1 |
27 |
unneback |
#ifndef CYGONCE_MEMALLOC_MVARIMPL_INL
|
2 |
|
|
#define CYGONCE_MEMALLOC_MVARIMPL_INL
|
3 |
|
|
|
4 |
|
|
//==========================================================================
|
5 |
|
|
//
|
6 |
|
|
// mvarimpl.inl
|
7 |
|
|
//
|
8 |
|
|
// Memory pool with variable block class declarations
|
9 |
|
|
//
|
10 |
|
|
//==========================================================================
|
11 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
12 |
|
|
// -------------------------------------------
|
13 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
14 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
15 |
|
|
//
|
16 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
17 |
|
|
// the terms of the GNU General Public License as published by the Free
|
18 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
19 |
|
|
//
|
20 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
21 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
22 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
23 |
|
|
// for more details.
|
24 |
|
|
//
|
25 |
|
|
// You should have received a copy of the GNU General Public License along
|
26 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
27 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
28 |
|
|
//
|
29 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
30 |
|
|
// or inline functions from this file, or you compile this file and link it
|
31 |
|
|
// with other works to produce a work based on this file, this file does not
|
32 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
33 |
|
|
// License. However the source code for this file must still be made available
|
34 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
35 |
|
|
//
|
36 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
37 |
|
|
// this file might be covered by the GNU General Public License.
|
38 |
|
|
//
|
39 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
40 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
41 |
|
|
// -------------------------------------------
|
42 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
43 |
|
|
//==========================================================================
|
44 |
|
|
//#####DESCRIPTIONBEGIN####
|
45 |
|
|
//
|
46 |
|
|
// Author(s): hmt
|
47 |
|
|
// Contributors: jlarmour
|
48 |
|
|
// Date: 2000-06-12
|
49 |
|
|
// Purpose: Define Mvarimpl class interface
|
50 |
|
|
// Description: Inline class for constructing a variable block allocator
|
51 |
|
|
// Usage: #include
|
52 |
|
|
//
|
53 |
|
|
//
|
54 |
|
|
//####DESCRIPTIONEND####
|
55 |
|
|
//
|
56 |
|
|
//==========================================================================
|
57 |
|
|
|
58 |
|
|
#include
|
59 |
|
|
#include
|
60 |
|
|
|
61 |
|
|
#include // assertion support
|
62 |
|
|
#include // tracing support
|
63 |
|
|
|
64 |
|
|
// Simple allocator
|
65 |
|
|
|
66 |
|
|
// The free list is stored on a doubly linked list, each member of
|
67 |
|
|
// which is stored in the body of the free memory. The head of the
|
68 |
|
|
// list has the same structure but its size field is zero. This
|
69 |
|
|
// resides in the memory pool structure. Always having at least one
|
70 |
|
|
// item on the list simplifies the alloc and free code.
|
71 |
|
|
|
72 |
|
|
//
|
73 |
|
|
inline cyg_int32
|
74 |
|
|
Cyg_Mempool_Variable_Implementation::roundup( cyg_int32 size )
|
75 |
|
|
{
|
76 |
|
|
|
77 |
|
|
size += sizeof(struct memdq);
|
78 |
|
|
size = (size + alignment - 1) & -alignment;
|
79 |
|
|
return size;
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
inline struct Cyg_Mempool_Variable_Implementation::memdq *
|
83 |
|
|
Cyg_Mempool_Variable_Implementation::addr2memdq( cyg_uint8 *addr )
|
84 |
|
|
{
|
85 |
|
|
struct memdq *dq;
|
86 |
|
|
dq = (struct memdq *)(roundup((cyg_int32)addr) - sizeof(struct memdq));
|
87 |
|
|
return dq;
|
88 |
|
|
}
|
89 |
|
|
|
90 |
|
|
inline struct Cyg_Mempool_Variable_Implementation::memdq *
|
91 |
|
|
Cyg_Mempool_Variable_Implementation::alloc2memdq( cyg_uint8 *addr )
|
92 |
|
|
{
|
93 |
|
|
return (struct memdq *)(addr - sizeof(struct memdq));
|
94 |
|
|
}
|
95 |
|
|
|
96 |
|
|
inline cyg_uint8 *
|
97 |
|
|
Cyg_Mempool_Variable_Implementation::memdq2alloc( struct memdq *dq )
|
98 |
|
|
{
|
99 |
|
|
return ((cyg_uint8 *)dq + sizeof(struct memdq));
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
// -------------------------------------------------------------------------
|
103 |
|
|
|
104 |
|
|
inline void
|
105 |
|
|
Cyg_Mempool_Variable_Implementation::insert_free_block( struct memdq *dq )
|
106 |
|
|
{
|
107 |
|
|
struct memdq *hdq=&head;
|
108 |
|
|
|
109 |
|
|
freemem += dq->size;
|
110 |
|
|
#ifdef CYGSEM_MEMALLOC_ALLOCATOR_VARIABLE_COALESCE
|
111 |
|
|
// For simple coalescing have the free list be sorted by memory base address
|
112 |
|
|
struct memdq *idq;
|
113 |
|
|
|
114 |
|
|
for (idq = hdq->next; idq != hdq; idq = idq->next) {
|
115 |
|
|
if (idq > dq)
|
116 |
|
|
break;
|
117 |
|
|
}
|
118 |
|
|
// we want to insert immediately before idq
|
119 |
|
|
dq->next = idq;
|
120 |
|
|
dq->prev = idq->prev;
|
121 |
|
|
idq->prev = dq;
|
122 |
|
|
dq->prev->next = dq;
|
123 |
|
|
|
124 |
|
|
// Now do coalescing, but leave the head of the list alone.
|
125 |
|
|
if (dq->next != hdq && (char *)dq + dq->size == (char *)dq->next) {
|
126 |
|
|
dq->size += dq->next->size;
|
127 |
|
|
dq->next = dq->next->next;
|
128 |
|
|
dq->next->prev = dq;
|
129 |
|
|
}
|
130 |
|
|
if (dq->prev != hdq && (char *)dq->prev + dq->prev->size == (char *)dq) {
|
131 |
|
|
dq->prev->size += dq->size;
|
132 |
|
|
dq->prev->next = dq->next;
|
133 |
|
|
dq->next->prev = dq->prev;
|
134 |
|
|
dq = dq->prev;
|
135 |
|
|
}
|
136 |
|
|
#else
|
137 |
|
|
dq->prev = hdq;
|
138 |
|
|
dq->next = hdq->next;
|
139 |
|
|
hdq->next = dq;
|
140 |
|
|
dq->next->prev=dq;
|
141 |
|
|
#endif
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
// -------------------------------------------------------------------------
|
145 |
|
|
|
146 |
|
|
inline
|
147 |
|
|
Cyg_Mempool_Variable_Implementation::Cyg_Mempool_Variable_Implementation(
|
148 |
|
|
cyg_uint8 *base,
|
149 |
|
|
cyg_int32 size,
|
150 |
|
|
CYG_ADDRWORD align )
|
151 |
|
|
{
|
152 |
|
|
CYG_REPORT_FUNCTION();
|
153 |
|
|
|
154 |
|
|
CYG_ASSERT( align > 0, "Bad alignment" );
|
155 |
|
|
CYG_ASSERT(0!=align ,"align is zero");
|
156 |
|
|
CYG_ASSERT(0==(align & align-1),"align not a power of 2");
|
157 |
|
|
|
158 |
|
|
if ((unsigned)size < sizeof(struct memdq)) {
|
159 |
|
|
bottom = NULL;
|
160 |
|
|
return;
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
obase=base;
|
164 |
|
|
osize=size;
|
165 |
|
|
|
166 |
|
|
alignment = align;
|
167 |
|
|
while (alignment < (cyg_int32)sizeof(struct memdq))
|
168 |
|
|
alignment += alignment;
|
169 |
|
|
CYG_ASSERT(0==(alignment & alignment-1),"alignment not a power of 2");
|
170 |
|
|
|
171 |
|
|
// the memdq for each allocation is always positioned immediately before
|
172 |
|
|
// an aligned address, so that the allocation (i.e. what eventually gets
|
173 |
|
|
// returned from alloc()) is at the correctly aligned address
|
174 |
|
|
// Therefore bottom is set to the lowest available address given the size of
|
175 |
|
|
// struct memdq and the alignment.
|
176 |
|
|
bottom = (cyg_uint8 *)addr2memdq(base);
|
177 |
|
|
|
178 |
|
|
// because we split free blocks by allocating memory from the end, not
|
179 |
|
|
// the beginning, then to preserve alignment, the *top* must also be
|
180 |
|
|
// aligned such that (top-bottom) is a multiple of the alignment
|
181 |
|
|
top = (cyg_uint8 *)((cyg_int32)(base+size+sizeof(struct memdq)) & -alignment) -
|
182 |
|
|
sizeof(struct memdq);
|
183 |
|
|
|
184 |
|
|
CYG_ASSERT( top > bottom , "heap too small" );
|
185 |
|
|
CYG_ASSERT( top <= (base+size), "top too large" );
|
186 |
|
|
CYG_ASSERT( ((cyg_int32)(top+sizeof(struct memdq)) & alignment-1)==0,
|
187 |
|
|
"top badly aligned" );
|
188 |
|
|
|
189 |
|
|
struct memdq *hdq = &head, *dq = (struct memdq *)bottom;
|
190 |
|
|
|
191 |
|
|
CYG_ASSERT( ((cyg_int32)memdq2alloc(dq) & alignment-1)==0,
|
192 |
|
|
"bottom badly aligned" );
|
193 |
|
|
|
194 |
|
|
hdq->prev = hdq->next = dq;
|
195 |
|
|
hdq->size = 0;
|
196 |
|
|
dq->prev = dq->next = hdq;
|
197 |
|
|
|
198 |
|
|
freemem = dq->size = top - bottom;
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
// -------------------------------------------------------------------------
|
202 |
|
|
|
203 |
|
|
inline
|
204 |
|
|
Cyg_Mempool_Variable_Implementation::~Cyg_Mempool_Variable_Implementation()
|
205 |
|
|
{
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
// -------------------------------------------------------------------------
|
209 |
|
|
// allocation is simple
|
210 |
|
|
// First we look down the free list for a large enough block
|
211 |
|
|
// If we find a block the right size, we unlink the block from
|
212 |
|
|
// the free list and return a pointer to it.
|
213 |
|
|
// If we find a larger block, we chop a piece off the end
|
214 |
|
|
// and return that
|
215 |
|
|
// Otherwise we will eventually get back to the head of the list
|
216 |
|
|
// and return NULL
|
217 |
|
|
inline cyg_uint8 *
|
218 |
|
|
Cyg_Mempool_Variable_Implementation::try_alloc( cyg_int32 size )
|
219 |
|
|
{
|
220 |
|
|
struct memdq *dq = &head;
|
221 |
|
|
cyg_uint8 *alloced;
|
222 |
|
|
|
223 |
|
|
CYG_REPORT_FUNCTION();
|
224 |
|
|
|
225 |
|
|
// Allow uninitialised (zero sized) heaps because they could exist as a
|
226 |
|
|
// quirk of the MLT setup where a dynamically sized heap is at the top of
|
227 |
|
|
// memory.
|
228 |
|
|
if (NULL == bottom)
|
229 |
|
|
return NULL;
|
230 |
|
|
|
231 |
|
|
size = roundup(size);
|
232 |
|
|
|
233 |
|
|
do {
|
234 |
|
|
CYG_ASSERT( dq->next->prev==dq, "Bad link in dq");
|
235 |
|
|
dq = dq->next;
|
236 |
|
|
if(0 == dq->size) {
|
237 |
|
|
CYG_ASSERT(dq == &head, "bad free block");
|
238 |
|
|
return NULL;
|
239 |
|
|
}
|
240 |
|
|
} while(dq->size < size);
|
241 |
|
|
|
242 |
|
|
if( size == dq->size ) {
|
243 |
|
|
// exact fit -- unlink from free list
|
244 |
|
|
dq->prev->next = dq->next;
|
245 |
|
|
dq->next->prev = dq->prev;
|
246 |
|
|
alloced = (cyg_uint8 *)dq;
|
247 |
|
|
} else {
|
248 |
|
|
|
249 |
|
|
CYG_ASSERT( dq->size > size, "block found is too small");
|
250 |
|
|
|
251 |
|
|
// allocate portion of memory from end of block
|
252 |
|
|
|
253 |
|
|
dq->size -=size;
|
254 |
|
|
|
255 |
|
|
// The portion left over has to be large enough to store a
|
256 |
|
|
// struct memdq. This is guaranteed because the alignment is
|
257 |
|
|
// larger than the size of this structure.
|
258 |
|
|
|
259 |
|
|
CYG_ASSERT( (cyg_int32)sizeof(struct memdq)<=dq->size ,
|
260 |
|
|
"not enough space for list item" );
|
261 |
|
|
|
262 |
|
|
alloced = (cyg_uint8 *)dq + dq->size;
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
CYG_ASSERT( bottom<=alloced && alloced<=top, "alloced outside pool" );
|
266 |
|
|
|
267 |
|
|
// Set size on allocated block
|
268 |
|
|
|
269 |
|
|
dq = (struct memdq *)alloced;
|
270 |
|
|
dq->size = size;
|
271 |
|
|
dq->next = dq->prev = (struct memdq *)0xd530d53; // magic number
|
272 |
|
|
|
273 |
|
|
freemem -=size;
|
274 |
|
|
|
275 |
|
|
cyg_uint8 *ptr = memdq2alloc( dq );
|
276 |
|
|
CYG_ASSERT( ((CYG_ADDRESS)ptr & (alignment-1)) == 0,
|
277 |
|
|
"returned memory not aligned" );
|
278 |
|
|
return ptr;
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
// -------------------------------------------------------------------------
|
282 |
|
|
// resize existing allocation, if oldsize is non-NULL, previous
|
283 |
|
|
// allocation size is placed into it. If previous size not available,
|
284 |
|
|
// it is set to 0. NB previous allocation size may have been rounded up.
|
285 |
|
|
// Occasionally the allocation can be adjusted *backwards* as well as,
|
286 |
|
|
// or instead of forwards, therefore the address of the resized
|
287 |
|
|
// allocation is returned, or NULL if no resizing was possible.
|
288 |
|
|
// Note that this differs from ::realloc() in that no attempt is
|
289 |
|
|
// made to call malloc() if resizing is not possible - that is left
|
290 |
|
|
// to higher layers. The data is copied from old to new though.
|
291 |
|
|
// The effects of alloc_ptr==NULL or newsize==0 are undefined
|
292 |
|
|
|
293 |
|
|
inline cyg_uint8 *
|
294 |
|
|
Cyg_Mempool_Variable_Implementation::resize_alloc( cyg_uint8 *alloc_ptr,
|
295 |
|
|
cyg_int32 newsize,
|
296 |
|
|
cyg_int32 *oldsize )
|
297 |
|
|
{
|
298 |
|
|
cyg_uint8 *ret = NULL;
|
299 |
|
|
|
300 |
|
|
CYG_REPORT_FUNCTION();
|
301 |
|
|
|
302 |
|
|
CYG_CHECK_DATA_PTRC( alloc_ptr );
|
303 |
|
|
if ( NULL != oldsize )
|
304 |
|
|
CYG_CHECK_DATA_PTRC( oldsize );
|
305 |
|
|
|
306 |
|
|
CYG_ASSERT( (bottom <= alloc_ptr) && (alloc_ptr <= top),
|
307 |
|
|
"alloc_ptr outside pool" );
|
308 |
|
|
|
309 |
|
|
struct memdq *dq=alloc2memdq( alloc_ptr );
|
310 |
|
|
|
311 |
|
|
// check magic number in block for validity
|
312 |
|
|
CYG_ASSERT( (dq->next == dq->prev) &&
|
313 |
|
|
(dq->next == (struct memdq *)0xd530d53), "bad alloc_ptr" );
|
314 |
|
|
|
315 |
|
|
newsize = roundup(newsize);
|
316 |
|
|
|
317 |
|
|
if ( NULL != oldsize )
|
318 |
|
|
*oldsize = dq->size;
|
319 |
|
|
|
320 |
|
|
if ( newsize > dq->size ) {
|
321 |
|
|
// see if we can increase the allocation size
|
322 |
|
|
if ( (cyg_uint8 *)dq + newsize <= top ) { // obviously can't exceed pool
|
323 |
|
|
struct memdq *nextdq = (struct memdq *)((cyg_uint8 *)dq + dq->size);
|
324 |
|
|
|
325 |
|
|
if ( (nextdq->next != nextdq->prev) &&
|
326 |
|
|
(nextdq->size >= (newsize - dq->size)) ) {
|
327 |
|
|
// it's free and it's big enough
|
328 |
|
|
// we therefore temporarily join this block and *all* of
|
329 |
|
|
// the next block, so that the code below can then split it
|
330 |
|
|
nextdq->next->prev = nextdq->prev;
|
331 |
|
|
nextdq->prev->next = nextdq->next;
|
332 |
|
|
dq->size += nextdq->size;
|
333 |
|
|
freemem -= nextdq->size;
|
334 |
|
|
}
|
335 |
|
|
} // if
|
336 |
|
|
} // if
|
337 |
|
|
|
338 |
|
|
// this is also used if the allocation size was increased and we need
|
339 |
|
|
// to split it
|
340 |
|
|
if ( newsize < dq->size ) {
|
341 |
|
|
// We can shrink the allocation by splitting into smaller allocation and
|
342 |
|
|
// new free block
|
343 |
|
|
struct memdq *newdq = (struct memdq *)((cyg_uint8 *)dq + newsize);
|
344 |
|
|
|
345 |
|
|
newdq->size = dq->size - newsize;
|
346 |
|
|
dq->size = newsize;
|
347 |
|
|
|
348 |
|
|
CYG_ASSERT( (cyg_int32)sizeof(struct memdq)<=newdq->size ,
|
349 |
|
|
"not enough space for list item" );
|
350 |
|
|
|
351 |
|
|
// now return the new space back to the freelist
|
352 |
|
|
insert_free_block( newdq );
|
353 |
|
|
|
354 |
|
|
ret = alloc_ptr;
|
355 |
|
|
|
356 |
|
|
} // if
|
357 |
|
|
else if ( newsize == dq->size ) {
|
358 |
|
|
ret = alloc_ptr;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
return ret;
|
362 |
|
|
|
363 |
|
|
} // resize_alloc()
|
364 |
|
|
|
365 |
|
|
|
366 |
|
|
// -------------------------------------------------------------------------
|
367 |
|
|
// When no coalescing is done, free is simply a matter of using the
|
368 |
|
|
// freed memory as an element of the free list linking it in at the
|
369 |
|
|
// start. When coalescing, the free list is sorted
|
370 |
|
|
|
371 |
|
|
inline cyg_bool
|
372 |
|
|
Cyg_Mempool_Variable_Implementation::free( cyg_uint8 *p, cyg_int32 size )
|
373 |
|
|
{
|
374 |
|
|
CYG_REPORT_FUNCTION();
|
375 |
|
|
|
376 |
|
|
CYG_CHECK_DATA_PTRC( p );
|
377 |
|
|
|
378 |
|
|
if (!((bottom <= p) && (p <= top)))
|
379 |
|
|
return false;
|
380 |
|
|
|
381 |
|
|
struct memdq *dq=alloc2memdq( p );
|
382 |
|
|
|
383 |
|
|
// check magic number in block for validity
|
384 |
|
|
if ( (dq->next != dq->prev) ||
|
385 |
|
|
(dq->next != (struct memdq *)0xd530d53) )
|
386 |
|
|
return false;
|
387 |
|
|
|
388 |
|
|
if ( 0==size ) {
|
389 |
|
|
size = dq->size;
|
390 |
|
|
} else {
|
391 |
|
|
size = roundup(size);
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
if( dq->size != size )
|
395 |
|
|
return false;
|
396 |
|
|
|
397 |
|
|
CYG_ASSERT( (cyg_int32)sizeof(struct memdq)<=size ,
|
398 |
|
|
"not enough space for list item" );
|
399 |
|
|
|
400 |
|
|
insert_free_block( dq );
|
401 |
|
|
|
402 |
|
|
return true;
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
// -------------------------------------------------------------------------
|
406 |
|
|
|
407 |
|
|
inline void
|
408 |
|
|
Cyg_Mempool_Variable_Implementation::get_status(
|
409 |
|
|
cyg_mempool_status_flag_t flags,
|
410 |
|
|
Cyg_Mempool_Status &status )
|
411 |
|
|
{
|
412 |
|
|
CYG_REPORT_FUNCTION();
|
413 |
|
|
|
414 |
|
|
// as quick or quicker to just set it, rather than test flag first
|
415 |
|
|
status.arenabase = obase;
|
416 |
|
|
if ( 0 != (flags & CYG_MEMPOOL_STAT_ARENASIZE) )
|
417 |
|
|
status.arenasize = top - bottom;
|
418 |
|
|
if ( 0 != (flags & CYG_MEMPOOL_STAT_TOTALALLOCATED) )
|
419 |
|
|
status.totalallocated = (top-bottom) - freemem;
|
420 |
|
|
// as quick or quicker to just set it, rather than test flag first
|
421 |
|
|
status.totalfree = freemem;
|
422 |
|
|
if ( 0 != (flags & CYG_MEMPOOL_STAT_MAXFREE) ) {
|
423 |
|
|
struct memdq *dq = &head;
|
424 |
|
|
cyg_int32 mf = 0;
|
425 |
|
|
|
426 |
|
|
do {
|
427 |
|
|
CYG_ASSERT( dq->next->prev==dq, "Bad link in dq");
|
428 |
|
|
dq = dq->next;
|
429 |
|
|
if(0 == dq->size) {
|
430 |
|
|
CYG_ASSERT(dq == &head, "bad free block");
|
431 |
|
|
break;
|
432 |
|
|
}
|
433 |
|
|
if(dq->size > mf)
|
434 |
|
|
mf = dq->size;
|
435 |
|
|
} while(1);
|
436 |
|
|
status.maxfree = mf - sizeof(struct memdq);
|
437 |
|
|
}
|
438 |
|
|
// as quick or quicker to just set it, rather than test flag first
|
439 |
|
|
status.origbase = obase;
|
440 |
|
|
// as quick or quicker to just set it, rather than test flag first
|
441 |
|
|
status.origsize = osize;
|
442 |
|
|
|
443 |
|
|
CYG_REPORT_RETURN();
|
444 |
|
|
|
445 |
|
|
} // get_status()
|
446 |
|
|
|
447 |
|
|
|
448 |
|
|
// -------------------------------------------------------------------------
|
449 |
|
|
#endif // ifndef CYGONCE_MEMALLOC_MVARIMPL_INL
|
450 |
|
|
// EOF mvarimpl.inl
|