1 |
27 |
unneback |
//==========================================================================
|
2 |
|
|
//
|
3 |
|
|
// dlmalloc.cxx
|
4 |
|
|
//
|
5 |
|
|
// Port of Doug Lea's malloc implementation
|
6 |
|
|
//
|
7 |
|
|
//==========================================================================
|
8 |
|
|
//####ECOSGPLCOPYRIGHTBEGIN####
|
9 |
|
|
// -------------------------------------------
|
10 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
11 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
12 |
|
|
//
|
13 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
14 |
|
|
// the terms of the GNU General Public License as published by the Free
|
15 |
|
|
// Software Foundation; either version 2 or (at your option) any later version.
|
16 |
|
|
//
|
17 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
18 |
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
19 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
20 |
|
|
// for more details.
|
21 |
|
|
//
|
22 |
|
|
// You should have received a copy of the GNU General Public License along
|
23 |
|
|
// with eCos; if not, write to the Free Software Foundation, Inc.,
|
24 |
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
25 |
|
|
//
|
26 |
|
|
// As a special exception, if other files instantiate templates or use macros
|
27 |
|
|
// or inline functions from this file, or you compile this file and link it
|
28 |
|
|
// with other works to produce a work based on this file, this file does not
|
29 |
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
30 |
|
|
// License. However the source code for this file must still be made available
|
31 |
|
|
// in accordance with section (3) of the GNU General Public License.
|
32 |
|
|
//
|
33 |
|
|
// This exception does not invalidate any other reasons why a work based on
|
34 |
|
|
// this file might be covered by the GNU General Public License.
|
35 |
|
|
//
|
36 |
|
|
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
37 |
|
|
// at http://sources.redhat.com/ecos/ecos-license/
|
38 |
|
|
// -------------------------------------------
|
39 |
|
|
//####ECOSGPLCOPYRIGHTEND####
|
40 |
|
|
//==========================================================================
|
41 |
|
|
//#####DESCRIPTIONBEGIN####
|
42 |
|
|
//
|
43 |
|
|
// Author(s): Doug Lea (dl at g.oswego.edu), jlarmour
|
44 |
|
|
// Contributors:
|
45 |
|
|
// Date: 2000-06-18
|
46 |
|
|
// Purpose: Doug Lea's malloc implementation
|
47 |
|
|
// Description: Doug Lea's malloc has been ported to eCos. This file
|
48 |
|
|
// provides the implementation in a way acceptable to eCos.
|
49 |
|
|
// Substantial amounts of unnecessary bits (to eCos) of the
|
50 |
|
|
// original implementation have been removed to make the
|
51 |
|
|
// code more tractable. Note this may make a number of the
|
52 |
|
|
// comments appear to make little sense, or no longer apply!
|
53 |
|
|
// In particular, mmap support is removed entirely.
|
54 |
|
|
// Also the memory is "sbrked" all at once at the
|
55 |
|
|
// beginning, covering the entire memory region given at
|
56 |
|
|
// construction, and there can be no more afterwards.
|
57 |
|
|
// Usage: #include <cyg/memalloc/dlmalloc.hxx>
|
58 |
|
|
//
|
59 |
|
|
//
|
60 |
|
|
//####DESCRIPTIONEND####
|
61 |
|
|
//
|
62 |
|
|
//==========================================================================
|
63 |
|
|
|
64 |
|
|
// DOCUMENTATION FROM ORIGINAL FILE:
|
65 |
|
|
// (some now irrelevant parts elided)
|
66 |
|
|
|
67 |
|
|
//----------------------------------------------------------------------------
|
68 |
|
|
|
69 |
|
|
/*
|
70 |
|
|
A version of malloc/free/realloc written by Doug Lea and released to the
|
71 |
|
|
public domain. Send questions/comments/complaints/performance data
|
72 |
|
|
to dl at cs.oswego.edu
|
73 |
|
|
|
74 |
|
|
* VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee)
|
75 |
|
|
|
76 |
|
|
Note: There may be an updated version of this malloc obtainable at
|
77 |
|
|
ftp://g.oswego.edu/pub/misc/malloc.c
|
78 |
|
|
Check before installing!
|
79 |
|
|
|
80 |
|
|
* Why use this malloc?
|
81 |
|
|
|
82 |
|
|
This is not the fastest, most space-conserving, most portable, or
|
83 |
|
|
most tunable malloc ever written. However it is among the fastest
|
84 |
|
|
while also being among the most space-conserving, portable and tunable.
|
85 |
|
|
Consistent balance across these factors results in a good general-purpose
|
86 |
|
|
allocator. For a high-level description, see
|
87 |
|
|
http://g.oswego.edu/dl/html/malloc.html
|
88 |
|
|
|
89 |
|
|
* Synopsis of public routines
|
90 |
|
|
|
91 |
|
|
(Much fuller descriptions are contained in the program documentation below.)
|
92 |
|
|
|
93 |
|
|
[ these have of course been renamed in the eCos port ]a
|
94 |
|
|
|
95 |
|
|
malloc(size_t n);
|
96 |
|
|
Return a pointer to a newly allocated chunk of at least n bytes, or null
|
97 |
|
|
if no space is available.
|
98 |
|
|
free(Void_t* p);
|
99 |
|
|
Release the chunk of memory pointed to by p, or no effect if p is null.
|
100 |
|
|
realloc(Void_t* p, size_t n);
|
101 |
|
|
Return a pointer to a chunk of size n that contains the same data
|
102 |
|
|
as does chunk p up to the minimum of (n, p's size) bytes, or null
|
103 |
|
|
if no space is available. The returned pointer may or may not be
|
104 |
|
|
the same as p. If p is null, equivalent to malloc. realloc of
|
105 |
|
|
zero bytes calls free(p)
|
106 |
|
|
|
107 |
|
|
* Vital statistics:
|
108 |
|
|
|
109 |
|
|
Alignment: 8-byte
|
110 |
|
|
8 byte alignment is currently hardwired into the design. This
|
111 |
|
|
seems to suffice for all current machines and C compilers.
|
112 |
|
|
|
113 |
|
|
Assumed pointer representation: 4 or 8 bytes
|
114 |
|
|
Code for 8-byte pointers is untested by me but has worked
|
115 |
|
|
reliably by Wolfram Gloger, who contributed most of the
|
116 |
|
|
changes supporting this.
|
117 |
|
|
|
118 |
|
|
Assumed size_t representation: 4 or 8 bytes
|
119 |
|
|
Note that size_t is allowed to be 4 bytes even if pointers are 8.
|
120 |
|
|
|
121 |
|
|
Minimum overhead per allocated chunk: 4 or 8 bytes
|
122 |
|
|
Each malloced chunk has a hidden overhead of 4 bytes holding size
|
123 |
|
|
and status information.
|
124 |
|
|
|
125 |
|
|
Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
|
126 |
|
|
8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
|
127 |
|
|
|
128 |
|
|
When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
|
129 |
|
|
ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
|
130 |
|
|
needed; 4 (8) for a trailing size field
|
131 |
|
|
and 8 (16) bytes for free list pointers. Thus, the minimum
|
132 |
|
|
allocatable size is 16/24/32 bytes.
|
133 |
|
|
|
134 |
|
|
Even a request for zero bytes (i.e., malloc(0)) returns a
|
135 |
|
|
pointer to something of the minimum allocatable size.
|
136 |
|
|
|
137 |
|
|
Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
|
138 |
|
|
8-byte size_t: 2^63 - 16 bytes
|
139 |
|
|
|
140 |
|
|
It is assumed that (possibly signed) size_t bit values suffice to
|
141 |
|
|
represent chunk sizes. `Possibly signed' is due to the fact
|
142 |
|
|
that `size_t' may be defined on a system as either a signed or
|
143 |
|
|
an unsigned type. To be conservative, values that would appear
|
144 |
|
|
as negative numbers are avoided.
|
145 |
|
|
Requests for sizes with a negative sign bit when the request
|
146 |
|
|
size is treaded as a long will return null.
|
147 |
|
|
|
148 |
|
|
Maximum overhead wastage per allocated chunk: normally 15 bytes
|
149 |
|
|
|
150 |
|
|
Alignnment demands, plus the minimum allocatable size restriction
|
151 |
|
|
make the normal worst-case wastage 15 bytes (i.e., up to 15
|
152 |
|
|
more bytes will be allocated than were requested in malloc), with
|
153 |
|
|
one exception: because requests for zero bytes allocate non-zero space,
|
154 |
|
|
the worst case wastage for a request of zero bytes is 24 bytes.
|
155 |
|
|
|
156 |
|
|
* Limitations
|
157 |
|
|
|
158 |
|
|
Here are some features that are NOT currently supported
|
159 |
|
|
|
160 |
|
|
* No user-definable hooks for callbacks and the like.
|
161 |
|
|
* No automated mechanism for fully checking that all accesses
|
162 |
|
|
to malloced memory stay within their bounds.
|
163 |
|
|
* No support for compaction.
|
164 |
|
|
|
165 |
|
|
* Synopsis of compile-time options:
|
166 |
|
|
|
167 |
|
|
People have reported using previous versions of this malloc on all
|
168 |
|
|
versions of Unix, sometimes by tweaking some of the defines
|
169 |
|
|
below. It has been tested most extensively on Solaris and
|
170 |
|
|
Linux. It is also reported to work on WIN32 platforms.
|
171 |
|
|
People have also reported adapting this malloc for use in
|
172 |
|
|
stand-alone embedded systems.
|
173 |
|
|
|
174 |
|
|
The implementation is in straight, hand-tuned ANSI C. Among other
|
175 |
|
|
consequences, it uses a lot of macros. Because of this, to be at
|
176 |
|
|
all usable, this code should be compiled using an optimizing compiler
|
177 |
|
|
(for example gcc -O2) that can simplify expressions and control
|
178 |
|
|
paths.
|
179 |
|
|
|
180 |
|
|
CYGDBG_MEMALLOC_ALLOCATOR_DLMALLOC_DEBUG (default: NOT defined)
|
181 |
|
|
Define to enable debugging. Adds fairly extensive assertion-based
|
182 |
|
|
checking to help track down memory errors, but noticeably slows down
|
183 |
|
|
execution.
|
184 |
|
|
MALLOC_LOCK (default: NOT defined)
|
185 |
|
|
MALLOC_UNLOCK (default: NOT defined)
|
186 |
|
|
Define these to C expressions which are run to lock and unlock
|
187 |
|
|
the malloc data structures. Calls may be nested; that is,
|
188 |
|
|
MALLOC_LOCK may be called more than once before the corresponding
|
189 |
|
|
MALLOC_UNLOCK calls. MALLOC_LOCK must avoid waiting for a lock
|
190 |
|
|
that it already holds.
|
191 |
|
|
MALLOC_ALIGNMENT (default: NOT defined)
|
192 |
|
|
Define this to 16 if you need 16 byte alignment instead of 8 byte alignment
|
193 |
|
|
which is the normal default.
|
194 |
|
|
SIZE_T_SMALLER_THAN_LONG (default: NOT defined)
|
195 |
|
|
Define this when the platform you are compiling has
|
196 |
|
|
sizeof(long) > sizeof(size_t).
|
197 |
|
|
The option causes some extra code to be generated to handle operations
|
198 |
|
|
that use size_t operands and have long results.
|
199 |
|
|
INTERNAL_SIZE_T (default: size_t)
|
200 |
|
|
Define to a 32-bit type (probably `unsigned int') if you are on a
|
201 |
|
|
64-bit machine, yet do not want or need to allow malloc requests of
|
202 |
|
|
greater than 2^31 to be handled. This saves space, especially for
|
203 |
|
|
very small chunks.
|
204 |
|
|
|
205 |
|
|
*/
|
206 |
|
|
|
207 |
|
|
//----------------------------------------------------------------------------
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
/* Preliminaries */
|
211 |
|
|
|
212 |
|
|
#include <pkgconf/memalloc.h> // configuration header
|
213 |
|
|
#include <pkgconf/infra.h> // CYGDBG_USE_ASSERTS
|
214 |
|
|
#include <cyg/infra/cyg_type.h> // types
|
215 |
|
|
#include <cyg/infra/cyg_ass.h> // assertions
|
216 |
|
|
#include <stddef.h> // for size_t
|
217 |
|
|
#include <cyg/memalloc/dlmalloc.hxx>
|
218 |
|
|
//#include <cyg/infra/diag.h>
|
219 |
|
|
|
220 |
|
|
/*
|
221 |
|
|
Debugging:
|
222 |
|
|
|
223 |
|
|
Because freed chunks may be overwritten with link fields, this
|
224 |
|
|
malloc will often die when freed memory is overwritten by user
|
225 |
|
|
programs. This can be very effective (albeit in an annoying way)
|
226 |
|
|
in helping track down dangling pointers.
|
227 |
|
|
|
228 |
|
|
If you compile with CYGDBG_MEMALLOC_ALLOCATOR_DLMALLOC_DEBUG enabled, a
|
229 |
|
|
number of assertion checks are
|
230 |
|
|
enabled that will catch more memory errors. You probably won't be
|
231 |
|
|
able to make much sense of the actual assertion errors, but they
|
232 |
|
|
should help you locate incorrectly overwritten memory. The
|
233 |
|
|
checking is fairly extensive, and will slow down execution
|
234 |
|
|
noticeably. Calling get_status() with DEBUG set will
|
235 |
|
|
attempt to check every allocated and free chunk in the
|
236 |
|
|
course of computing the summmaries.
|
237 |
|
|
|
238 |
|
|
Setting CYGDBG_MEMALLOC_ALLOCATOR_DLMALLOC_DEBUG may also be helpful if you
|
239 |
|
|
are trying to modify this code. The assertions in the check routines
|
240 |
|
|
spell out in more detail the assumptions and invariants underlying
|
241 |
|
|
the algorithms.
|
242 |
|
|
|
243 |
|
|
*/
|
244 |
|
|
|
245 |
|
|
#ifdef CYGDBG_MEMALLOC_ALLOCATOR_DLMALLOC_DEBUG
|
246 |
|
|
# define ASSERT(x) CYG_ASSERTC( x )
|
247 |
|
|
#else
|
248 |
|
|
# define ASSERT(x) ((void)0)
|
249 |
|
|
#endif
|
250 |
|
|
|
251 |
|
|
|
252 |
|
|
/*
|
253 |
|
|
Define MALLOC_LOCK and MALLOC_UNLOCK to C expressions to run to
|
254 |
|
|
lock and unlock the malloc data structures. MALLOC_LOCK may be
|
255 |
|
|
called recursively.
|
256 |
|
|
*/
|
257 |
|
|
|
258 |
|
|
#ifndef MALLOC_LOCK
|
259 |
|
|
#define MALLOC_LOCK
|
260 |
|
|
#endif
|
261 |
|
|
|
262 |
|
|
#ifndef MALLOC_UNLOCK
|
263 |
|
|
#define MALLOC_UNLOCK
|
264 |
|
|
#endif
|
265 |
|
|
|
266 |
|
|
/*
|
267 |
|
|
INTERNAL_SIZE_T is the word-size used for internal bookkeeping
|
268 |
|
|
of chunk sizes. On a 64-bit machine, you can reduce malloc
|
269 |
|
|
overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
|
270 |
|
|
at the expense of not being able to handle requests greater than
|
271 |
|
|
2^31. This limitation is hardly ever a concern; you are encouraged
|
272 |
|
|
to set this. However, the default version is the same as size_t.
|
273 |
|
|
*/
|
274 |
|
|
|
275 |
|
|
#ifndef INTERNAL_SIZE_T
|
276 |
|
|
#define INTERNAL_SIZE_T Cyg_Mempool_dlmalloc_Implementation::Cyg_dlmalloc_size_t
|
277 |
|
|
#endif
|
278 |
|
|
|
279 |
|
|
/*
|
280 |
|
|
Following is needed on implementations whereby long > size_t.
|
281 |
|
|
The problem is caused because the code performs subtractions of
|
282 |
|
|
size_t values and stores the result in long values. In the case
|
283 |
|
|
where long > size_t and the first value is actually less than
|
284 |
|
|
the second value, the resultant value is positive. For example,
|
285 |
|
|
(long)(x - y) where x = 0 and y is 1 ends up being 0x00000000FFFFFFFF
|
286 |
|
|
which is 2*31 - 1 instead of 0xFFFFFFFFFFFFFFFF. This is due to the
|
287 |
|
|
fact that assignment from unsigned to signed won't sign extend.
|
288 |
|
|
*/
|
289 |
|
|
|
290 |
|
|
#ifdef SIZE_T_SMALLER_THAN_LONG
|
291 |
|
|
#define long_sub_size_t(x, y) ( (x < y) ? -((long)(y - x)) : (x - y) );
|
292 |
|
|
#else
|
293 |
|
|
#define long_sub_size_t(x, y) ( (long)(x - y) )
|
294 |
|
|
#endif
|
295 |
|
|
|
296 |
|
|
|
297 |
|
|
#ifdef CYGIMP_MEMALLOC_ALLOCATOR_DLMALLOC_USE_MEMCPY
|
298 |
|
|
|
299 |
|
|
#include <string.h> // memcpy, memset
|
300 |
|
|
|
301 |
|
|
/* The following macros are only invoked with (2n+1)-multiples of
|
302 |
|
|
INTERNAL_SIZE_T units, with a positive integer n. This is exploited
|
303 |
|
|
for fast inline execution when n is small. */
|
304 |
|
|
|
305 |
|
|
#define MALLOC_ZERO(charp, nbytes) \
|
306 |
|
|
do { \
|
307 |
|
|
INTERNAL_SIZE_T mzsz = (nbytes); \
|
308 |
|
|
if(mzsz <= 9*sizeof(mzsz)) { \
|
309 |
|
|
INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
|
310 |
|
|
if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
|
311 |
|
|
*mz++ = 0; \
|
312 |
|
|
if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
|
313 |
|
|
*mz++ = 0; \
|
314 |
|
|
if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
|
315 |
|
|
*mz++ = 0; }}} \
|
316 |
|
|
*mz++ = 0; \
|
317 |
|
|
*mz++ = 0; \
|
318 |
|
|
*mz = 0; \
|
319 |
|
|
} else memset((charp), 0, mzsz); \
|
320 |
|
|
} while(0)
|
321 |
|
|
|
322 |
|
|
#define MALLOC_COPY(dest,src,nbytes) \
|
323 |
|
|
do { \
|
324 |
|
|
INTERNAL_SIZE_T mcsz = (nbytes); \
|
325 |
|
|
if(mcsz <= 9*sizeof(mcsz)) { \
|
326 |
|
|
INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
|
327 |
|
|
INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
|
328 |
|
|
if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
|
329 |
|
|
*mcdst++ = *mcsrc++; \
|
330 |
|
|
if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
|
331 |
|
|
*mcdst++ = *mcsrc++; \
|
332 |
|
|
if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
|
333 |
|
|
*mcdst++ = *mcsrc++; }}} \
|
334 |
|
|
*mcdst++ = *mcsrc++; \
|
335 |
|
|
*mcdst++ = *mcsrc++; \
|
336 |
|
|
*mcdst = *mcsrc ; \
|
337 |
|
|
} else memcpy(dest, src, mcsz); \
|
338 |
|
|
} while(0)
|
339 |
|
|
|
340 |
|
|
#else /* !CYGIMP_MEMALLOC_ALLOCATOR_DLMALLOC_USE_MEMCPY */
|
341 |
|
|
|
342 |
|
|
/* Use Duff's device for good zeroing/copying performance. */
|
343 |
|
|
|
344 |
|
|
#define MALLOC_ZERO(charp, nbytes) \
|
345 |
|
|
do { \
|
346 |
|
|
INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
|
347 |
|
|
long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
|
348 |
|
|
if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
|
349 |
|
|
switch (mctmp) { \
|
350 |
|
|
case 0: for(;;) { *mzp++ = 0; \
|
351 |
|
|
case 7: *mzp++ = 0; \
|
352 |
|
|
case 6: *mzp++ = 0; \
|
353 |
|
|
case 5: *mzp++ = 0; \
|
354 |
|
|
case 4: *mzp++ = 0; \
|
355 |
|
|
case 3: *mzp++ = 0; \
|
356 |
|
|
case 2: *mzp++ = 0; \
|
357 |
|
|
case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
|
358 |
|
|
} \
|
359 |
|
|
} while(0)
|
360 |
|
|
|
361 |
|
|
#define MALLOC_COPY(dest,src,nbytes) \
|
362 |
|
|
do { \
|
363 |
|
|
INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
|
364 |
|
|
INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
|
365 |
|
|
long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
|
366 |
|
|
if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
|
367 |
|
|
switch (mctmp) { \
|
368 |
|
|
case 0: for(;;) { *mcdst++ = *mcsrc++; \
|
369 |
|
|
case 7: *mcdst++ = *mcsrc++; \
|
370 |
|
|
case 6: *mcdst++ = *mcsrc++; \
|
371 |
|
|
case 5: *mcdst++ = *mcsrc++; \
|
372 |
|
|
case 4: *mcdst++ = *mcsrc++; \
|
373 |
|
|
case 3: *mcdst++ = *mcsrc++; \
|
374 |
|
|
case 2: *mcdst++ = *mcsrc++; \
|
375 |
|
|
case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
|
376 |
|
|
} \
|
377 |
|
|
} while(0)
|
378 |
|
|
|
379 |
|
|
#endif
|
380 |
|
|
|
381 |
|
|
|
382 |
|
|
//----------------------------------------------------------------------------
|
383 |
|
|
|
384 |
|
|
/*
|
385 |
|
|
malloc_chunk details:
|
386 |
|
|
|
387 |
|
|
(The following includes lightly edited explanations by Colin Plumb.)
|
388 |
|
|
|
389 |
|
|
Chunks of memory are maintained using a `boundary tag' method as
|
390 |
|
|
described in e.g., Knuth or Standish. (See the paper by Paul
|
391 |
|
|
Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
|
392 |
|
|
survey of such techniques.) Sizes of free chunks are stored both
|
393 |
|
|
in the front of each chunk and at the end. This makes
|
394 |
|
|
consolidating fragmented chunks into bigger chunks very fast. The
|
395 |
|
|
size fields also hold bits representing whether chunks are free or
|
396 |
|
|
in use.
|
397 |
|
|
|
398 |
|
|
An allocated chunk looks like this:
|
399 |
|
|
|
400 |
|
|
|
401 |
|
|
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
402 |
|
|
| Size of previous chunk, if allocated | |
|
403 |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
404 |
|
|
| Size of chunk, in bytes |P|
|
405 |
|
|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
406 |
|
|
| User data starts here... .
|
407 |
|
|
. .
|
408 |
|
|
. (malloc_usable_space() bytes) .
|
409 |
|
|
. |
|
410 |
|
|
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
411 |
|
|
| Size of chunk |
|
412 |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
413 |
|
|
|
414 |
|
|
|
415 |
|
|
Where "chunk" is the front of the chunk for the purpose of most of
|
416 |
|
|
the malloc code, but "mem" is the pointer that is returned to the
|
417 |
|
|
user. "Nextchunk" is the beginning of the next contiguous chunk.
|
418 |
|
|
|
419 |
|
|
Chunks always begin on even word boundries, so the mem portion
|
420 |
|
|
(which is returned to the user) is also on an even word boundary, and
|
421 |
|
|
thus double-word aligned.
|
422 |
|
|
|
423 |
|
|
Free chunks are stored in circular doubly-linked lists, and look like this:
|
424 |
|
|
|
425 |
|
|
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
426 |
|
|
| Size of previous chunk |
|
427 |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
428 |
|
|
`head:' | Size of chunk, in bytes |P|
|
429 |
|
|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
430 |
|
|
| Forward pointer to next chunk in list |
|
431 |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
432 |
|
|
| Back pointer to previous chunk in list |
|
433 |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
434 |
|
|
| Unused space (may be 0 bytes long) .
|
435 |
|
|
. .
|
436 |
|
|
. |
|
437 |
|
|
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
438 |
|
|
`foot:' | Size of chunk, in bytes |
|
439 |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
440 |
|
|
|
441 |
|
|
The P (PREV_INUSE) bit, stored in the unused low-order bit of the
|
442 |
|
|
chunk size (which is always a multiple of two words), is an in-use
|
443 |
|
|
bit for the *previous* chunk. If that bit is *clear*, then the
|
444 |
|
|
word before the current chunk size contains the previous chunk
|
445 |
|
|
size, and can be used to find the front of the previous chunk.
|
446 |
|
|
(The very first chunk allocated always has this bit set,
|
447 |
|
|
preventing access to non-existent (or non-owned) memory.)
|
448 |
|
|
|
449 |
|
|
Note that the `foot' of the current chunk is actually represented
|
450 |
|
|
as the prev_size of the NEXT chunk. (This makes it easier to
|
451 |
|
|
deal with alignments etc).
|
452 |
|
|
|
453 |
|
|
The exception to all this is the special chunk `top', which doesn't
|
454 |
|
|
bother using the trailing size field since there is no next
|
455 |
|
|
contiguous chunk that would have to index off it. (After
|
456 |
|
|
initialization, `top' is forced to always exist. )
|
457 |
|
|
|
458 |
|
|
Available chunks are kept in any of several places (all declared below):
|
459 |
|
|
|
460 |
|
|
* `av': An array of chunks serving as bin headers for consolidated
|
461 |
|
|
chunks. Each bin is doubly linked. The bins are approximately
|
462 |
|
|
proportionally (log) spaced. There are a lot of these bins
|
463 |
|
|
(128). This may look excessive, but works very well in
|
464 |
|
|
practice. All procedures maintain the invariant that no
|
465 |
|
|
consolidated chunk physically borders another one. Chunks in
|
466 |
|
|
bins are kept in size order, with ties going to the
|
467 |
|
|
approximately least recently used chunk.
|
468 |
|
|
|
469 |
|
|
The chunks in each bin are maintained in decreasing sorted order by
|
470 |
|
|
size. This is irrelevant for the small bins, which all contain
|
471 |
|
|
the same-sized chunks, but facilitates best-fit allocation for
|
472 |
|
|
larger chunks. (These lists are just sequential. Keeping them in
|
473 |
|
|
order almost never requires enough traversal to warrant using
|
474 |
|
|
fancier ordered data structures.) Chunks of the same size are
|
475 |
|
|
linked with the most recently freed at the front, and allocations
|
476 |
|
|
are taken from the back. This results in LRU or FIFO allocation
|
477 |
|
|
order, which tends to give each chunk an equal opportunity to be
|
478 |
|
|
consolidated with adjacent freed chunks, resulting in larger free
|
479 |
|
|
chunks and less fragmentation.
|
480 |
|
|
|
481 |
|
|
* `top': The top-most available chunk (i.e., the one bordering the
|
482 |
|
|
end of available memory) is treated specially. It is never
|
483 |
|
|
included in any bin, is used only if no other chunk is
|
484 |
|
|
available.
|
485 |
|
|
|
486 |
|
|
* `last_remainder': A bin holding only the remainder of the
|
487 |
|
|
most recently split (non-top) chunk. This bin is checked
|
488 |
|
|
before other non-fitting chunks, so as to provide better
|
489 |
|
|
locality for runs of sequentially allocated chunks.
|
490 |
|
|
|
491 |
|
|
*/
|
492 |
|
|
|
493 |
|
|
typedef struct Cyg_Mempool_dlmalloc_Implementation::malloc_chunk* mchunkptr;
|
494 |
|
|
|
495 |
|
|
/* sizes, alignments */
|
496 |
|
|
|
497 |
|
|
#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
|
498 |
|
|
#ifndef MALLOC_ALIGNMENT
|
499 |
|
|
#define MALLOC_ALIGN 8
|
500 |
|
|
#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
|
501 |
|
|
#else
|
502 |
|
|
#define MALLOC_ALIGN MALLOC_ALIGNMENT
|
503 |
|
|
#endif
|
504 |
|
|
#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
|
505 |
|
|
#define MINSIZE \
|
506 |
|
|
(sizeof(struct Cyg_Mempool_dlmalloc_Implementation::malloc_chunk))
|
507 |
|
|
|
508 |
|
|
/* conversion from malloc headers to user pointers, and back */
|
509 |
|
|
|
510 |
|
|
#define chunk2mem(p) ((cyg_uint8*)((char*)(p) + 2*SIZE_SZ))
|
511 |
|
|
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
|
512 |
|
|
|
513 |
|
|
/* pad request bytes into a usable size */
|
514 |
|
|
|
515 |
|
|
#define request2size(req) \
|
516 |
|
|
(((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
|
517 |
|
|
(long)(MINSIZE + MALLOC_ALIGN_MASK)) ? ((MINSIZE + MALLOC_ALIGN_MASK) & ~(MALLOC_ALIGN_MASK)) : \
|
518 |
|
|
(((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
|
519 |
|
|
|
520 |
|
|
/* Check if m has acceptable alignment */
|
521 |
|
|
|
522 |
|
|
#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
|
523 |
|
|
|
524 |
|
|
|
525 |
|
|
/*
|
526 |
|
|
Physical chunk operations
|
527 |
|
|
*/
|
528 |
|
|
|
529 |
|
|
|
530 |
|
|
/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
|
531 |
|
|
|
532 |
|
|
#define PREV_INUSE 0x1
|
533 |
|
|
|
534 |
|
|
/* Bits to mask off when extracting size */
|
535 |
|
|
|
536 |
|
|
#define SIZE_BITS (PREV_INUSE)
|
537 |
|
|
|
538 |
|
|
|
539 |
|
|
/* Ptr to next physical malloc_chunk. */
|
540 |
|
|
|
541 |
|
|
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
|
542 |
|
|
|
543 |
|
|
/* Ptr to previous physical malloc_chunk */
|
544 |
|
|
|
545 |
|
|
#define prev_chunk(p)\
|
546 |
|
|
((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
|
547 |
|
|
|
548 |
|
|
|
549 |
|
|
/* Treat space at ptr + offset as a chunk */
|
550 |
|
|
|
551 |
|
|
#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
|
552 |
|
|
|
553 |
|
|
/*
|
554 |
|
|
Dealing with use bits
|
555 |
|
|
*/
|
556 |
|
|
|
557 |
|
|
/* extract p's inuse bit */
|
558 |
|
|
|
559 |
|
|
#define inuse(p)\
|
560 |
|
|
((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
|
561 |
|
|
|
562 |
|
|
/* extract inuse bit of previous chunk */
|
563 |
|
|
|
564 |
|
|
#define prev_inuse(p) ((p)->size & PREV_INUSE)
|
565 |
|
|
|
566 |
|
|
/* set/clear chunk as in use without otherwise disturbing */
|
567 |
|
|
|
568 |
|
|
#define set_inuse(p)\
|
569 |
|
|
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
|
570 |
|
|
|
571 |
|
|
#define clear_inuse(p)\
|
572 |
|
|
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
|
573 |
|
|
|
574 |
|
|
/* check/set/clear inuse bits in known places */
|
575 |
|
|
|
576 |
|
|
#define inuse_bit_at_offset(p, s)\
|
577 |
|
|
(((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
|
578 |
|
|
|
579 |
|
|
#define set_inuse_bit_at_offset(p, s)\
|
580 |
|
|
(((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
|
581 |
|
|
|
582 |
|
|
#define clear_inuse_bit_at_offset(p, s)\
|
583 |
|
|
(((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
|
584 |
|
|
|
585 |
|
|
|
586 |
|
|
/*
|
587 |
|
|
Dealing with size fields
|
588 |
|
|
*/
|
589 |
|
|
|
590 |
|
|
/* Get size, ignoring use bits */
|
591 |
|
|
|
592 |
|
|
#define chunksize(p) ((p)->size & ~(SIZE_BITS))
|
593 |
|
|
|
594 |
|
|
/* Set size at head, without disturbing its use bit */
|
595 |
|
|
|
596 |
|
|
#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
|
597 |
|
|
|
598 |
|
|
/* Set size/use ignoring previous bits in header */
|
599 |
|
|
|
600 |
|
|
#define set_head(p, s) ((p)->size = (s))
|
601 |
|
|
|
602 |
|
|
/* Set size at footer (only when chunk is not in use) */
|
603 |
|
|
|
604 |
|
|
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
|
605 |
|
|
|
606 |
|
|
|
607 |
|
|
//----------------------------------------------------------------------------
|
608 |
|
|
|
609 |
|
|
/*
|
610 |
|
|
Bins
|
611 |
|
|
|
612 |
|
|
The bins, `av_' are an array of pairs of pointers serving as the
|
613 |
|
|
heads of (initially empty) doubly-linked lists of chunks, laid out
|
614 |
|
|
in a way so that each pair can be treated as if it were in a
|
615 |
|
|
malloc_chunk. (This way, the fd/bk offsets for linking bin heads
|
616 |
|
|
and chunks are the same).
|
617 |
|
|
|
618 |
|
|
Bins for sizes < 512 bytes contain chunks of all the same size, spaced
|
619 |
|
|
8 bytes apart. Larger bins are approximately logarithmically
|
620 |
|
|
spaced. (See the table below.) The `av_' array is never mentioned
|
621 |
|
|
directly in the code, but instead via bin access macros.
|
622 |
|
|
|
623 |
|
|
Bin layout:
|
624 |
|
|
|
625 |
|
|
64 bins of size 8
|
626 |
|
|
32 bins of size 64
|
627 |
|
|
16 bins of size 512
|
628 |
|
|
8 bins of size 4096
|
629 |
|
|
4 bins of size 32768
|
630 |
|
|
2 bins of size 262144
|
631 |
|
|
1 bin of size what's left
|
632 |
|
|
|
633 |
|
|
There is actually a little bit of slop in the numbers in bin_index
|
634 |
|
|
for the sake of speed. This makes no difference elsewhere.
|
635 |
|
|
|
636 |
|
|
The special chunks `top' and `last_remainder' get their own bins,
|
637 |
|
|
(this is implemented via yet more trickery with the av_ array),
|
638 |
|
|
although `top' is never properly linked to its bin since it is
|
639 |
|
|
always handled specially.
|
640 |
|
|
|
641 |
|
|
*/
|
642 |
|
|
|
643 |
|
|
typedef struct Cyg_Mempool_dlmalloc_Implementation::malloc_chunk* mbinptr;
|
644 |
|
|
|
645 |
|
|
/* access macros */
|
646 |
|
|
|
647 |
|
|
#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
|
648 |
|
|
#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
|
649 |
|
|
#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
|
650 |
|
|
|
651 |
|
|
/*
|
652 |
|
|
The first 2 bins are never indexed. The corresponding av_ cells are instead
|
653 |
|
|
used for bookkeeping. This is not to save space, but to simplify
|
654 |
|
|
indexing, maintain locality, and avoid some initialization tests.
|
655 |
|
|
*/
|
656 |
|
|
|
657 |
|
|
#define top (bin_at(0)->fd) /* The topmost chunk */
|
658 |
|
|
#define last_remainder (bin_at(1)) /* remainder from last split */
|
659 |
|
|
|
660 |
|
|
|
661 |
|
|
/* Helper macro to initialize bins */
|
662 |
|
|
|
663 |
|
|
#define IAV(i) bin_at(i), bin_at(i)
|
664 |
|
|
|
665 |
|
|
#ifndef CYGIMP_MEMALLOC_ALLOCATOR_DLMALLOC_SAFE_MULTIPLE
|
666 |
|
|
static mbinptr av_[CYGPRI_MEMALLOC_ALLOCATOR_DLMALLOC_NAV * 2 + 2] = {
|
667 |
|
|
0, 0,
|
668 |
|
|
IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
|
669 |
|
|
IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
|
670 |
|
|
IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
|
671 |
|
|
IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
|
672 |
|
|
IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
|
673 |
|
|
IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
|
674 |
|
|
IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
|
675 |
|
|
IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
|
676 |
|
|
IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
|
677 |
|
|
IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
|
678 |
|
|
IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
|
679 |
|
|
IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
|
680 |
|
|
IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
|
681 |
|
|
IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
|
682 |
|
|
IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
|
683 |
|
|
IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
|
684 |
|
|
};
|
685 |
|
|
#endif
|
686 |
|
|
|
687 |
|
|
/* field-extraction macros */
|
688 |
|
|
|
689 |
|
|
#define first(b) ((b)->fd)
|
690 |
|
|
#define last(b) ((b)->bk)
|
691 |
|
|
|
692 |
|
|
/*
|
693 |
|
|
Indexing into bins
|
694 |
|
|
*/
|
695 |
|
|
|
696 |
|
|
#define bin_index(sz) \
|
697 |
|
|
(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
|
698 |
|
|
((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
|
699 |
|
|
((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
|
700 |
|
|
((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
|
701 |
|
|
((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
|
702 |
|
|
((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
|
703 |
|
|
126)
|
704 |
|
|
/*
|
705 |
|
|
bins for chunks < 512 are all spaced SMALLBIN_WIDTH bytes apart, and hold
|
706 |
|
|
identically sized chunks. This is exploited in malloc.
|
707 |
|
|
*/
|
708 |
|
|
|
709 |
|
|
#define MAX_SMALLBIN_SIZE 512
|
710 |
|
|
#define SMALLBIN_WIDTH 8
|
711 |
|
|
#define SMALLBIN_WIDTH_BITS 3
|
712 |
|
|
#define MAX_SMALLBIN (MAX_SMALLBIN_SIZE / SMALLBIN_WIDTH) - 1
|
713 |
|
|
|
714 |
|
|
#define smallbin_index(sz) (((unsigned long)(sz)) >> SMALLBIN_WIDTH_BITS)
|
715 |
|
|
|
716 |
|
|
/*
|
717 |
|
|
Requests are `small' if both the corresponding and the next bin are small
|
718 |
|
|
*/
|
719 |
|
|
|
720 |
|
|
#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
|
721 |
|
|
|
722 |
|
|
/*
|
723 |
|
|
To help compensate for the large number of bins, a one-level index
|
724 |
|
|
structure is used for bin-by-bin searching. `binblocks' is a
|
725 |
|
|
one-word bitvector recording whether groups of BINBLOCKWIDTH bins
|
726 |
|
|
have any (possibly) non-empty bins, so they can be skipped over
|
727 |
|
|
all at once during during traversals. The bits are NOT always
|
728 |
|
|
cleared as soon as all bins in a block are empty, but instead only
|
729 |
|
|
when all are noticed to be empty during traversal in malloc.
|
730 |
|
|
*/
|
731 |
|
|
|
732 |
|
|
#define BINBLOCKWIDTH 4 /* bins per block */
|
733 |
|
|
|
734 |
|
|
#define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */
|
735 |
|
|
|
736 |
|
|
/* bin<->block macros */
|
737 |
|
|
|
738 |
|
|
#define idx2binblock(ix) ((unsigned long)1 << (ix / BINBLOCKWIDTH))
|
739 |
|
|
#define mark_binblock(ii) (binblocks |= idx2binblock(ii))
|
740 |
|
|
#define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii)))
|
741 |
|
|
|
742 |
|
|
|
743 |
|
|
//----------------------------------------------------------------------------
|
744 |
|
|
|
745 |
|
|
/*
|
746 |
|
|
Debugging support
|
747 |
|
|
*/
|
748 |
|
|
|
749 |
|
|
#ifdef CYGDBG_MEMALLOC_ALLOCATOR_DLMALLOC_DEBUG
|
750 |
|
|
|
751 |
|
|
/*
|
752 |
|
|
These routines make a number of assertions about the states
|
753 |
|
|
of data structures that should be true at all times. If any
|
754 |
|
|
are not true, it's very likely that a user program has somehow
|
755 |
|
|
trashed memory. (It's also possible that there is a coding error
|
756 |
|
|
in malloc. In which case, please report it!)
|
757 |
|
|
*/
|
758 |
|
|
|
759 |
|
|
void
|
760 |
|
|
Cyg_Mempool_dlmalloc_Implementation::do_check_chunk( mchunkptr p )
|
761 |
|
|
{
|
762 |
|
|
INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
|
763 |
|
|
|
764 |
|
|
/* Check for legal address ... */
|
765 |
|
|
ASSERT((cyg_uint8 *)p >= arenabase);
|
766 |
|
|
if (p != top)
|
767 |
|
|
ASSERT((cyg_uint8 *)p + sz <= (cyg_uint8 *)top);
|
768 |
|
|
else
|
769 |
|
|
ASSERT((cyg_uint8 *)p + sz <= arenabase + arenasize);
|
770 |
|
|
|
771 |
|
|
} // Cyg_Mempool_dlmalloc_Implementation::do_check_chunk()
|
772 |
|
|
|
773 |
|
|
|
774 |
|
|
void
|
775 |
|
|
Cyg_Mempool_dlmalloc_Implementation::do_check_free_chunk(mchunkptr p)
|
776 |
|
|
{
|
777 |
|
|
INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
|
778 |
|
|
mchunkptr next = chunk_at_offset(p, sz);
|
779 |
|
|
|
780 |
|
|
do_check_chunk(p);
|
781 |
|
|
|
782 |
|
|
/* Check whether it claims to be free ... */
|
783 |
|
|
ASSERT(!inuse(p));
|
784 |
|
|
|
785 |
|
|
/* Unless a special marker, must have OK fields */
|
786 |
|
|
if ((long)sz >= (long)MINSIZE)
|
787 |
|
|
{
|
788 |
|
|
ASSERT((sz & MALLOC_ALIGN_MASK) == 0);
|
789 |
|
|
ASSERT(aligned_OK(chunk2mem(p)));
|
790 |
|
|
/* ... matching footer field */
|
791 |
|
|
ASSERT(next->prev_size == sz);
|
792 |
|
|
/* ... and is fully consolidated */
|
793 |
|
|
ASSERT(prev_inuse(p));
|
794 |
|
|
ASSERT (next == top || inuse(next));
|
795 |
|
|
|
796 |
|
|
/* ... and has minimally sane links */
|
797 |
|
|
ASSERT(p->fd->bk == p);
|
798 |
|
|
ASSERT(p->bk->fd == p);
|
799 |
|
|
}
|
800 |
|
|
else /* markers are always of size SIZE_SZ */
|
801 |
|
|
ASSERT(sz == SIZE_SZ);
|
802 |
|
|
} // Cyg_Mempool_dlmalloc_Implementation::do_check_free_chunk()
|
803 |
|
|
|
804 |
|
|
void
|
805 |
|
|
Cyg_Mempool_dlmalloc_Implementation::do_check_inuse_chunk(mchunkptr p)
|
806 |
|
|
{
|
807 |
|
|
mchunkptr next = next_chunk(p);
|
808 |
|
|
do_check_chunk(p);
|
809 |
|
|
|
810 |
|
|
/* Check whether it claims to be in use ... */
|
811 |
|
|
ASSERT(inuse(p));
|
812 |
|
|
|
813 |
|
|
/* ... and is surrounded by OK chunks.
|
814 |
|
|
Since more things can be checked with free chunks than inuse ones,
|
815 |
|
|
if an inuse chunk borders them and debug is on, it's worth doing them.
|
816 |
|
|
*/
|
817 |
|
|
if (!prev_inuse(p))
|
818 |
|
|
{
|
819 |
|
|
mchunkptr prv = prev_chunk(p);
|
820 |
|
|
ASSERT(next_chunk(prv) == p);
|
821 |
|
|
do_check_free_chunk(prv);
|
822 |
|
|
}
|
823 |
|
|
if (next == top)
|
824 |
|
|
{
|
825 |
|
|
ASSERT(prev_inuse(next));
|
826 |
|
|
ASSERT(chunksize(next) >= MINSIZE);
|
827 |
|
|
}
|
828 |
|
|
else if (!inuse(next))
|
829 |
|
|
do_check_free_chunk(next);
|
830 |
|
|
|
831 |
|
|
} // Cyg_Mempool_dlmalloc_Implementation::do_check_inuse_chunk(
|
832 |
|
|
|
833 |
|
|
void
|
834 |
|
|
Cyg_Mempool_dlmalloc_Implementation::do_check_malloced_chunk(mchunkptr p,
|
835 |
|
|
INTERNAL_SIZE_T s)
|
836 |
|
|
{
|
837 |
|
|
INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
|
838 |
|
|
long room = long_sub_size_t(sz, s);
|
839 |
|
|
|
840 |
|
|
do_check_inuse_chunk(p);
|
841 |
|
|
|
842 |
|
|
/* Legal size ... */
|
843 |
|
|
ASSERT((long)sz >= (long)MINSIZE);
|
844 |
|
|
ASSERT((sz & MALLOC_ALIGN_MASK) == 0);
|
845 |
|
|
ASSERT(room >= 0);
|
846 |
|
|
ASSERT(room < (long)MINSIZE);
|
847 |
|
|
|
848 |
|
|
/* ... and alignment */
|
849 |
|
|
ASSERT(aligned_OK(chunk2mem(p)));
|
850 |
|
|
|
851 |
|
|
|
852 |
|
|
/* ... and was allocated at front of an available chunk */
|
853 |
|
|
ASSERT(prev_inuse(p));
|
854 |
|
|
|
855 |
|
|
} // Cyg_Mempool_dlmalloc_Implementation::do_check_malloced_chunk(
|
856 |
|
|
|
857 |
|
|
|
858 |
|
|
#define check_free_chunk(P) do_check_free_chunk(P)
|
859 |
|
|
#define check_inuse_chunk(P) do_check_inuse_chunk(P)
|
860 |
|
|
#define check_chunk(P) do_check_chunk(P)
|
861 |
|
|
#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
|
862 |
|
|
#else
|
863 |
|
|
#define check_free_chunk(P)
|
864 |
|
|
#define check_inuse_chunk(P)
|
865 |
|
|
#define check_chunk(P)
|
866 |
|
|
#define check_malloced_chunk(P,N)
|
867 |
|
|
#endif
|
868 |
|
|
|
869 |
|
|
|
870 |
|
|
//----------------------------------------------------------------------------
|
871 |
|
|
|
872 |
|
|
/*
|
873 |
|
|
Macro-based internal utilities
|
874 |
|
|
*/
|
875 |
|
|
|
876 |
|
|
|
877 |
|
|
/*
|
878 |
|
|
Linking chunks in bin lists.
|
879 |
|
|
Call these only with variables, not arbitrary expressions, as arguments.
|
880 |
|
|
*/
|
881 |
|
|
|
882 |
|
|
/*
|
883 |
|
|
Place chunk p of size s in its bin, in size order,
|
884 |
|
|
putting it ahead of others of same size.
|
885 |
|
|
*/
|
886 |
|
|
|
887 |
|
|
|
888 |
|
|
#define frontlink(P, S, IDX, BK, FD) \
|
889 |
|
|
{ \
|
890 |
|
|
if (S < MAX_SMALLBIN_SIZE) \
|
891 |
|
|
{ \
|
892 |
|
|
IDX = smallbin_index(S); \
|
893 |
|
|
mark_binblock(IDX); \
|
894 |
|
|
BK = bin_at(IDX); \
|
895 |
|
|
FD = BK->fd; \
|
896 |
|
|
P->bk = BK; \
|
897 |
|
|
P->fd = FD; \
|
898 |
|
|
FD->bk = BK->fd = P; \
|
899 |
|
|
} \
|
900 |
|
|
else \
|
901 |
|
|
{ \
|
902 |
|
|
IDX = bin_index(S); \
|
903 |
|
|
BK = bin_at(IDX); \
|
904 |
|
|
FD = BK->fd; \
|
905 |
|
|
if (FD == BK) mark_binblock(IDX); \
|
906 |
|
|
else \
|
907 |
|
|
{ \
|
908 |
|
|
while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
|
909 |
|
|
BK = FD->bk; \
|
910 |
|
|
} \
|
911 |
|
|
P->bk = BK; \
|
912 |
|
|
P->fd = FD; \
|
913 |
|
|
FD->bk = BK->fd = P; \
|
914 |
|
|
} \
|
915 |
|
|
}
|
916 |
|
|
|
917 |
|
|
|
918 |
|
|
/* take a chunk off a list */
|
919 |
|
|
|
920 |
|
|
#define unlink(P, BK, FD) \
|
921 |
|
|
{ \
|
922 |
|
|
BK = P->bk; \
|
923 |
|
|
FD = P->fd; \
|
924 |
|
|
FD->bk = BK; \
|
925 |
|
|
BK->fd = FD; \
|
926 |
|
|
} \
|
927 |
|
|
|
928 |
|
|
/* Place p as the last remainder */
|
929 |
|
|
|
930 |
|
|
#define link_last_remainder(P) \
|
931 |
|
|
{ \
|
932 |
|
|
last_remainder->fd = last_remainder->bk = P; \
|
933 |
|
|
P->fd = P->bk = last_remainder; \
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
/* Clear the last_remainder bin */
|
937 |
|
|
|
938 |
|
|
#define clear_last_remainder \
|
939 |
|
|
(last_remainder->fd = last_remainder->bk = last_remainder)
|
940 |
|
|
|
941 |
|
|
|
942 |
|
|
//----------------------------------------------------------------------------
|
943 |
|
|
|
944 |
|
|
Cyg_Mempool_dlmalloc_Implementation::Cyg_Mempool_dlmalloc_Implementation(
|
945 |
|
|
cyg_uint8 *base, cyg_int32 size,
|
946 |
|
|
CYG_ADDRWORD /* argthru */ )
|
947 |
|
|
{
|
948 |
|
|
arenabase = base;
|
949 |
|
|
arenasize = size;
|
950 |
|
|
|
951 |
|
|
CYG_ADDRESS front_misalign;
|
952 |
|
|
cyg_int32 correction;
|
953 |
|
|
|
954 |
|
|
#ifdef CYGIMP_MEMALLOC_ALLOCATOR_DLMALLOC_SAFE_MULTIPLE
|
955 |
|
|
cyg_ucount16 i;
|
956 |
|
|
av_[0] = av_[1] = 0;
|
957 |
|
|
for (i=0; i < CYGPRI_MEMALLOC_ALLOCATOR_DLMALLOC_NAV; i++) {
|
958 |
|
|
av_[ i*2+2 ] = av_[ i*2+3 ] = bin_at(i);
|
959 |
|
|
} // for
|
960 |
|
|
|
961 |
|
|
#elif defined(CYGDBG_USE_ASSERTS)
|
962 |
|
|
static int instances;
|
963 |
|
|
if ( ++instances > 1 )
|
964 |
|
|
CYG_FAIL( "Multiple dlmalloc instances but "
|
965 |
|
|
"CYGIMP_MEMALLOC_ALLOCATOR_DLMALLOC_SAFE_MULTIPLE "
|
966 |
|
|
"not defined" );
|
967 |
|
|
#endif
|
968 |
|
|
|
969 |
|
|
front_misalign = (CYG_ADDRESS)chunk2mem(base) & MALLOC_ALIGN_MASK;
|
970 |
|
|
|
971 |
|
|
if ( front_misalign > 0 ) {
|
972 |
|
|
correction = (MALLOC_ALIGNMENT) - front_misalign;
|
973 |
|
|
} else {
|
974 |
|
|
correction = 0;
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
// too small to be useful?
|
978 |
|
|
if ( correction + 2*MALLOC_ALIGNMENT > (unsigned) size )
|
979 |
|
|
// help catch errors. Don't fail now.
|
980 |
|
|
arenabase = NULL;
|
981 |
|
|
else {
|
982 |
|
|
top = (mchunkptr)(base + correction);
|
983 |
|
|
set_head(top, arenasize | PREV_INUSE);
|
984 |
|
|
}
|
985 |
|
|
}
|
986 |
|
|
|
987 |
|
|
//----------------------------------------------------------------------------
|
988 |
|
|
|
989 |
|
|
/* Main public routines */
|
990 |
|
|
|
991 |
|
|
/*
|
992 |
|
|
Malloc Algorithm:
|
993 |
|
|
|
994 |
|
|
The requested size is first converted into a usable form, `nb'.
|
995 |
|
|
This currently means to add 4 bytes overhead plus possibly more to
|
996 |
|
|
obtain 8-byte alignment and/or to obtain a size of at least
|
997 |
|
|
MINSIZE (currently 16 bytes), the smallest allocatable size.
|
998 |
|
|
(All fits are considered `exact' if they are within MINSIZE bytes.)
|
999 |
|
|
|
1000 |
|
|
From there, the first successful of the following steps is taken:
|
1001 |
|
|
|
1002 |
|
|
1. The bin corresponding to the request size is scanned, and if
|
1003 |
|
|
a chunk of exactly the right size is found, it is taken.
|
1004 |
|
|
|
1005 |
|
|
2. The most recently remaindered chunk is used if it is big
|
1006 |
|
|
enough. This is a form of (roving) first fit, used only in
|
1007 |
|
|
the absence of exact fits. Runs of consecutive requests use
|
1008 |
|
|
the remainder of the chunk used for the previous such request
|
1009 |
|
|
whenever possible. This limited use of a first-fit style
|
1010 |
|
|
allocation strategy tends to give contiguous chunks
|
1011 |
|
|
coextensive lifetimes, which improves locality and can reduce
|
1012 |
|
|
fragmentation in the long run.
|
1013 |
|
|
|
1014 |
|
|
3. Other bins are scanned in increasing size order, using a
|
1015 |
|
|
chunk big enough to fulfill the request, and splitting off
|
1016 |
|
|
any remainder. This search is strictly by best-fit; i.e.,
|
1017 |
|
|
the smallest (with ties going to approximately the least
|
1018 |
|
|
recently used) chunk that fits is selected.
|
1019 |
|
|
|
1020 |
|
|
4. If large enough, the chunk bordering the end of memory
|
1021 |
|
|
(`top') is split off. (This use of `top' is in accord with
|
1022 |
|
|
the best-fit search rule. In effect, `top' is treated as
|
1023 |
|
|
larger (and thus less well fitting) than any other available
|
1024 |
|
|
chunk since it can be extended to be as large as necessary
|
1025 |
|
|
(up to system limitations).
|
1026 |
|
|
|
1027 |
|
|
All allocations are made from the the `lowest' part of any found
|
1028 |
|
|
chunk. (The implementation invariant is that prev_inuse is
|
1029 |
|
|
always true of any allocated chunk; i.e., that each allocated
|
1030 |
|
|
chunk borders either a previously allocated and still in-use chunk,
|
1031 |
|
|
or the base of its memory arena.)
|
1032 |
|
|
|
1033 |
|
|
*/
|
1034 |
|
|
|
1035 |
|
|
cyg_uint8 *
|
1036 |
|
|
Cyg_Mempool_dlmalloc_Implementation::try_alloc( cyg_int32 bytes )
|
1037 |
|
|
{
|
1038 |
|
|
mchunkptr victim; /* inspected/selected chunk */
|
1039 |
|
|
INTERNAL_SIZE_T victim_size; /* its size */
|
1040 |
|
|
int idx; /* index for bin traversal */
|
1041 |
|
|
mbinptr bin; /* associated bin */
|
1042 |
|
|
mchunkptr remainder; /* remainder from a split */
|
1043 |
|
|
long remainder_size; /* its size */
|
1044 |
|
|
int remainder_index; /* its bin index */
|
1045 |
|
|
unsigned long block; /* block traverser bit */
|
1046 |
|
|
int startidx; /* first bin of a traversed block */
|
1047 |
|
|
mchunkptr fwd; /* misc temp for linking */
|
1048 |
|
|
mchunkptr bck; /* misc temp for linking */
|
1049 |
|
|
mbinptr q; /* misc temp */
|
1050 |
|
|
|
1051 |
|
|
INTERNAL_SIZE_T nb;
|
1052 |
|
|
|
1053 |
|
|
/* Allow uninitialised (zero sized) heaps because they could exist as a
|
1054 |
|
|
* quirk of the MLT setup where a dynamically sized heap is at the top of
|
1055 |
|
|
* memory. */
|
1056 |
|
|
if (NULL==arenabase) return NULL;
|
1057 |
|
|
|
1058 |
|
|
if ((long)bytes < 0) return 0;
|
1059 |
|
|
|
1060 |
|
|
nb = request2size(bytes); /* padded request size; */
|
1061 |
|
|
|
1062 |
|
|
MALLOC_LOCK;
|
1063 |
|
|
|
1064 |
|
|
/* Check for exact match in a bin */
|
1065 |
|
|
|
1066 |
|
|
if (is_small_request(nb)) /* Faster version for small requests */
|
1067 |
|
|
{
|
1068 |
|
|
idx = smallbin_index(nb);
|
1069 |
|
|
|
1070 |
|
|
/* No traversal or size check necessary for small bins. */
|
1071 |
|
|
|
1072 |
|
|
q = bin_at(idx);
|
1073 |
|
|
victim = last(q);
|
1074 |
|
|
|
1075 |
|
|
#if MALLOC_ALIGN != 16
|
1076 |
|
|
/* Also scan the next one, since it would have a remainder < MINSIZE */
|
1077 |
|
|
if (victim == q)
|
1078 |
|
|
{
|
1079 |
|
|
q = next_bin(q);
|
1080 |
|
|
victim = last(q);
|
1081 |
|
|
}
|
1082 |
|
|
#endif
|
1083 |
|
|
if (victim != q)
|
1084 |
|
|
{
|
1085 |
|
|
victim_size = chunksize(victim);
|
1086 |
|
|
unlink(victim, bck, fwd);
|
1087 |
|
|
set_inuse_bit_at_offset(victim, victim_size);
|
1088 |
|
|
check_malloced_chunk(victim, nb);
|
1089 |
|
|
MALLOC_UNLOCK;
|
1090 |
|
|
return chunk2mem(victim);
|
1091 |
|
|
}
|
1092 |
|
|
|
1093 |
|
|
idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
|
1094 |
|
|
|
1095 |
|
|
}
|
1096 |
|
|
else
|
1097 |
|
|
{
|
1098 |
|
|
idx = bin_index(nb);
|
1099 |
|
|
bin = bin_at(idx);
|
1100 |
|
|
|
1101 |
|
|
for (victim = last(bin); victim != bin; victim = victim->bk)
|
1102 |
|
|
{
|
1103 |
|
|
victim_size = chunksize(victim);
|
1104 |
|
|
remainder_size = long_sub_size_t(victim_size, nb);
|
1105 |
|
|
|
1106 |
|
|
if (remainder_size >= (long)MINSIZE) /* too big */
|
1107 |
|
|
{
|
1108 |
|
|
--idx; /* adjust to rescan below after checking last remainder */
|
1109 |
|
|
break;
|
1110 |
|
|
}
|
1111 |
|
|
|
1112 |
|
|
else if (remainder_size >= 0) /* exact fit */
|
1113 |
|
|
{
|
1114 |
|
|
unlink(victim, bck, fwd);
|
1115 |
|
|
set_inuse_bit_at_offset(victim, victim_size);
|
1116 |
|
|
check_malloced_chunk(victim, nb);
|
1117 |
|
|
MALLOC_UNLOCK;
|
1118 |
|
|
return chunk2mem(victim);
|
1119 |
|
|
}
|
1120 |
|
|
}
|
1121 |
|
|
|
1122 |
|
|
++idx;
|
1123 |
|
|
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
/* Try to use the last split-off remainder */
|
1127 |
|
|
|
1128 |
|
|
if ( (victim = last_remainder->fd) != last_remainder)
|
1129 |
|
|
{
|
1130 |
|
|
victim_size = chunksize(victim);
|
1131 |
|
|
remainder_size = long_sub_size_t(victim_size, nb);
|
1132 |
|
|
|
1133 |
|
|
if (remainder_size >= (long)MINSIZE) /* re-split */
|
1134 |
|
|
{
|
1135 |
|
|
remainder = chunk_at_offset(victim, nb);
|
1136 |
|
|
set_head(victim, nb | PREV_INUSE);
|
1137 |
|
|
link_last_remainder(remainder);
|
1138 |
|
|
set_head(remainder, remainder_size | PREV_INUSE);
|
1139 |
|
|
set_foot(remainder, remainder_size);
|
1140 |
|
|
check_malloced_chunk(victim, nb);
|
1141 |
|
|
MALLOC_UNLOCK;
|
1142 |
|
|
return chunk2mem(victim);
|
1143 |
|
|
}
|
1144 |
|
|
|
1145 |
|
|
clear_last_remainder;
|
1146 |
|
|
|
1147 |
|
|
if (remainder_size >= 0) /* exhaust */
|
1148 |
|
|
{
|
1149 |
|
|
set_inuse_bit_at_offset(victim, victim_size);
|
1150 |
|
|
check_malloced_chunk(victim, nb);
|
1151 |
|
|
MALLOC_UNLOCK;
|
1152 |
|
|
return chunk2mem(victim);
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
/* Else place in bin */
|
1156 |
|
|
|
1157 |
|
|
frontlink(victim, victim_size, remainder_index, bck, fwd);
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
/*
|
1161 |
|
|
If there are any possibly nonempty big-enough blocks,
|
1162 |
|
|
search for best fitting chunk by scanning bins in blockwidth units.
|
1163 |
|
|
*/
|
1164 |
|
|
|
1165 |
|
|
if ( (block = idx2binblock(idx)) <= binblocks)
|
1166 |
|
|
{
|
1167 |
|
|
|
1168 |
|
|
/* Get to the first marked block */
|
1169 |
|
|
|
1170 |
|
|
if ( (block & binblocks) == 0)
|
1171 |
|
|
{
|
1172 |
|
|
/* force to an even block boundary */
|
1173 |
|
|
idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
|
1174 |
|
|
block <<= 1;
|
1175 |
|
|
while ((block & binblocks) == 0)
|
1176 |
|
|
{
|
1177 |
|
|
idx += BINBLOCKWIDTH;
|
1178 |
|
|
block <<= 1;
|
1179 |
|
|
}
|
1180 |
|
|
}
|
1181 |
|
|
|
1182 |
|
|
/* For each possibly nonempty block ... */
|
1183 |
|
|
for (;;)
|
1184 |
|
|
{
|
1185 |
|
|
startidx = idx; /* (track incomplete blocks) */
|
1186 |
|
|
q = bin = bin_at(idx);
|
1187 |
|
|
|
1188 |
|
|
/* For each bin in this block ... */
|
1189 |
|
|
do
|
1190 |
|
|
{
|
1191 |
|
|
/* Find and use first big enough chunk ... */
|
1192 |
|
|
|
1193 |
|
|
for (victim = last(bin); victim != bin; victim = victim->bk)
|
1194 |
|
|
{
|
1195 |
|
|
victim_size = chunksize(victim);
|
1196 |
|
|
remainder_size = long_sub_size_t(victim_size, nb);
|
1197 |
|
|
|
1198 |
|
|
if (remainder_size >= (long)MINSIZE) /* split */
|
1199 |
|
|
{
|
1200 |
|
|
remainder = chunk_at_offset(victim, nb);
|
1201 |
|
|
set_head(victim, nb | PREV_INUSE);
|
1202 |
|
|
unlink(victim, bck, fwd);
|
1203 |
|
|
link_last_remainder(remainder);
|
1204 |
|
|
set_head(remainder, remainder_size | PREV_INUSE);
|
1205 |
|
|
set_foot(remainder, remainder_size);
|
1206 |
|
|
check_malloced_chunk(victim, nb);
|
1207 |
|
|
MALLOC_UNLOCK;
|
1208 |
|
|
return chunk2mem(victim);
|
1209 |
|
|
}
|
1210 |
|
|
|
1211 |
|
|
else if (remainder_size >= 0) /* take */
|
1212 |
|
|
{
|
1213 |
|
|
set_inuse_bit_at_offset(victim, victim_size);
|
1214 |
|
|
unlink(victim, bck, fwd);
|
1215 |
|
|
check_malloced_chunk(victim, nb);
|
1216 |
|
|
MALLOC_UNLOCK;
|
1217 |
|
|
return chunk2mem(victim);
|
1218 |
|
|
}
|
1219 |
|
|
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
bin = next_bin(bin);
|
1223 |
|
|
|
1224 |
|
|
#if MALLOC_ALIGN == 16
|
1225 |
|
|
if (idx < MAX_SMALLBIN)
|
1226 |
|
|
{
|
1227 |
|
|
bin = next_bin(bin);
|
1228 |
|
|
++idx;
|
1229 |
|
|
}
|
1230 |
|
|
#endif
|
1231 |
|
|
} while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
|
1232 |
|
|
|
1233 |
|
|
/* Clear out the block bit. */
|
1234 |
|
|
|
1235 |
|
|
do /* Possibly backtrack to try to clear a partial block */
|
1236 |
|
|
{
|
1237 |
|
|
if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
|
1238 |
|
|
{
|
1239 |
|
|
binblocks &= ~block;
|
1240 |
|
|
break;
|
1241 |
|
|
}
|
1242 |
|
|
--startidx;
|
1243 |
|
|
q = prev_bin(q);
|
1244 |
|
|
} while (first(q) == q);
|
1245 |
|
|
|
1246 |
|
|
/* Get to the next possibly nonempty block */
|
1247 |
|
|
|
1248 |
|
|
if ( (block <<= 1) <= binblocks && (block != 0) )
|
1249 |
|
|
{
|
1250 |
|
|
while ((block & binblocks) == 0)
|
1251 |
|
|
{
|
1252 |
|
|
idx += BINBLOCKWIDTH;
|
1253 |
|
|
block <<= 1;
|
1254 |
|
|
}
|
1255 |
|
|
}
|
1256 |
|
|
else
|
1257 |
|
|
break;
|
1258 |
|
|
}
|
1259 |
|
|
}
|
1260 |
|
|
|
1261 |
|
|
|
1262 |
|
|
/* Try to use top chunk */
|
1263 |
|
|
|
1264 |
|
|
/* Require that there be a remainder, ensuring top always exists */
|
1265 |
|
|
remainder_size = long_sub_size_t(chunksize(top), nb);
|
1266 |
|
|
if (chunksize(top) < nb || remainder_size < (long)MINSIZE)
|
1267 |
|
|
{
|
1268 |
|
|
//diag_printf("chunksize(top)=%ld, nb=%d, remainder=%ld\n", chunksize(top),
|
1269 |
|
|
// nb, remainder_size);
|
1270 |
|
|
MALLOC_UNLOCK;
|
1271 |
|
|
return NULL; /* propagate failure */
|
1272 |
|
|
}
|
1273 |
|
|
|
1274 |
|
|
victim = top;
|
1275 |
|
|
set_head(victim, nb | PREV_INUSE);
|
1276 |
|
|
top = chunk_at_offset(victim, nb);
|
1277 |
|
|
set_head(top, remainder_size | PREV_INUSE);
|
1278 |
|
|
check_malloced_chunk(victim, nb);
|
1279 |
|
|
MALLOC_UNLOCK;
|
1280 |
|
|
return chunk2mem(victim);
|
1281 |
|
|
|
1282 |
|
|
} // Cyg_Mempool_dlmalloc_Implementation::try_alloc()
|
1283 |
|
|
|
1284 |
|
|
//----------------------------------------------------------------------------
|
1285 |
|
|
|
1286 |
|
|
/*
|
1287 |
|
|
free() algorithm :
|
1288 |
|
|
|
1289 |
|
|
cases:
|
1290 |
|
|
|
1291 |
|
|
1. free(NULL) has no effect.
|
1292 |
|
|
|
1293 |
|
|
2. Chunks are consolidated as they arrive, and
|
1294 |
|
|
placed in corresponding bins. (This includes the case of
|
1295 |
|
|
consolidating with the current `last_remainder').
|
1296 |
|
|
*/
|
1297 |
|
|
|
1298 |
|
|
cyg_bool
|
1299 |
|
|
Cyg_Mempool_dlmalloc_Implementation::free( cyg_uint8 *mem, cyg_int32 )
|
1300 |
|
|
{
|
1301 |
|
|
mchunkptr p; /* chunk corresponding to mem */
|
1302 |
|
|
INTERNAL_SIZE_T hd; /* its head field */
|
1303 |
|
|
INTERNAL_SIZE_T sz; /* its size */
|
1304 |
|
|
int idx; /* its bin index */
|
1305 |
|
|
mchunkptr next; /* next contiguous chunk */
|
1306 |
|
|
INTERNAL_SIZE_T nextsz; /* its size */
|
1307 |
|
|
INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
|
1308 |
|
|
mchunkptr bck; /* misc temp for linking */
|
1309 |
|
|
mchunkptr fwd; /* misc temp for linking */
|
1310 |
|
|
int islr; /* track whether merging with last_remainder */
|
1311 |
|
|
|
1312 |
|
|
if (mem == NULL) /* free(NULL) has no effect */
|
1313 |
|
|
return false;
|
1314 |
|
|
|
1315 |
|
|
MALLOC_LOCK;
|
1316 |
|
|
|
1317 |
|
|
p = mem2chunk(mem);
|
1318 |
|
|
hd = p->size;
|
1319 |
|
|
|
1320 |
|
|
check_inuse_chunk(p);
|
1321 |
|
|
|
1322 |
|
|
sz = hd & ~PREV_INUSE;
|
1323 |
|
|
next = chunk_at_offset(p, sz);
|
1324 |
|
|
nextsz = chunksize(next);
|
1325 |
|
|
|
1326 |
|
|
if (next == top) /* merge with top */
|
1327 |
|
|
{
|
1328 |
|
|
sz += nextsz;
|
1329 |
|
|
|
1330 |
|
|
if (!(hd & PREV_INUSE)) /* consolidate backward */
|
1331 |
|
|
{
|
1332 |
|
|
prevsz = p->prev_size;
|
1333 |
|
|
p = chunk_at_offset(p, -((long) prevsz));
|
1334 |
|
|
sz += prevsz;
|
1335 |
|
|
unlink(p, bck, fwd);
|
1336 |
|
|
}
|
1337 |
|
|
|
1338 |
|
|
set_head(p, sz | PREV_INUSE);
|
1339 |
|
|
top = p;
|
1340 |
|
|
MALLOC_UNLOCK;
|
1341 |
|
|
return true;
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
set_head(next, nextsz); /* clear inuse bit */
|
1345 |
|
|
|
1346 |
|
|
islr = 0;
|
1347 |
|
|
|
1348 |
|
|
if (!(hd & PREV_INUSE)) /* consolidate backward */
|
1349 |
|
|
{
|
1350 |
|
|
prevsz = p->prev_size;
|
1351 |
|
|
p = chunk_at_offset(p, -((long) prevsz));
|
1352 |
|
|
sz += prevsz;
|
1353 |
|
|
|
1354 |
|
|
if (p->fd == last_remainder) /* keep as last_remainder */
|
1355 |
|
|
islr = 1;
|
1356 |
|
|
else
|
1357 |
|
|
unlink(p, bck, fwd);
|
1358 |
|
|
}
|
1359 |
|
|
|
1360 |
|
|
if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
|
1361 |
|
|
{
|
1362 |
|
|
sz += nextsz;
|
1363 |
|
|
|
1364 |
|
|
if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
|
1365 |
|
|
{
|
1366 |
|
|
islr = 1;
|
1367 |
|
|
link_last_remainder(p);
|
1368 |
|
|
}
|
1369 |
|
|
else
|
1370 |
|
|
unlink(next, bck, fwd);
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
|
1374 |
|
|
set_head(p, sz | PREV_INUSE);
|
1375 |
|
|
set_foot(p, sz);
|
1376 |
|
|
if (!islr)
|
1377 |
|
|
frontlink(p, sz, idx, bck, fwd);
|
1378 |
|
|
|
1379 |
|
|
MALLOC_UNLOCK;
|
1380 |
|
|
|
1381 |
|
|
return true;
|
1382 |
|
|
} // Cyg_Mempool_dlmalloc_Implementation::free()
|
1383 |
|
|
|
1384 |
|
|
//----------------------------------------------------------------------------
|
1385 |
|
|
|
1386 |
|
|
// resize existing allocation, if oldsize is non-NULL, previous
|
1387 |
|
|
// allocation size is placed into it. If previous size not available,
|
1388 |
|
|
// it is set to 0. NB previous allocation size may have been rounded up.
|
1389 |
|
|
// Occasionally the allocation can be adjusted *backwards* as well as,
|
1390 |
|
|
// or instead of forwards, therefore the address of the resized
|
1391 |
|
|
// allocation is returned, or NULL if no resizing was possible.
|
1392 |
|
|
// Note that this differs from ::realloc() in that no attempt is
|
1393 |
|
|
// made to call malloc() if resizing is not possible - that is left
|
1394 |
|
|
// to higher layers. The data is copied from old to new though.
|
1395 |
|
|
// The effects of alloc_ptr==NULL or newsize==0 are undefined
|
1396 |
|
|
|
1397 |
|
|
|
1398 |
|
|
// DOCUMENTATION FROM ORIGINAL FILE:
|
1399 |
|
|
// (some now irrelevant parts elided)
|
1400 |
|
|
/*
|
1401 |
|
|
Realloc algorithm:
|
1402 |
|
|
|
1403 |
|
|
If the reallocation is for additional space, and the
|
1404 |
|
|
chunk can be extended, it is, else a malloc-copy-free sequence is
|
1405 |
|
|
taken. There are several different ways that a chunk could be
|
1406 |
|
|
extended. All are tried:
|
1407 |
|
|
|
1408 |
|
|
* Extending forward into following adjacent free chunk.
|
1409 |
|
|
* Shifting backwards, joining preceding adjacent space
|
1410 |
|
|
* Both shifting backwards and extending forward.
|
1411 |
|
|
|
1412 |
|
|
If the reallocation is for less space, and the new request is for
|
1413 |
|
|
a `small' (<512 bytes) size, then the newly unused space is lopped
|
1414 |
|
|
off and freed.
|
1415 |
|
|
|
1416 |
|
|
The old unix realloc convention of allowing the last-free'd chunk
|
1417 |
|
|
to be used as an argument to realloc is no longer supported.
|
1418 |
|
|
I don't know of any programs still relying on this feature,
|
1419 |
|
|
and allowing it would also allow too many other incorrect
|
1420 |
|
|
usages of realloc to be sensible.
|
1421 |
|
|
*/
|
1422 |
|
|
|
1423 |
|
|
cyg_uint8 *
|
1424 |
|
|
Cyg_Mempool_dlmalloc_Implementation::resize_alloc( cyg_uint8 *oldmem,
|
1425 |
|
|
cyg_int32 bytes,
|
1426 |
|
|
cyg_int32 *poldsize )
|
1427 |
|
|
{
|
1428 |
|
|
|
1429 |
|
|
INTERNAL_SIZE_T nb; /* padded request size */
|
1430 |
|
|
|
1431 |
|
|
mchunkptr oldp; /* chunk corresponding to oldmem */
|
1432 |
|
|
INTERNAL_SIZE_T oldsize; /* its size */
|
1433 |
|
|
|
1434 |
|
|
mchunkptr newp; /* chunk to return */
|
1435 |
|
|
INTERNAL_SIZE_T newsize; /* its size */
|
1436 |
|
|
cyg_uint8* newmem; /* corresponding user mem */
|
1437 |
|
|
|
1438 |
|
|
mchunkptr next; /* next contiguous chunk after oldp */
|
1439 |
|
|
INTERNAL_SIZE_T nextsize; /* its size */
|
1440 |
|
|
|
1441 |
|
|
mchunkptr prev; /* previous contiguous chunk before oldp */
|
1442 |
|
|
INTERNAL_SIZE_T prevsize; /* its size */
|
1443 |
|
|
|
1444 |
|
|
mchunkptr remainder; /* holds split off extra space from newp */
|
1445 |
|
|
INTERNAL_SIZE_T remainder_size; /* its size */
|
1446 |
|
|
|
1447 |
|
|
mchunkptr bck; /* misc temp for linking */
|
1448 |
|
|
mchunkptr fwd; /* misc temp for linking */
|
1449 |
|
|
|
1450 |
|
|
MALLOC_LOCK;
|
1451 |
|
|
|
1452 |
|
|
newp = oldp = mem2chunk(oldmem);
|
1453 |
|
|
newsize = oldsize = chunksize(oldp);
|
1454 |
|
|
|
1455 |
|
|
if (NULL != poldsize)
|
1456 |
|
|
*poldsize = oldsize - SIZE_SZ;
|
1457 |
|
|
|
1458 |
|
|
nb = request2size(bytes);
|
1459 |
|
|
|
1460 |
|
|
check_inuse_chunk(oldp);
|
1461 |
|
|
|
1462 |
|
|
if ((long)(oldsize) < (long)(nb))
|
1463 |
|
|
{
|
1464 |
|
|
|
1465 |
|
|
/* Try expanding forward */
|
1466 |
|
|
|
1467 |
|
|
next = chunk_at_offset(oldp, oldsize);
|
1468 |
|
|
if (next == top || !inuse(next))
|
1469 |
|
|
{
|
1470 |
|
|
nextsize = chunksize(next);
|
1471 |
|
|
|
1472 |
|
|
/* Forward into top only if a remainder */
|
1473 |
|
|
if (next == top)
|
1474 |
|
|
{
|
1475 |
|
|
if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
|
1476 |
|
|
{
|
1477 |
|
|
newsize += nextsize;
|
1478 |
|
|
top = chunk_at_offset(oldp, nb);
|
1479 |
|
|
set_head(top, (newsize - nb) | PREV_INUSE);
|
1480 |
|
|
set_head_size(oldp, nb);
|
1481 |
|
|
MALLOC_UNLOCK;
|
1482 |
|
|
return chunk2mem(oldp);
|
1483 |
|
|
}
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
/* Forward into next chunk */
|
1487 |
|
|
else if (((long)(nextsize + newsize) >= (long)(nb)))
|
1488 |
|
|
{
|
1489 |
|
|
unlink(next, bck, fwd);
|
1490 |
|
|
newsize += nextsize;
|
1491 |
|
|
goto split;
|
1492 |
|
|
}
|
1493 |
|
|
}
|
1494 |
|
|
else
|
1495 |
|
|
{
|
1496 |
|
|
next = 0;
|
1497 |
|
|
nextsize = 0;
|
1498 |
|
|
}
|
1499 |
|
|
|
1500 |
|
|
/* Try shifting backwards. */
|
1501 |
|
|
|
1502 |
|
|
if (!prev_inuse(oldp))
|
1503 |
|
|
{
|
1504 |
|
|
prev = prev_chunk(oldp);
|
1505 |
|
|
prevsize = chunksize(prev);
|
1506 |
|
|
|
1507 |
|
|
/* try forward + backward first to save a later consolidation */
|
1508 |
|
|
|
1509 |
|
|
if (next != 0)
|
1510 |
|
|
{
|
1511 |
|
|
/* into top */
|
1512 |
|
|
if (next == top)
|
1513 |
|
|
{
|
1514 |
|
|
if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
|
1515 |
|
|
{
|
1516 |
|
|
unlink(prev, bck, fwd);
|
1517 |
|
|
newp = prev;
|
1518 |
|
|
newsize += prevsize + nextsize;
|
1519 |
|
|
newmem = chunk2mem(newp);
|
1520 |
|
|
MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
|
1521 |
|
|
top = chunk_at_offset(newp, nb);
|
1522 |
|
|
set_head(top, (newsize - nb) | PREV_INUSE);
|
1523 |
|
|
set_head_size(newp, nb);
|
1524 |
|
|
MALLOC_UNLOCK;
|
1525 |
|
|
return newmem;
|
1526 |
|
|
}
|
1527 |
|
|
}
|
1528 |
|
|
|
1529 |
|
|
/* into next chunk */
|
1530 |
|
|
else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
|
1531 |
|
|
{
|
1532 |
|
|
unlink(next, bck, fwd);
|
1533 |
|
|
unlink(prev, bck, fwd);
|
1534 |
|
|
newp = prev;
|
1535 |
|
|
newsize += nextsize + prevsize;
|
1536 |
|
|
newmem = chunk2mem(newp);
|
1537 |
|
|
MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
|
1538 |
|
|
goto split;
|
1539 |
|
|
}
|
1540 |
|
|
}
|
1541 |
|
|
|
1542 |
|
|
/* backward only */
|
1543 |
|
|
if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
|
1544 |
|
|
{
|
1545 |
|
|
unlink(prev, bck, fwd);
|
1546 |
|
|
newp = prev;
|
1547 |
|
|
newsize += prevsize;
|
1548 |
|
|
newmem = chunk2mem(newp);
|
1549 |
|
|
MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
|
1550 |
|
|
goto split;
|
1551 |
|
|
}
|
1552 |
|
|
}
|
1553 |
|
|
|
1554 |
|
|
// couldn't resize the allocation any direction, so return failure
|
1555 |
|
|
MALLOC_UNLOCK;
|
1556 |
|
|
return NULL;
|
1557 |
|
|
}
|
1558 |
|
|
|
1559 |
|
|
|
1560 |
|
|
split: /* split off extra room in old or expanded chunk */
|
1561 |
|
|
|
1562 |
|
|
remainder_size = long_sub_size_t(newsize, nb);
|
1563 |
|
|
|
1564 |
|
|
if (remainder_size >= (long)MINSIZE) /* split off remainder */
|
1565 |
|
|
{
|
1566 |
|
|
remainder = chunk_at_offset(newp, nb);
|
1567 |
|
|
set_head_size(newp, nb);
|
1568 |
|
|
set_head(remainder, remainder_size | PREV_INUSE);
|
1569 |
|
|
set_inuse_bit_at_offset(remainder, remainder_size);
|
1570 |
|
|
/* let free() deal with it */
|
1571 |
|
|
Cyg_Mempool_dlmalloc_Implementation::free( chunk2mem(remainder) );
|
1572 |
|
|
}
|
1573 |
|
|
else
|
1574 |
|
|
{
|
1575 |
|
|
set_head_size(newp, newsize);
|
1576 |
|
|
set_inuse_bit_at_offset(newp, newsize);
|
1577 |
|
|
}
|
1578 |
|
|
|
1579 |
|
|
check_inuse_chunk(newp);
|
1580 |
|
|
MALLOC_UNLOCK;
|
1581 |
|
|
return chunk2mem(newp);
|
1582 |
|
|
|
1583 |
|
|
} // Cyg_Mempool_dlmalloc_Implementation::resize_alloc()
|
1584 |
|
|
|
1585 |
|
|
//----------------------------------------------------------------------------
|
1586 |
|
|
|
1587 |
|
|
// Get memory pool status
|
1588 |
|
|
// flags is a bitmask of requested fields to fill in. The flags are
|
1589 |
|
|
// defined in common.hxx
|
1590 |
|
|
void
|
1591 |
|
|
Cyg_Mempool_dlmalloc_Implementation::get_status(
|
1592 |
|
|
cyg_mempool_status_flag_t flags,
|
1593 |
|
|
Cyg_Mempool_Status &status )
|
1594 |
|
|
{
|
1595 |
|
|
if (0 != (flags&(CYG_MEMPOOL_STAT_FREEBLOCKS|CYG_MEMPOOL_STAT_TOTALFREE|
|
1596 |
|
|
CYG_MEMPOOL_STAT_TOTALALLOCATED|CYG_MEMPOOL_STAT_MAXFREE)))
|
1597 |
|
|
{
|
1598 |
|
|
int i;
|
1599 |
|
|
mbinptr b;
|
1600 |
|
|
mchunkptr p;
|
1601 |
|
|
cyg_int32 chunksizep;
|
1602 |
|
|
cyg_int32 maxfree;
|
1603 |
|
|
#ifdef CYGDBG_MEMALLOC_ALLOCATOR_DLMALLOC_DEBUG
|
1604 |
|
|
mchunkptr q;
|
1605 |
|
|
#endif
|
1606 |
|
|
|
1607 |
|
|
INTERNAL_SIZE_T avail = chunksize(top);
|
1608 |
|
|
int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
|
1609 |
|
|
maxfree = avail;
|
1610 |
|
|
|
1611 |
|
|
for (i = 1; i < CYGPRI_MEMALLOC_ALLOCATOR_DLMALLOC_NAV; ++i) {
|
1612 |
|
|
b = bin_at(i);
|
1613 |
|
|
for (p = last(b); p != b; p = p->bk) {
|
1614 |
|
|
#ifdef CYGDBG_MEMALLOC_ALLOCATOR_DLMALLOC_DEBUG
|
1615 |
|
|
check_free_chunk(p);
|
1616 |
|
|
for (q = next_chunk(p);
|
1617 |
|
|
(q < top) && inuse(q) &&
|
1618 |
|
|
(long)(chunksize(q)) >= (long)MINSIZE;
|
1619 |
|
|
q = next_chunk(q))
|
1620 |
|
|
check_inuse_chunk(q);
|
1621 |
|
|
#endif
|
1622 |
|
|
chunksizep = chunksize(p);
|
1623 |
|
|
avail += chunksizep;
|
1624 |
|
|
if ( chunksizep > maxfree )
|
1625 |
|
|
maxfree = chunksizep;
|
1626 |
|
|
navail++;
|
1627 |
|
|
}
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
if ( 0 != (flags & CYG_MEMPOOL_STAT_TOTALALLOCATED) )
|
1631 |
|
|
status.totalallocated = arenasize - avail;
|
1632 |
|
|
// as quick or quicker to just set most of these, rather than
|
1633 |
|
|
// test flag first
|
1634 |
|
|
status.totalfree = (avail & ~(MALLOC_ALIGN_MASK)) - SIZE_SZ - MINSIZE;
|
1635 |
|
|
CYG_ASSERT( ((avail + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
|
1636 |
|
|
>= MINSIZE, "free mem negative!" );
|
1637 |
|
|
status.freeblocks = navail;
|
1638 |
|
|
status.maxfree = (maxfree & ~(MALLOC_ALIGN_MASK)) - SIZE_SZ - MINSIZE;
|
1639 |
|
|
//diag_printf("raw mf: %d, ret mf: %d\n", maxfree, status.maxfree);
|
1640 |
|
|
CYG_ASSERT( ((maxfree + SIZE_SZ + MALLOC_ALIGN_MASK) &
|
1641 |
|
|
~MALLOC_ALIGN_MASK) >= MINSIZE,
|
1642 |
|
|
"max free block size negative!" );
|
1643 |
|
|
} // if
|
1644 |
|
|
|
1645 |
|
|
// as quick or quicker to just set most of these, rather than
|
1646 |
|
|
// test flag first
|
1647 |
|
|
status.arenabase = status.origbase = arenabase;
|
1648 |
|
|
status.arenasize = status.origsize = arenasize;
|
1649 |
|
|
status.maxoverhead = MINSIZE + MALLOC_ALIGNMENT;
|
1650 |
|
|
|
1651 |
|
|
} // Cyg_Mempool_dlmalloc_Implementation::get_status()
|
1652 |
|
|
|
1653 |
|
|
|
1654 |
|
|
//----------------------------------------------------------------------------
|
1655 |
|
|
|
1656 |
|
|
// EOF dlmalloc.cxx
|