1 |
786 |
skrzyp |
/*
|
2 |
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 2001-2003 Red Hat, Inc.
|
5 |
|
|
*
|
6 |
|
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
7 |
|
|
*
|
8 |
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
9 |
|
|
*
|
10 |
|
|
* $Id: nodemgmt.c,v 1.124 2005/07/20 15:32:28 dedekind Exp $
|
11 |
|
|
*
|
12 |
|
|
*/
|
13 |
|
|
|
14 |
|
|
#include <linux/kernel.h>
|
15 |
|
|
#include <linux/slab.h>
|
16 |
|
|
#include <linux/mtd/mtd.h>
|
17 |
|
|
#include <linux/compiler.h>
|
18 |
|
|
#include <linux/sched.h> /* For cond_resched() */
|
19 |
|
|
#include "nodelist.h"
|
20 |
|
|
|
21 |
|
|
/**
|
22 |
|
|
* jffs2_reserve_space - request physical space to write nodes to flash
|
23 |
|
|
* @c: superblock info
|
24 |
|
|
* @minsize: Minimum acceptable size of allocation
|
25 |
|
|
* @ofs: Returned value of node offset
|
26 |
|
|
* @len: Returned value of allocation length
|
27 |
|
|
* @prio: Allocation type - ALLOC_{NORMAL,DELETION}
|
28 |
|
|
*
|
29 |
|
|
* Requests a block of physical space on the flash. Returns zero for success
|
30 |
|
|
* and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC
|
31 |
|
|
* or other error if appropriate.
|
32 |
|
|
*
|
33 |
|
|
* If it returns zero, jffs2_reserve_space() also downs the per-filesystem
|
34 |
|
|
* allocation semaphore, to prevent more than one allocation from being
|
35 |
|
|
* active at any time. The semaphore is later released by jffs2_commit_allocation()
|
36 |
|
|
*
|
37 |
|
|
* jffs2_reserve_space() may trigger garbage collection in order to make room
|
38 |
|
|
* for the requested allocation.
|
39 |
|
|
*/
|
40 |
|
|
|
41 |
|
|
static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len);
|
42 |
|
|
|
43 |
|
|
int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio)
|
44 |
|
|
{
|
45 |
|
|
int ret = -EAGAIN;
|
46 |
|
|
int blocksneeded = c->resv_blocks_write;
|
47 |
|
|
/* align it */
|
48 |
|
|
minsize = PAD(minsize);
|
49 |
|
|
|
50 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
|
51 |
|
|
down(&c->alloc_sem);
|
52 |
|
|
|
53 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
|
54 |
|
|
|
55 |
|
|
spin_lock(&c->erase_completion_lock);
|
56 |
|
|
|
57 |
|
|
/* this needs a little more thought (true <tglx> :)) */
|
58 |
|
|
while(ret == -EAGAIN) {
|
59 |
|
|
while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
|
60 |
|
|
int ret;
|
61 |
|
|
uint32_t dirty, avail;
|
62 |
|
|
|
63 |
|
|
/* calculate real dirty size
|
64 |
|
|
* dirty_size contains blocks on erase_pending_list
|
65 |
|
|
* those blocks are counted in c->nr_erasing_blocks.
|
66 |
|
|
* If one block is actually erased, it is not longer counted as dirty_space
|
67 |
|
|
* but it is counted in c->nr_erasing_blocks, so we add it and subtract it
|
68 |
|
|
* with c->nr_erasing_blocks * c->sector_size again.
|
69 |
|
|
* Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
|
70 |
|
|
* This helps us to force gc and pick eventually a clean block to spread the load.
|
71 |
|
|
* We add unchecked_size here, as we hopefully will find some space to use.
|
72 |
|
|
* This will affect the sum only once, as gc first finishes checking
|
73 |
|
|
* of nodes.
|
74 |
|
|
*/
|
75 |
|
|
dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
|
76 |
|
|
if (dirty < c->nospc_dirty_size) {
|
77 |
|
|
if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
|
78 |
|
|
D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
|
79 |
|
|
break;
|
80 |
|
|
}
|
81 |
|
|
D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
|
82 |
|
|
dirty, c->unchecked_size, c->sector_size));
|
83 |
|
|
|
84 |
|
|
spin_unlock(&c->erase_completion_lock);
|
85 |
|
|
up(&c->alloc_sem);
|
86 |
|
|
return -ENOSPC;
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
/* Calc possibly available space. Possibly available means that we
|
90 |
|
|
* don't know, if unchecked size contains obsoleted nodes, which could give us some
|
91 |
|
|
* more usable space. This will affect the sum only once, as gc first finishes checking
|
92 |
|
|
* of nodes.
|
93 |
|
|
+ Return -ENOSPC, if the maximum possibly available space is less or equal than
|
94 |
|
|
* blocksneeded * sector_size.
|
95 |
|
|
* This blocks endless gc looping on a filesystem, which is nearly full, even if
|
96 |
|
|
* the check above passes.
|
97 |
|
|
*/
|
98 |
|
|
avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
|
99 |
|
|
if ( (avail / c->sector_size) <= blocksneeded) {
|
100 |
|
|
if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
|
101 |
|
|
D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
|
102 |
|
|
break;
|
103 |
|
|
}
|
104 |
|
|
|
105 |
|
|
D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
|
106 |
|
|
avail, blocksneeded * c->sector_size));
|
107 |
|
|
spin_unlock(&c->erase_completion_lock);
|
108 |
|
|
up(&c->alloc_sem);
|
109 |
|
|
return -ENOSPC;
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
up(&c->alloc_sem);
|
113 |
|
|
|
114 |
|
|
D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
|
115 |
|
|
c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
|
116 |
|
|
c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
|
117 |
|
|
spin_unlock(&c->erase_completion_lock);
|
118 |
|
|
|
119 |
|
|
ret = jffs2_garbage_collect_pass(c);
|
120 |
|
|
if (ret)
|
121 |
|
|
return ret;
|
122 |
|
|
|
123 |
|
|
cond_resched();
|
124 |
|
|
|
125 |
|
|
if (signal_pending(current))
|
126 |
|
|
return -EINTR;
|
127 |
|
|
|
128 |
|
|
down(&c->alloc_sem);
|
129 |
|
|
spin_lock(&c->erase_completion_lock);
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
ret = jffs2_do_reserve_space(c, minsize, ofs, len);
|
133 |
|
|
if (ret) {
|
134 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
|
135 |
|
|
}
|
136 |
|
|
}
|
137 |
|
|
spin_unlock(&c->erase_completion_lock);
|
138 |
|
|
if (ret)
|
139 |
|
|
up(&c->alloc_sem);
|
140 |
|
|
return ret;
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len)
|
144 |
|
|
{
|
145 |
|
|
int ret = -EAGAIN;
|
146 |
|
|
minsize = PAD(minsize);
|
147 |
|
|
|
148 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
|
149 |
|
|
|
150 |
|
|
spin_lock(&c->erase_completion_lock);
|
151 |
|
|
while(ret == -EAGAIN) {
|
152 |
|
|
ret = jffs2_do_reserve_space(c, minsize, ofs, len);
|
153 |
|
|
if (ret) {
|
154 |
|
|
D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
|
155 |
|
|
}
|
156 |
|
|
}
|
157 |
|
|
spin_unlock(&c->erase_completion_lock);
|
158 |
|
|
return ret;
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
/* Called with alloc sem _and_ erase_completion_lock */
|
162 |
|
|
static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len)
|
163 |
|
|
{
|
164 |
|
|
struct jffs2_eraseblock *jeb = c->nextblock;
|
165 |
|
|
|
166 |
|
|
restart:
|
167 |
|
|
if (jeb && minsize > jeb->free_size) {
|
168 |
|
|
/* Skip the end of this block and file it as having some dirty space */
|
169 |
|
|
/* If there's a pending write to it, flush now */
|
170 |
|
|
if (jffs2_wbuf_dirty(c)) {
|
171 |
|
|
spin_unlock(&c->erase_completion_lock);
|
172 |
|
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
|
173 |
|
|
jffs2_flush_wbuf_pad(c);
|
174 |
|
|
spin_lock(&c->erase_completion_lock);
|
175 |
|
|
jeb = c->nextblock;
|
176 |
|
|
goto restart;
|
177 |
|
|
}
|
178 |
|
|
c->wasted_size += jeb->free_size;
|
179 |
|
|
c->free_size -= jeb->free_size;
|
180 |
|
|
jeb->wasted_size += jeb->free_size;
|
181 |
|
|
jeb->free_size = 0;
|
182 |
|
|
|
183 |
|
|
/* Check, if we have a dirty block now, or if it was dirty already */
|
184 |
|
|
if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
|
185 |
|
|
c->dirty_size += jeb->wasted_size;
|
186 |
|
|
c->wasted_size -= jeb->wasted_size;
|
187 |
|
|
jeb->dirty_size += jeb->wasted_size;
|
188 |
|
|
jeb->wasted_size = 0;
|
189 |
|
|
if (VERYDIRTY(c, jeb->dirty_size)) {
|
190 |
|
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
191 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
192 |
|
|
list_add_tail(&jeb->list, &c->very_dirty_list);
|
193 |
|
|
} else {
|
194 |
|
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
195 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
196 |
|
|
list_add_tail(&jeb->list, &c->dirty_list);
|
197 |
|
|
}
|
198 |
|
|
} else {
|
199 |
|
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
200 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
201 |
|
|
list_add_tail(&jeb->list, &c->clean_list);
|
202 |
|
|
}
|
203 |
|
|
c->nextblock = jeb = NULL;
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
if (!jeb) {
|
207 |
|
|
struct list_head *next;
|
208 |
|
|
/* Take the next block off the 'free' list */
|
209 |
|
|
|
210 |
|
|
if (list_empty(&c->free_list)) {
|
211 |
|
|
|
212 |
|
|
if (!c->nr_erasing_blocks &&
|
213 |
|
|
!list_empty(&c->erasable_list)) {
|
214 |
|
|
struct jffs2_eraseblock *ejeb;
|
215 |
|
|
|
216 |
|
|
ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
|
217 |
|
|
list_del(&ejeb->list);
|
218 |
|
|
list_add_tail(&ejeb->list, &c->erase_pending_list);
|
219 |
|
|
c->nr_erasing_blocks++;
|
220 |
|
|
jffs2_erase_pending_trigger(c);
|
221 |
|
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n",
|
222 |
|
|
ejeb->offset));
|
223 |
|
|
}
|
224 |
|
|
|
225 |
|
|
if (!c->nr_erasing_blocks &&
|
226 |
|
|
!list_empty(&c->erasable_pending_wbuf_list)) {
|
227 |
|
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
|
228 |
|
|
/* c->nextblock is NULL, no update to c->nextblock allowed */
|
229 |
|
|
spin_unlock(&c->erase_completion_lock);
|
230 |
|
|
jffs2_flush_wbuf_pad(c);
|
231 |
|
|
spin_lock(&c->erase_completion_lock);
|
232 |
|
|
/* Have another go. It'll be on the erasable_list now */
|
233 |
|
|
return -EAGAIN;
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
if (!c->nr_erasing_blocks) {
|
237 |
|
|
/* Ouch. We're in GC, or we wouldn't have got here.
|
238 |
|
|
And there's no space left. At all. */
|
239 |
|
|
printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
|
240 |
|
|
c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
|
241 |
|
|
list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
|
242 |
|
|
return -ENOSPC;
|
243 |
|
|
}
|
244 |
|
|
|
245 |
|
|
spin_unlock(&c->erase_completion_lock);
|
246 |
|
|
/* Don't wait for it; just erase one right now */
|
247 |
|
|
jffs2_erase_pending_blocks(c, 1);
|
248 |
|
|
spin_lock(&c->erase_completion_lock);
|
249 |
|
|
|
250 |
|
|
/* An erase may have failed, decreasing the
|
251 |
|
|
amount of free space available. So we must
|
252 |
|
|
restart from the beginning */
|
253 |
|
|
return -EAGAIN;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
next = c->free_list.next;
|
257 |
|
|
list_del(next);
|
258 |
|
|
c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list);
|
259 |
|
|
c->nr_free_blocks--;
|
260 |
|
|
|
261 |
|
|
if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
|
262 |
|
|
printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
|
263 |
|
|
goto restart;
|
264 |
|
|
}
|
265 |
|
|
}
|
266 |
|
|
/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
|
267 |
|
|
enough space */
|
268 |
|
|
*ofs = jeb->offset + (c->sector_size - jeb->free_size);
|
269 |
|
|
*len = jeb->free_size;
|
270 |
|
|
|
271 |
|
|
if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
|
272 |
|
|
!jeb->first_node->next_in_ino) {
|
273 |
|
|
/* Only node in it beforehand was a CLEANMARKER node (we think).
|
274 |
|
|
So mark it obsolete now that there's going to be another node
|
275 |
|
|
in the block. This will reduce used_size to zero but We've
|
276 |
|
|
already set c->nextblock so that jffs2_mark_node_obsolete()
|
277 |
|
|
won't try to refile it to the dirty_list.
|
278 |
|
|
*/
|
279 |
|
|
spin_unlock(&c->erase_completion_lock);
|
280 |
|
|
jffs2_mark_node_obsolete(c, jeb->first_node);
|
281 |
|
|
spin_lock(&c->erase_completion_lock);
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs));
|
285 |
|
|
return 0;
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
/**
|
289 |
|
|
* jffs2_add_physical_node_ref - add a physical node reference to the list
|
290 |
|
|
* @c: superblock info
|
291 |
|
|
* @new: new node reference to add
|
292 |
|
|
* @len: length of this physical node
|
293 |
|
|
* @dirty: dirty flag for new node
|
294 |
|
|
*
|
295 |
|
|
* Should only be used to report nodes for which space has been allocated
|
296 |
|
|
* by jffs2_reserve_space.
|
297 |
|
|
*
|
298 |
|
|
* Must be called with the alloc_sem held.
|
299 |
|
|
*/
|
300 |
|
|
|
301 |
|
|
int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new)
|
302 |
|
|
{
|
303 |
|
|
struct jffs2_eraseblock *jeb;
|
304 |
|
|
uint32_t len;
|
305 |
|
|
|
306 |
|
|
jeb = &c->blocks[new->flash_offset / c->sector_size];
|
307 |
|
|
len = ref_totlen(c, jeb, new);
|
308 |
|
|
|
309 |
|
|
D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len));
|
310 |
|
|
#if 1
|
311 |
|
|
/* we could get some obsolete nodes after nextblock was refiled
|
312 |
|
|
in wbuf.c */
|
313 |
|
|
if ((c->nextblock || !ref_obsolete(new))
|
314 |
|
|
&&(jeb != c->nextblock || ref_offset(new) != jeb->offset + (c->sector_size - jeb->free_size))) {
|
315 |
|
|
printk(KERN_WARNING "argh. node added in wrong place\n");
|
316 |
|
|
jffs2_free_raw_node_ref(new);
|
317 |
|
|
return -EINVAL;
|
318 |
|
|
}
|
319 |
|
|
#endif
|
320 |
|
|
spin_lock(&c->erase_completion_lock);
|
321 |
|
|
|
322 |
|
|
if (!jeb->first_node)
|
323 |
|
|
jeb->first_node = new;
|
324 |
|
|
if (jeb->last_node)
|
325 |
|
|
jeb->last_node->next_phys = new;
|
326 |
|
|
jeb->last_node = new;
|
327 |
|
|
|
328 |
|
|
jeb->free_size -= len;
|
329 |
|
|
c->free_size -= len;
|
330 |
|
|
if (ref_obsolete(new)) {
|
331 |
|
|
jeb->dirty_size += len;
|
332 |
|
|
c->dirty_size += len;
|
333 |
|
|
} else {
|
334 |
|
|
jeb->used_size += len;
|
335 |
|
|
c->used_size += len;
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
|
339 |
|
|
/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
|
340 |
|
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
341 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
342 |
|
|
if (jffs2_wbuf_dirty(c)) {
|
343 |
|
|
/* Flush the last write in the block if it's outstanding */
|
344 |
|
|
spin_unlock(&c->erase_completion_lock);
|
345 |
|
|
jffs2_flush_wbuf_pad(c);
|
346 |
|
|
spin_lock(&c->erase_completion_lock);
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
list_add_tail(&jeb->list, &c->clean_list);
|
350 |
|
|
c->nextblock = NULL;
|
351 |
|
|
}
|
352 |
|
|
jffs2_dbg_acct_sanity_check_nolock(c,jeb);
|
353 |
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
354 |
|
|
|
355 |
|
|
spin_unlock(&c->erase_completion_lock);
|
356 |
|
|
|
357 |
|
|
return 0;
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
|
361 |
|
|
void jffs2_complete_reservation(struct jffs2_sb_info *c)
|
362 |
|
|
{
|
363 |
|
|
D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
|
364 |
|
|
jffs2_garbage_collect_trigger(c);
|
365 |
|
|
up(&c->alloc_sem);
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
static inline int on_list(struct list_head *obj, struct list_head *head)
|
369 |
|
|
{
|
370 |
|
|
struct list_head *this;
|
371 |
|
|
|
372 |
|
|
list_for_each(this, head) {
|
373 |
|
|
if (this == obj) {
|
374 |
|
|
D1(printk("%p is on list at %p\n", obj, head));
|
375 |
|
|
return 1;
|
376 |
|
|
|
377 |
|
|
}
|
378 |
|
|
}
|
379 |
|
|
return 0;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
|
383 |
|
|
{
|
384 |
|
|
struct jffs2_eraseblock *jeb;
|
385 |
|
|
int blocknr;
|
386 |
|
|
struct jffs2_unknown_node n;
|
387 |
|
|
int ret, addedsize;
|
388 |
|
|
size_t retlen;
|
389 |
|
|
|
390 |
|
|
if(!ref) {
|
391 |
|
|
printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
|
392 |
|
|
return;
|
393 |
|
|
}
|
394 |
|
|
if (ref_obsolete(ref)) {
|
395 |
|
|
D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
|
396 |
|
|
return;
|
397 |
|
|
}
|
398 |
|
|
blocknr = ref->flash_offset / c->sector_size;
|
399 |
|
|
if (blocknr >= c->nr_blocks) {
|
400 |
|
|
printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
|
401 |
|
|
BUG();
|
402 |
|
|
}
|
403 |
|
|
jeb = &c->blocks[blocknr];
|
404 |
|
|
|
405 |
|
|
if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
|
406 |
|
|
!(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
|
407 |
|
|
/* Hm. This may confuse static lock analysis. If any of the above
|
408 |
|
|
three conditions is false, we're going to return from this
|
409 |
|
|
function without actually obliterating any nodes or freeing
|
410 |
|
|
any jffs2_raw_node_refs. So we don't need to stop erases from
|
411 |
|
|
happening, or protect against people holding an obsolete
|
412 |
|
|
jffs2_raw_node_ref without the erase_completion_lock. */
|
413 |
|
|
down(&c->erase_free_sem);
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
spin_lock(&c->erase_completion_lock);
|
417 |
|
|
|
418 |
|
|
if (ref_flags(ref) == REF_UNCHECKED) {
|
419 |
|
|
D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) {
|
420 |
|
|
printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
|
421 |
|
|
ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
|
422 |
|
|
BUG();
|
423 |
|
|
})
|
424 |
|
|
D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
|
425 |
|
|
jeb->unchecked_size -= ref_totlen(c, jeb, ref);
|
426 |
|
|
c->unchecked_size -= ref_totlen(c, jeb, ref);
|
427 |
|
|
} else {
|
428 |
|
|
D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) {
|
429 |
|
|
printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
|
430 |
|
|
ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
|
431 |
|
|
BUG();
|
432 |
|
|
})
|
433 |
|
|
D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
|
434 |
|
|
jeb->used_size -= ref_totlen(c, jeb, ref);
|
435 |
|
|
c->used_size -= ref_totlen(c, jeb, ref);
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
// Take care, that wasted size is taken into concern
|
439 |
|
|
if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) {
|
440 |
|
|
D1(printk(KERN_DEBUG "Dirtying\n"));
|
441 |
|
|
addedsize = ref_totlen(c, jeb, ref);
|
442 |
|
|
jeb->dirty_size += ref_totlen(c, jeb, ref);
|
443 |
|
|
c->dirty_size += ref_totlen(c, jeb, ref);
|
444 |
|
|
|
445 |
|
|
/* Convert wasted space to dirty, if not a bad block */
|
446 |
|
|
if (jeb->wasted_size) {
|
447 |
|
|
if (on_list(&jeb->list, &c->bad_used_list)) {
|
448 |
|
|
D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
|
449 |
|
|
jeb->offset));
|
450 |
|
|
addedsize = 0; /* To fool the refiling code later */
|
451 |
|
|
} else {
|
452 |
|
|
D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
|
453 |
|
|
jeb->wasted_size, jeb->offset));
|
454 |
|
|
addedsize += jeb->wasted_size;
|
455 |
|
|
jeb->dirty_size += jeb->wasted_size;
|
456 |
|
|
c->dirty_size += jeb->wasted_size;
|
457 |
|
|
c->wasted_size -= jeb->wasted_size;
|
458 |
|
|
jeb->wasted_size = 0;
|
459 |
|
|
}
|
460 |
|
|
}
|
461 |
|
|
} else {
|
462 |
|
|
D1(printk(KERN_DEBUG "Wasting\n"));
|
463 |
|
|
addedsize = 0;
|
464 |
|
|
jeb->wasted_size += ref_totlen(c, jeb, ref);
|
465 |
|
|
c->wasted_size += ref_totlen(c, jeb, ref);
|
466 |
|
|
}
|
467 |
|
|
ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
|
468 |
|
|
|
469 |
|
|
jffs2_dbg_acct_sanity_check_nolock(c, jeb);
|
470 |
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
471 |
|
|
|
472 |
|
|
if (c->flags & JFFS2_SB_FLAG_SCANNING) {
|
473 |
|
|
/* Flash scanning is in progress. Don't muck about with the block
|
474 |
|
|
lists because they're not ready yet, and don't actually
|
475 |
|
|
obliterate nodes that look obsolete. If they weren't
|
476 |
|
|
marked obsolete on the flash at the time they _became_
|
477 |
|
|
obsolete, there was probably a reason for that. */
|
478 |
|
|
spin_unlock(&c->erase_completion_lock);
|
479 |
|
|
/* We didn't lock the erase_free_sem */
|
480 |
|
|
return;
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
if (jeb == c->nextblock) {
|
484 |
|
|
D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
|
485 |
|
|
} else if (!jeb->used_size && !jeb->unchecked_size) {
|
486 |
|
|
if (jeb == c->gcblock) {
|
487 |
|
|
D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
|
488 |
|
|
c->gcblock = NULL;
|
489 |
|
|
} else {
|
490 |
|
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
|
491 |
|
|
list_del(&jeb->list);
|
492 |
|
|
}
|
493 |
|
|
if (jffs2_wbuf_dirty(c)) {
|
494 |
|
|
D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
|
495 |
|
|
list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
|
496 |
|
|
} else {
|
497 |
|
|
if (jiffies & 127) {
|
498 |
|
|
/* Most of the time, we just erase it immediately. Otherwise we
|
499 |
|
|
spend ages scanning it on mount, etc. */
|
500 |
|
|
D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
|
501 |
|
|
list_add_tail(&jeb->list, &c->erase_pending_list);
|
502 |
|
|
c->nr_erasing_blocks++;
|
503 |
|
|
jffs2_erase_pending_trigger(c);
|
504 |
|
|
} else {
|
505 |
|
|
/* Sometimes, however, we leave it elsewhere so it doesn't get
|
506 |
|
|
immediately reused, and we spread the load a bit. */
|
507 |
|
|
D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
|
508 |
|
|
list_add_tail(&jeb->list, &c->erasable_list);
|
509 |
|
|
}
|
510 |
|
|
}
|
511 |
|
|
D1(printk(KERN_DEBUG "Done OK\n"));
|
512 |
|
|
} else if (jeb == c->gcblock) {
|
513 |
|
|
D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
|
514 |
|
|
} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
|
515 |
|
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
|
516 |
|
|
list_del(&jeb->list);
|
517 |
|
|
D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
|
518 |
|
|
list_add_tail(&jeb->list, &c->dirty_list);
|
519 |
|
|
} else if (VERYDIRTY(c, jeb->dirty_size) &&
|
520 |
|
|
!VERYDIRTY(c, jeb->dirty_size - addedsize)) {
|
521 |
|
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
|
522 |
|
|
list_del(&jeb->list);
|
523 |
|
|
D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
|
524 |
|
|
list_add_tail(&jeb->list, &c->very_dirty_list);
|
525 |
|
|
} else {
|
526 |
|
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
|
527 |
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
spin_unlock(&c->erase_completion_lock);
|
531 |
|
|
|
532 |
|
|
if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
|
533 |
|
|
(c->flags & JFFS2_SB_FLAG_BUILDING)) {
|
534 |
|
|
/* We didn't lock the erase_free_sem */
|
535 |
|
|
return;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/* The erase_free_sem is locked, and has been since before we marked the node obsolete
|
539 |
|
|
and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
|
540 |
|
|
the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
|
541 |
|
|
by jffs2_free_all_node_refs() in erase.c. Which is nice. */
|
542 |
|
|
|
543 |
|
|
D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
|
544 |
|
|
ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
|
545 |
|
|
if (ret) {
|
546 |
|
|
printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
|
547 |
|
|
goto out_erase_sem;
|
548 |
|
|
}
|
549 |
|
|
if (retlen != sizeof(n)) {
|
550 |
|
|
printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
|
551 |
|
|
goto out_erase_sem;
|
552 |
|
|
}
|
553 |
|
|
if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) {
|
554 |
|
|
printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref));
|
555 |
|
|
goto out_erase_sem;
|
556 |
|
|
}
|
557 |
|
|
if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
|
558 |
|
|
D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
|
559 |
|
|
goto out_erase_sem;
|
560 |
|
|
}
|
561 |
|
|
/* XXX FIXME: This is ugly now */
|
562 |
|
|
n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
|
563 |
|
|
ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
|
564 |
|
|
if (ret) {
|
565 |
|
|
printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
|
566 |
|
|
goto out_erase_sem;
|
567 |
|
|
}
|
568 |
|
|
if (retlen != sizeof(n)) {
|
569 |
|
|
printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
|
570 |
|
|
goto out_erase_sem;
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
/* Nodes which have been marked obsolete no longer need to be
|
574 |
|
|
associated with any inode. Remove them from the per-inode list.
|
575 |
|
|
|
576 |
|
|
Note we can't do this for NAND at the moment because we need
|
577 |
|
|
obsolete dirent nodes to stay on the lists, because of the
|
578 |
|
|
horridness in jffs2_garbage_collect_deletion_dirent(). Also
|
579 |
|
|
because we delete the inocache, and on NAND we need that to
|
580 |
|
|
stay around until all the nodes are actually erased, in order
|
581 |
|
|
to stop us from giving the same inode number to another newly
|
582 |
|
|
created inode. */
|
583 |
|
|
if (ref->next_in_ino) {
|
584 |
|
|
struct jffs2_inode_cache *ic;
|
585 |
|
|
struct jffs2_raw_node_ref **p;
|
586 |
|
|
|
587 |
|
|
spin_lock(&c->erase_completion_lock);
|
588 |
|
|
|
589 |
|
|
ic = jffs2_raw_ref_to_ic(ref);
|
590 |
|
|
for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
|
591 |
|
|
;
|
592 |
|
|
|
593 |
|
|
*p = ref->next_in_ino;
|
594 |
|
|
ref->next_in_ino = NULL;
|
595 |
|
|
|
596 |
|
|
if (ic->nodes == (void *)ic && ic->nlink == 0)
|
597 |
|
|
jffs2_del_ino_cache(c, ic);
|
598 |
|
|
|
599 |
|
|
spin_unlock(&c->erase_completion_lock);
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
|
603 |
|
|
/* Merge with the next node in the physical list, if there is one
|
604 |
|
|
and if it's also obsolete and if it doesn't belong to any inode */
|
605 |
|
|
if (ref->next_phys && ref_obsolete(ref->next_phys) &&
|
606 |
|
|
!ref->next_phys->next_in_ino) {
|
607 |
|
|
struct jffs2_raw_node_ref *n = ref->next_phys;
|
608 |
|
|
|
609 |
|
|
spin_lock(&c->erase_completion_lock);
|
610 |
|
|
|
611 |
|
|
ref->__totlen += n->__totlen;
|
612 |
|
|
ref->next_phys = n->next_phys;
|
613 |
|
|
if (jeb->last_node == n) jeb->last_node = ref;
|
614 |
|
|
if (jeb->gc_node == n) {
|
615 |
|
|
/* gc will be happy continuing gc on this node */
|
616 |
|
|
jeb->gc_node=ref;
|
617 |
|
|
}
|
618 |
|
|
spin_unlock(&c->erase_completion_lock);
|
619 |
|
|
|
620 |
|
|
jffs2_free_raw_node_ref(n);
|
621 |
|
|
}
|
622 |
|
|
|
623 |
|
|
/* Also merge with the previous node in the list, if there is one
|
624 |
|
|
and that one is obsolete */
|
625 |
|
|
if (ref != jeb->first_node ) {
|
626 |
|
|
struct jffs2_raw_node_ref *p = jeb->first_node;
|
627 |
|
|
|
628 |
|
|
spin_lock(&c->erase_completion_lock);
|
629 |
|
|
|
630 |
|
|
while (p->next_phys != ref)
|
631 |
|
|
p = p->next_phys;
|
632 |
|
|
|
633 |
|
|
if (ref_obsolete(p) && !ref->next_in_ino) {
|
634 |
|
|
p->__totlen += ref->__totlen;
|
635 |
|
|
if (jeb->last_node == ref) {
|
636 |
|
|
jeb->last_node = p;
|
637 |
|
|
}
|
638 |
|
|
if (jeb->gc_node == ref) {
|
639 |
|
|
/* gc will be happy continuing gc on this node */
|
640 |
|
|
jeb->gc_node=p;
|
641 |
|
|
}
|
642 |
|
|
p->next_phys = ref->next_phys;
|
643 |
|
|
jffs2_free_raw_node_ref(ref);
|
644 |
|
|
}
|
645 |
|
|
spin_unlock(&c->erase_completion_lock);
|
646 |
|
|
}
|
647 |
|
|
out_erase_sem:
|
648 |
|
|
up(&c->erase_free_sem);
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
int jffs2_thread_should_wake(struct jffs2_sb_info *c)
|
652 |
|
|
{
|
653 |
|
|
int ret = 0;
|
654 |
|
|
uint32_t dirty;
|
655 |
|
|
|
656 |
|
|
if (c->unchecked_size) {
|
657 |
|
|
D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
|
658 |
|
|
c->unchecked_size, c->checked_ino));
|
659 |
|
|
return 1;
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
/* dirty_size contains blocks on erase_pending_list
|
663 |
|
|
* those blocks are counted in c->nr_erasing_blocks.
|
664 |
|
|
* If one block is actually erased, it is not longer counted as dirty_space
|
665 |
|
|
* but it is counted in c->nr_erasing_blocks, so we add it and subtract it
|
666 |
|
|
* with c->nr_erasing_blocks * c->sector_size again.
|
667 |
|
|
* Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
|
668 |
|
|
* This helps us to force gc and pick eventually a clean block to spread the load.
|
669 |
|
|
*/
|
670 |
|
|
dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
|
671 |
|
|
|
672 |
|
|
if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
|
673 |
|
|
(dirty > c->nospc_dirty_size))
|
674 |
|
|
ret = 1;
|
675 |
|
|
|
676 |
|
|
D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n",
|
677 |
|
|
c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));
|
678 |
|
|
|
679 |
|
|
return ret;
|
680 |
|
|
}
|