;
2920
#endif
2921
{
2922
  fREe(mem);
2923
}
2924
#endif
2925
 
2926
 
2927
 
2928
/*
2929
 
2930
    Malloc_trim gives memory back to the system (via negative
2931
    arguments to sbrk) if there is unused memory at the `high' end of
2932
    the malloc pool. You can call this after freeing large blocks of
2933
    memory to potentially reduce the system-level memory requirements
2934
    of a program. However, it cannot guarantee to reduce memory. Under
2935
    some allocation patterns, some large free blocks of memory will be
2936
    locked between two used chunks, so they cannot be given back to
2937
    the system.
2938
 
2939
    The `pad' argument to malloc_trim represents the amount of free
2940
    trailing space to leave untrimmed. If this argument is zero,
2941
    only the minimum amount of memory to maintain internal data
2942
    structures will be left (one page or less). Non-zero arguments
2943
    can be supplied to maintain enough trailing space to service
2944
    future expected allocations without having to re-obtain memory
2945
    from the system.
2946
 
2947
    Malloc_trim returns 1 if it actually released any memory, else 0.
2948
 
2949
*/
2950
 
2951
#if __STD_C
2952
int malloc_trim(size_t pad)
2953
#else
2954
int malloc_trim(pad) size_t pad;
2955
#endif
2956
{
2957
  long  top_size;        /* Amount of top-most memory */
2958
  long  extra;           /* Amount to release */
2959
  char* current_brk;     /* address returned by pre-check sbrk call */
2960
  char* new_brk;         /* address returned by negative sbrk call */
2961
 
2962
  unsigned long pagesz = malloc_getpagesize;
2963
 
2964
  top_size = chunksize(top);
2965
  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2966
 
2967
  if (extra < (long)pagesz)  /* Not enough memory to release */
2968
    return 0;
2969
 
2970
  else
2971
  {
2972
    /* Test to make sure no one else called sbrk */
2973
    current_brk = (char*)(MORECORE (0));
2974
    if (current_brk != (char*)(top) + top_size)
2975
      return 0;     /* Apparently we don't own memory; must fail */
2976
 
2977
    else
2978
    {
2979
      new_brk = (char*)(MORECORE (-extra));
2980
 
2981
      if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2982
      {
2983
        /* Try to figure out what we have */
2984
        current_brk = (char*)(MORECORE (0));
2985
        top_size = current_brk - (char*)top;
2986
        if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2987
        {
2988
          sbrked_mem = current_brk - sbrk_base;
2989
          set_head(top, top_size | PREV_INUSE);
2990
        }
2991
        check_chunk(top);
2992
        return 0;
2993
      }
2994
 
2995
      else
2996
      {
2997
        /* Success. Adjust top accordingly. */
2998
        set_head(top, (top_size - extra) | PREV_INUSE);
2999
        sbrked_mem -= extra;
3000
        check_chunk(top);
3001
        return 1;
3002
      }
3003
    }
3004
  }
3005
}
3006
 
3007
 
3008
 
3009
/*
3010
  malloc_usable_size:
3011
 
3012
    This routine tells you how many bytes you can actually use in an
3013
    allocated chunk, which may be more than you requested (although
3014
    often not). You can use this many bytes without worrying about
3015
    overwriting other allocated objects. Not a particularly great
3016
    programming practice, but still sometimes useful.
3017
 
3018
*/
3019
 
3020
#if __STD_C
3021
size_t malloc_usable_size(Void_t* mem)
3022
#else
3023
size_t malloc_usable_size(mem) Void_t* mem;
3024
#endif
3025
{
3026
  mchunkptr p;
3027
  if (mem == 0)
3028
    return 0;
3029
  else
3030
  {
3031
    p = mem2chunk(mem);
3032
    if(!chunk_is_mmapped(p))
3033
    {
3034
      if (!inuse(p)) return 0;
3035
      check_inuse_chunk(p);
3036
      return chunksize(p) - SIZE_SZ;
3037
    }
3038
    return chunksize(p) - 2*SIZE_SZ;
3039
  }
3040
}
3041
 
3042
 
3043
 
3044
 
3045
/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3046
 
3047
static void malloc_update_mallinfo()
3048
{
3049
  int i;
3050
  mbinptr b;
3051
  mchunkptr p;
3052
#if DEBUG
3053
  mchunkptr q;
3054
#endif
3055
 
3056
  INTERNAL_SIZE_T avail = chunksize(top);
3057
  int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3058
 
3059
  for (i = 1; i < NAV; ++i)
3060
  {
3061
    b = bin_at(i);
3062
    for (p = last(b); p != b; p = p->bk)
3063
    {
3064
#if DEBUG
3065
      check_free_chunk(p);
3066
      for (q = next_chunk(p);
3067
           q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3068
           q = next_chunk(q))
3069
        check_inuse_chunk(q);
3070
#endif
3071
      avail += chunksize(p);
3072
      navail++;
3073
    }
3074
  }
3075
 
3076
  current_mallinfo.ordblks = navail;
3077
  current_mallinfo.uordblks = sbrked_mem - avail;
3078
  current_mallinfo.fordblks = avail;
3079
  current_mallinfo.hblks = n_mmaps;
3080
  current_mallinfo.hblkhd = mmapped_mem;
3081
  current_mallinfo.keepcost = chunksize(top);
3082
 
3083
}
3084
 
3085
 
3086
 
3087
/*
3088
 
3089
  malloc_stats:
3090
 
3091
    Prints on stderr the amount of space obtain from the system (both
3092
    via sbrk and mmap), the maximum amount (which may be more than
3093
    current if malloc_trim and/or munmap got called), the maximum
3094
    number of simultaneous mmap regions used, and the current number
3095
    of bytes allocated via malloc (or realloc, etc) but not yet
3096
    freed. (Note that this is the number of bytes allocated, not the
3097
    number requested. It will be larger than the number requested
3098
    because of alignment and bookkeeping overhead.)
3099
 
3100
*/
3101
 
3102
void malloc_stats()
3103
{
3104
  malloc_update_mallinfo();
3105
  fprintf(stderr, "max system bytes = %10u\n",
3106
          (unsigned int)(max_total_mem));
3107
  fprintf(stderr, "system bytes     = %10u\n",
3108
          (unsigned int)(sbrked_mem + mmapped_mem));
3109
  fprintf(stderr, "in use bytes     = %10u\n",
3110
          (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3111
#if HAVE_MMAP
3112
  fprintf(stderr, "max mmap regions = %10u\n",
3113
          (unsigned int)max_n_mmaps);
3114
#endif
3115
}
3116
 
3117
/*
3118
  mallinfo returns a copy of updated current mallinfo.
3119
*/
3120
 
3121
struct mallinfo mALLINFo()
3122
{
3123
  malloc_update_mallinfo();
3124
  return current_mallinfo;
3125
}
3126
 
3127
 
3128
 
3129
 
3130
/*
3131
  mallopt:
3132
 
3133
    mallopt is the general SVID/XPG interface to tunable parameters.
3134
    The format is to provide a (parameter-number, parameter-value) pair.
3135
    mallopt then sets the corresponding parameter to the argument
3136
    value if it can (i.e., so long as the value is meaningful),
3137
    and returns 1 if successful else 0.
3138
 
3139
    See descriptions of tunable parameters above.
3140
 
3141
*/
3142
 
3143
#if __STD_C
3144
int mALLOPt(int param_number, int value)
3145
#else
3146
int mALLOPt(param_number, value) int param_number; int value;
3147
#endif
3148
{
3149
  switch(param_number)
3150
  {
3151
    case M_TRIM_THRESHOLD:
3152
      trim_threshold = value; return 1;
3153
    case M_TOP_PAD:
3154
      top_pad = value; return 1;
3155
    case M_MMAP_THRESHOLD:
3156
      mmap_threshold = value; return 1;
3157
    case M_MMAP_MAX:
3158
#if HAVE_MMAP
3159
      n_mmaps_max = value; return 1;
3160
#else
3161
      if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3162
#endif
3163
 
3164
    default:
3165
      return 0;
3166
  }
3167
}
3168
 
3169
/*
3170
 
3171
History:
3172
 
3173
    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3174
      * return null for negative arguments
3175
      * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3176
         * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3177
          (e.g. WIN32 platforms)
3178
         * Cleanup up header file inclusion for WIN32 platforms
3179
         * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3180
         * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3181
           memory allocation routines
3182
         * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3183
         * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3184
           usage of 'assert' in non-WIN32 code
3185
         * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3186
           avoid infinite loop
3187
      * Always call 'fREe()' rather than 'free()'
3188
 
3189
    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3190
      * Fixed ordering problem with boundary-stamping
3191
 
3192
    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3193
      * Added pvalloc, as recommended by H.J. Liu
3194
      * Added 64bit pointer support mainly from Wolfram Gloger
3195
      * Added anonymously donated WIN32 sbrk emulation
3196
      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3197
      * malloc_extend_top: fix mask error that caused wastage after
3198
        foreign sbrks
3199
      * Add linux mremap support code from HJ Liu
3200
 
3201
    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3202
      * Integrated most documentation with the code.
3203
      * Add support for mmap, with help from
3204
        Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3205
      * Use last_remainder in more cases.
3206
      * Pack bins using idea from  colin@nyx10.cs.du.edu
3207
      * Use ordered bins instead of best-fit threshhold
3208
      * Eliminate block-local decls to simplify tracing and debugging.
3209
      * Support another case of realloc via move into top
3210
      * Fix error occuring when initial sbrk_base not word-aligned.
3211
      * Rely on page size for units instead of SBRK_UNIT to
3212
        avoid surprises about sbrk alignment conventions.
3213
      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3214
        (raymond@es.ele.tue.nl) for the suggestion.
3215
      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3216
      * More precautions for cases where other routines call sbrk,
3217
        courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3218
      * Added macros etc., allowing use in linux libc from
3219
        H.J. Lu (hjl@gnu.ai.mit.edu)
3220
      * Inverted this history list
3221
 
3222
    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3223
      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3224
      * Removed all preallocation code since under current scheme
3225
        the work required to undo bad preallocations exceeds
3226
        the work saved in good cases for most test programs.
3227
      * No longer use return list or unconsolidated bins since
3228
        no scheme using them consistently outperforms those that don't
3229
        given above changes.
3230
      * Use best fit for very large chunks to prevent some worst-cases.
3231
      * Added some support for debugging
3232
 
3233
    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3234
      * Removed footers when chunks are in use. Thanks to
3235
        Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3236
 
3237
    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3238
      * Added malloc_trim, with help from Wolfram Gloger
3239
        (wmglo@Dent.MED.Uni-Muenchen.DE).
3240
 
3241
    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3242
 
3243
    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3244
      * realloc: try to expand in both directions
3245
      * malloc: swap order of clean-bin strategy;
3246
      * realloc: only conditionally expand backwards
3247
      * Try not to scavenge used bins
3248
      * Use bin counts as a guide to preallocation
3249
      * Occasionally bin return list chunks in first scan
3250
      * Add a few optimizations from colin@nyx10.cs.du.edu
3251
 
3252
    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3253
      * faster bin computation & slightly different binning
3254
      * merged all consolidations to one part of malloc proper
3255
         (eliminating old malloc_find_space & malloc_clean_bin)
3256
      * Scan 2 returns chunks (not just 1)
3257
      * Propagate failure in realloc if malloc returns 0
3258
      * Add stuff to allow compilation on non-ANSI compilers
3259
          from kpv@research.att.com
3260
 
3261
    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3262
      * removed potential for odd address access in prev_chunk
3263
      * removed dependency on getpagesize.h
3264
      * misc cosmetics and a bit more internal documentation
3265
      * anticosmetics: mangled names in macros to evade debugger strangeness
3266
      * tested on sparc, hp-700, dec-mips, rs6000
3267
          with gcc & native cc (hp, dec only) allowing
3268
          Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3269
 
3270
    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3271
      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3272
         structure of old version,  but most details differ.)
3273
 
3274
*/
3275
 
3276
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.