1 |
786 |
skrzyp |
//==========================================================================
|
2 |
|
|
//
|
3 |
|
|
// aaed2000_misc.c
|
4 |
|
|
//
|
5 |
|
|
// HAL misc board support code for ARM9/AAED2000
|
6 |
|
|
//
|
7 |
|
|
//==========================================================================
|
8 |
|
|
// ####ECOSGPLCOPYRIGHTBEGIN####
|
9 |
|
|
// -------------------------------------------
|
10 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
11 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
12 |
|
|
//
|
13 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
14 |
|
|
// the terms of the GNU General Public License as published by the Free
|
15 |
|
|
// Software Foundation; either version 2 or (at your option) any later
|
16 |
|
|
// version.
|
17 |
|
|
//
|
18 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT
|
19 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
20 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
21 |
|
|
// for more details.
|
22 |
|
|
//
|
23 |
|
|
// You should have received a copy of the GNU General Public License
|
24 |
|
|
// along with eCos; if not, write to the Free Software Foundation, Inc.,
|
25 |
|
|
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
26 |
|
|
//
|
27 |
|
|
// As a special exception, if other files instantiate templates or use
|
28 |
|
|
// macros or inline functions from this file, or you compile this file
|
29 |
|
|
// and link it with other works to produce a work based on this file,
|
30 |
|
|
// this file does not by itself cause the resulting work to be covered by
|
31 |
|
|
// the GNU General Public License. However the source code for this file
|
32 |
|
|
// must still be made available in accordance with section (3) of the GNU
|
33 |
|
|
// General Public License v2.
|
34 |
|
|
//
|
35 |
|
|
// This exception does not invalidate any other reasons why a work based
|
36 |
|
|
// on this file might be covered by the GNU General Public License.
|
37 |
|
|
// -------------------------------------------
|
38 |
|
|
// ####ECOSGPLCOPYRIGHTEND####
|
39 |
|
|
//==========================================================================
|
40 |
|
|
//#####DESCRIPTIONBEGIN####
|
41 |
|
|
//
|
42 |
|
|
// Author(s): gthomas
|
43 |
|
|
// Contributors: hmt, Travis C. Furrer <furrer@mit.edu>, jskov
|
44 |
|
|
// Date: 2000-05-21
|
45 |
|
|
// Purpose: HAL board support
|
46 |
|
|
// Description: Implementations of HAL board interfaces
|
47 |
|
|
//
|
48 |
|
|
//####DESCRIPTIONEND####
|
49 |
|
|
//
|
50 |
|
|
//========================================================================*/
|
51 |
|
|
|
52 |
|
|
#include <pkgconf/hal.h>
|
53 |
|
|
#include <pkgconf/system.h>
|
54 |
|
|
#include CYGBLD_HAL_PLATFORM_H
|
55 |
|
|
|
56 |
|
|
#include <cyg/infra/cyg_type.h> // base types
|
57 |
|
|
#include <cyg/infra/cyg_trac.h> // tracing macros
|
58 |
|
|
#include <cyg/infra/cyg_ass.h> // assertion macros
|
59 |
|
|
|
60 |
|
|
#include <cyg/hal/hal_io.h> // IO macros
|
61 |
|
|
#include <cyg/hal/hal_arch.h> // Register state info
|
62 |
|
|
#include <cyg/hal/hal_diag.h>
|
63 |
|
|
#include <cyg/hal/hal_intr.h> // Interrupt names
|
64 |
|
|
#include <cyg/hal/hal_cache.h>
|
65 |
|
|
#include <cyg/hal/aaed2000.h> // Platform specifics
|
66 |
|
|
|
67 |
|
|
#include <cyg/infra/diag.h> // diag_printf
|
68 |
|
|
|
69 |
|
|
#include <string.h> // memset
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
// -------------------------------------------------------------------------
|
73 |
|
|
// MMU initialization:
|
74 |
|
|
//
|
75 |
|
|
// These structures are laid down in memory to define the translation
|
76 |
|
|
// table.
|
77 |
|
|
//
|
78 |
|
|
|
79 |
|
|
/*
|
80 |
|
|
* ARM Translation Table Base Bit Masks */
|
81 |
|
|
#define ARM_TRANSLATION_TABLE_MASK 0xFFFFC000
|
82 |
|
|
|
83 |
|
|
/*
|
84 |
|
|
* ARM Domain Access Control Bit Masks
|
85 |
|
|
*/
|
86 |
|
|
#define ARM_ACCESS_TYPE_NO_ACCESS(domain_num) (0x0 << (domain_num)*2)
|
87 |
|
|
#define ARM_ACCESS_TYPE_CLIENT(domain_num) (0x1 << (domain_num)*2)
|
88 |
|
|
#define ARM_ACCESS_TYPE_MANAGER(domain_num) (0x3 << (domain_num)*2)
|
89 |
|
|
|
90 |
|
|
struct ARM_MMU_FIRST_LEVEL_FAULT {
|
91 |
|
|
int id : 2;
|
92 |
|
|
int sbz : 30;
|
93 |
|
|
};
|
94 |
|
|
#define ARM_MMU_FIRST_LEVEL_FAULT_ID 0x0
|
95 |
|
|
|
96 |
|
|
struct ARM_MMU_FIRST_LEVEL_PAGE_TABLE {
|
97 |
|
|
int id : 2;
|
98 |
|
|
int imp : 2;
|
99 |
|
|
int domain : 4;
|
100 |
|
|
int sbz : 1;
|
101 |
|
|
int base_address : 23;
|
102 |
|
|
};
|
103 |
|
|
#define ARM_MMU_FIRST_LEVEL_PAGE_TABLE_ID 0x1
|
104 |
|
|
|
105 |
|
|
struct ARM_MMU_FIRST_LEVEL_SECTION {
|
106 |
|
|
int id : 2;
|
107 |
|
|
int b : 1;
|
108 |
|
|
int c : 1;
|
109 |
|
|
int imp : 1;
|
110 |
|
|
int domain : 4;
|
111 |
|
|
int sbz0 : 1;
|
112 |
|
|
int ap : 2;
|
113 |
|
|
int sbz1 : 8;
|
114 |
|
|
int base_address : 12;
|
115 |
|
|
};
|
116 |
|
|
#define ARM_MMU_FIRST_LEVEL_SECTION_ID 0x2
|
117 |
|
|
|
118 |
|
|
struct ARM_MMU_FIRST_LEVEL_RESERVED {
|
119 |
|
|
int id : 2;
|
120 |
|
|
int sbz : 30;
|
121 |
|
|
};
|
122 |
|
|
#define ARM_MMU_FIRST_LEVEL_RESERVED_ID 0x3
|
123 |
|
|
|
124 |
|
|
#define ARM_MMU_FIRST_LEVEL_DESCRIPTOR_ADDRESS(ttb_base, table_index) \
|
125 |
|
|
(unsigned long *)((unsigned long)(ttb_base) + ((table_index) << 2))
|
126 |
|
|
|
127 |
|
|
#define ARM_FIRST_LEVEL_PAGE_TABLE_SIZE 0x4000
|
128 |
|
|
|
129 |
|
|
#define ARM_MMU_SECTION(ttb_base, actual_base, virtual_base, \
|
130 |
|
|
cacheable, bufferable, perm) \
|
131 |
|
|
CYG_MACRO_START \
|
132 |
|
|
register union ARM_MMU_FIRST_LEVEL_DESCRIPTOR desc; \
|
133 |
|
|
\
|
134 |
|
|
desc.word = 0; \
|
135 |
|
|
desc.section.id = ARM_MMU_FIRST_LEVEL_SECTION_ID; \
|
136 |
|
|
desc.section.imp = 1; \
|
137 |
|
|
desc.section.domain = 0; \
|
138 |
|
|
desc.section.c = (cacheable); \
|
139 |
|
|
desc.section.b = (bufferable); \
|
140 |
|
|
desc.section.ap = (perm); \
|
141 |
|
|
desc.section.base_address = (actual_base); \
|
142 |
|
|
*ARM_MMU_FIRST_LEVEL_DESCRIPTOR_ADDRESS(ttb_base, (virtual_base)) \
|
143 |
|
|
= desc.word; \
|
144 |
|
|
CYG_MACRO_END
|
145 |
|
|
|
146 |
|
|
#define X_ARM_MMU_SECTION(abase,vbase,size,cache,buff,access) \
|
147 |
|
|
{ int i; int j = abase; int k = vbase; \
|
148 |
|
|
for (i = size; i > 0 ; i--,j++,k++) \
|
149 |
|
|
{ \
|
150 |
|
|
ARM_MMU_SECTION(ttb_base, j, k, cache, buff, access); \
|
151 |
|
|
} \
|
152 |
|
|
}
|
153 |
|
|
|
154 |
|
|
union ARM_MMU_FIRST_LEVEL_DESCRIPTOR {
|
155 |
|
|
unsigned long word;
|
156 |
|
|
struct ARM_MMU_FIRST_LEVEL_FAULT fault;
|
157 |
|
|
struct ARM_MMU_FIRST_LEVEL_PAGE_TABLE page_table;
|
158 |
|
|
struct ARM_MMU_FIRST_LEVEL_SECTION section;
|
159 |
|
|
struct ARM_MMU_FIRST_LEVEL_RESERVED reserved;
|
160 |
|
|
};
|
161 |
|
|
|
162 |
|
|
#define ARM_UNCACHEABLE 0
|
163 |
|
|
#define ARM_CACHEABLE 1
|
164 |
|
|
#define ARM_UNBUFFERABLE 0
|
165 |
|
|
#define ARM_BUFFERABLE 1
|
166 |
|
|
|
167 |
|
|
#define ARM_ACCESS_PERM_NONE_NONE 0
|
168 |
|
|
#define ARM_ACCESS_PERM_RO_NONE 0
|
169 |
|
|
#define ARM_ACCESS_PERM_RO_RO 0
|
170 |
|
|
#define ARM_ACCESS_PERM_RW_NONE 1
|
171 |
|
|
#define ARM_ACCESS_PERM_RW_RO 2
|
172 |
|
|
#define ARM_ACCESS_PERM_RW_RW 3
|
173 |
|
|
|
174 |
|
|
void
|
175 |
|
|
hal_mmu_init(void)
|
176 |
|
|
{
|
177 |
|
|
unsigned long ttb_base = AAED2000_SDRAM_PHYS_BASE + 0x4000;
|
178 |
|
|
unsigned long i;
|
179 |
|
|
|
180 |
|
|
/*
|
181 |
|
|
* Set the TTB register
|
182 |
|
|
*/
|
183 |
|
|
asm volatile ("mcr p15,0,%0,c2,c0,0" : : "r"(ttb_base) /*:*/);
|
184 |
|
|
|
185 |
|
|
/*
|
186 |
|
|
* Set the Domain Access Control Register
|
187 |
|
|
*/
|
188 |
|
|
i = ARM_ACCESS_TYPE_MANAGER(0) |
|
189 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(1) |
|
190 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(2) |
|
191 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(3) |
|
192 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(4) |
|
193 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(5) |
|
194 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(6) |
|
195 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(7) |
|
196 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(8) |
|
197 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(9) |
|
198 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(10) |
|
199 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(11) |
|
200 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(12) |
|
201 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(13) |
|
202 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(14) |
|
203 |
|
|
ARM_ACCESS_TYPE_NO_ACCESS(15);
|
204 |
|
|
asm volatile ("mcr p15,0,%0,c3,c0,0" : : "r"(i) /*:*/);
|
205 |
|
|
|
206 |
|
|
/*
|
207 |
|
|
* First clear all TT entries - ie Set them to Faulting
|
208 |
|
|
*/
|
209 |
|
|
memset((void *)ttb_base, 0, ARM_FIRST_LEVEL_PAGE_TABLE_SIZE);
|
210 |
|
|
|
211 |
|
|
/* Actual Virtual Size Attributes Function */
|
212 |
|
|
/* Base Base MB cached? buffered? access permissions */
|
213 |
|
|
/* xxx00000 xxx00000 */
|
214 |
|
|
X_ARM_MMU_SECTION(0x000, 0x600, 32, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* Boot flash ROMspace CS0 */
|
215 |
|
|
X_ARM_MMU_SECTION(0x100, 0x100, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* Ethernet */
|
216 |
|
|
X_ARM_MMU_SECTION(0x300, 0x300, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* AAED2000 board registers */
|
217 |
|
|
X_ARM_MMU_SECTION(0x400, 0x400, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* PCMCIA slot - I/O */
|
218 |
|
|
X_ARM_MMU_SECTION(0x440, 0x440, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* PCMCIA slot - stat*/
|
219 |
|
|
X_ARM_MMU_SECTION(0x480, 0x480, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* PCMCIA slot - attribute */
|
220 |
|
|
X_ARM_MMU_SECTION(0x4C0, 0x4C0, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* PCMCIA slot - common */
|
221 |
|
|
X_ARM_MMU_SECTION(0x500, 0x500, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* CF slot - I/O */
|
222 |
|
|
X_ARM_MMU_SECTION(0x540, 0x540, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* CF slot - stat*/
|
223 |
|
|
X_ARM_MMU_SECTION(0x580, 0x580, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* CF slot - attribute */
|
224 |
|
|
X_ARM_MMU_SECTION(0x5C0, 0x5C0, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* CF slot - common */
|
225 |
|
|
X_ARM_MMU_SECTION(0x800, 0x800, 1, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* AAEC2000 registers */
|
226 |
|
|
// DRAM is non-contiguous, laid out in weird and wonderful ways...
|
227 |
|
|
X_ARM_MMU_SECTION(0xF00, 0x000, 4, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* SDRAM */
|
228 |
|
|
X_ARM_MMU_SECTION(0xF10, 0x004, 4, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* SDRAM */
|
229 |
|
|
X_ARM_MMU_SECTION(0xF40, 0x008, 4, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* SDRAM */
|
230 |
|
|
X_ARM_MMU_SECTION(0xF50, 0x00C, 4, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* SDRAM */
|
231 |
|
|
X_ARM_MMU_SECTION(0xF80, 0x010, 4, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* SDRAM */
|
232 |
|
|
X_ARM_MMU_SECTION(0xF90, 0x014, 4, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* SDRAM */
|
233 |
|
|
X_ARM_MMU_SECTION(0xFC0, 0x018, 4, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* SDRAM */
|
234 |
|
|
X_ARM_MMU_SECTION(0xFD0, 0x01C, 4, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* SDRAM */
|
235 |
|
|
// Map in DRAM raw as well
|
236 |
|
|
X_ARM_MMU_SECTION(0xF00, 0xF00, 256, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* Raw SDRAM */
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
//
|
240 |
|
|
// Platform specific initialization
|
241 |
|
|
//
|
242 |
|
|
void
|
243 |
|
|
plf_hardware_init(void)
|
244 |
|
|
{
|
245 |
|
|
HAL_WRITE_UINT8(AAEC_PCDR, 0x22);
|
246 |
|
|
HAL_WRITE_UINT8(AAEC_PCCDR, 0);
|
247 |
|
|
HAL_WRITE_UINT8(AAEC_PBDDR, 0x83);
|
248 |
|
|
HAL_WRITE_UINT8(AAEC_PINMUX,
|
249 |
|
|
AAEC_PINMUX_UART3CON | AAEC_PINMUX_PD0CON | AAEC_PINMUX_PE0CON);
|
250 |
|
|
|
251 |
|
|
// FIXME - all platform interrupt sources should be configured here
|
252 |
|
|
HAL_INTERRUPT_CONFIGURE(CYGNUM_HAL_INTERRUPT_TS, 0, 0 ); // Low pulse
|
253 |
|
|
HAL_INTERRUPT_CONFIGURE(CYGNUM_HAL_INTERRUPT_ETH, 0, 1 ); // High pulse
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
//
|
257 |
|
|
// Support for platform specific I/O channels
|
258 |
|
|
//
|
259 |
|
|
|
260 |
|
|
externC void lcd_comm_init(void);
|
261 |
|
|
|
262 |
|
|
void
|
263 |
|
|
plf_if_init(void)
|
264 |
|
|
{
|
265 |
|
|
aaed2000_KeyboardInit();
|
266 |
|
|
#ifdef CYGSEM_AAED2000_LCD_COMM
|
267 |
|
|
// Initialize I/O channel
|
268 |
|
|
lcd_comm_init();
|
269 |
|
|
#endif
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
// -------------------------------------------------------------------------
|
273 |
|
|
void hal_clock_initialize(cyg_uint32 period)
|
274 |
|
|
{
|
275 |
|
|
// Use timer1 for the kernel clock
|
276 |
|
|
HAL_WRITE_UINT32(AAEC_TMR_T1LOAD, period);
|
277 |
|
|
HAL_WRITE_UINT32(AAEC_TMR_T1CONTROL,
|
278 |
|
|
AAEC_TMR_TxCONTROL_ENABLE
|
279 |
|
|
| AAEC_TMR_TxCONTROL_MODE_PERIODIC
|
280 |
|
|
| AAEC_TMR_TxCONTROL_508KHZ);
|
281 |
|
|
|
282 |
|
|
// Unmask timer 0 interrupt
|
283 |
|
|
HAL_INTERRUPT_CONFIGURE( CYGNUM_HAL_INTERRUPT_RTC, 1, 1 );
|
284 |
|
|
HAL_INTERRUPT_UNMASK( CYGNUM_HAL_INTERRUPT_RTC );
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
// This routine is called during a clock interrupt.
|
288 |
|
|
void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period)
|
289 |
|
|
{
|
290 |
|
|
// Clear pending interrupt bit
|
291 |
|
|
HAL_INTERRUPT_ACKNOWLEDGE(vector);
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
// Read the current value of the clock, returning the number of hardware
|
295 |
|
|
// "ticks" that have occurred (i.e. how far away the current value is from
|
296 |
|
|
// the start)
|
297 |
|
|
|
298 |
|
|
// Note: The "contract" for this function is that the value is the number
|
299 |
|
|
// of hardware clocks that have happened since the last interrupt (i.e.
|
300 |
|
|
// when it was reset).
|
301 |
|
|
|
302 |
|
|
void hal_clock_read(cyg_uint32 *pvalue)
|
303 |
|
|
{
|
304 |
|
|
cyg_uint32 ctr;
|
305 |
|
|
|
306 |
|
|
HAL_READ_UINT32(AAEC_TMR_T1VALUE, ctr);
|
307 |
|
|
ctr = CYGNUM_HAL_RTC_PERIOD - ctr;
|
308 |
|
|
*pvalue = ctr;
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
//
|
312 |
|
|
// Delay for some number of micro-seconds
|
313 |
|
|
// Use timer #3 which runs at [fixed] 7.3728 MHz
|
314 |
|
|
// Since this is only a 16 bit counter, it may be necessary
|
315 |
|
|
// to run a loop to achieve sufficiently large delay values.
|
316 |
|
|
//
|
317 |
|
|
// Note: The 7.3728MHz value does not seem to work in practice
|
318 |
|
|
// It seems to be off by about a factor of 2.
|
319 |
|
|
//
|
320 |
|
|
void hal_delay_us(cyg_int32 usecs)
|
321 |
|
|
{
|
322 |
|
|
static struct _tmr_vals {
|
323 |
|
|
int us_val, tmr_val;
|
324 |
|
|
} tmr_vals[] = {
|
325 |
|
|
{ 2*1000, 7372 },
|
326 |
|
|
{ 2*100, 737 },
|
327 |
|
|
{ 2*10, 74 },
|
328 |
|
|
{ 2*1, 7 },
|
329 |
|
|
{ 0, 0 }
|
330 |
|
|
};
|
331 |
|
|
struct _tmr_vals *vals = tmr_vals;
|
332 |
|
|
cyg_uint32 state;
|
333 |
|
|
|
334 |
|
|
while (vals->tmr_val) {
|
335 |
|
|
while (usecs >= vals->us_val) {
|
336 |
|
|
// disable timer #3
|
337 |
|
|
HAL_WRITE_UINT32(AAEC_TMR_T3CONTROL, 0);
|
338 |
|
|
HAL_WRITE_UINT32(AAEC_TMR_T3EOI, 0);
|
339 |
|
|
// configure for tmr_val
|
340 |
|
|
HAL_WRITE_UINT32(AAEC_TMR_T3LOAD, vals->tmr_val);
|
341 |
|
|
// enable
|
342 |
|
|
HAL_WRITE_UINT32(AAEC_TMR_T3CONTROL,
|
343 |
|
|
AAEC_TMR_TxCONTROL_ENABLE | AAEC_TMR_TxCONTROL_MODE_FREE);
|
344 |
|
|
// wait for overflow
|
345 |
|
|
do {
|
346 |
|
|
HAL_READ_UINT32(AAEC_INT_RSR, state);
|
347 |
|
|
} while ((state & (1<<AAEC_INTS_T3OI)) == 0);
|
348 |
|
|
usecs -= vals->us_val;
|
349 |
|
|
}
|
350 |
|
|
vals++;
|
351 |
|
|
}
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
// -------------------------------------------------------------------------
|
355 |
|
|
|
356 |
|
|
// This routine is called to respond to a hardware interrupt (IRQ). It
|
357 |
|
|
// should interrogate the hardware and return the IRQ vector number.
|
358 |
|
|
int hal_IRQ_handler(void)
|
359 |
|
|
{
|
360 |
|
|
int irq = CYGNUM_HAL_INTERRUPT_NONE;
|
361 |
|
|
int vec;
|
362 |
|
|
cyg_uint32 sr;
|
363 |
|
|
|
364 |
|
|
HAL_READ_UINT32(AAEC_INT_SR, sr);
|
365 |
|
|
for (vec = 0; vec <= CYGNUM_HAL_INTERRUPT_BMIINTR; vec++) {
|
366 |
|
|
if (sr & (1<<vec)) {
|
367 |
|
|
irq = vec;
|
368 |
|
|
break;
|
369 |
|
|
}
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
return irq;
|
373 |
|
|
}
|
374 |
|
|
|
375 |
|
|
//
|
376 |
|
|
// Interrupt control
|
377 |
|
|
//
|
378 |
|
|
|
379 |
|
|
struct {
|
380 |
|
|
int gpio_int; // GPIO (F) interrupt source
|
381 |
|
|
cyg_haladdress eoi; // Acknowledge location
|
382 |
|
|
} AAED2000_INTMAP[] = {
|
383 |
|
|
{ 0, 0}, // CYGNUM_HAL_INTERRUPT_TS CYGNUM_HAL_INTERRUPT_GPIO0FIQ
|
384 |
|
|
{-1, AAEC_CSC_BLEOI}, // CYGNUM_HAL_INTERRUPT_BLINT 1
|
385 |
|
|
{-1, AAEC_CSC_TEOI}, // CYGNUM_HAL_INTERRUPT_WEINT 2
|
386 |
|
|
{-1, AAEC_CSC_MCEOI}, // CYGNUM_HAL_INTERRUPT_MCINT 3
|
387 |
|
|
{-1, AAEC_COD_CDEOI}, // CYGNUM_HAL_INTERRUPT_CSINT 4
|
388 |
|
|
{ 1, 0}, // CYGNUM_HAL_INTERRUPT_ETH CYGNUM_HAL_INTERRUPT_GPIO1INTR
|
389 |
|
|
{ 2, 0}, // CYGNUM_HAL_INTERRUPT_PCMCIA_CD2 CYGNUM_HAL_INTERRUPT_GPIO2INTR
|
390 |
|
|
{ 3, 0}, // CYGNUM_HAL_INTERRUPT_PCMCIA_CD1 CYGNUM_HAL_INTERRUPT_GPIO3INTR
|
391 |
|
|
{-1, AAEC_TMR_T1EOI}, // CYGNUM_HAL_INTERRUPT_TC1OI 8
|
392 |
|
|
{-1, AAEC_TMR_T2EOI}, // CYGNUM_HAL_INTERRUPT_TC2OI 9
|
393 |
|
|
{-1, AAEC_RTC_RTCEOI},// CYGNUM_HAL_INTERRUPT_RTCMI 10
|
394 |
|
|
{-1, AAEC_CSC_TEOI}, // CYGNUM_HAL_INTERRUPT_TINTR 11
|
395 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_UART1INTR 12
|
396 |
|
|
{-1, AAEC_UART2_UMS2EOI}, // CYGNUM_HAL_INTERRUPT_UART2INTR 13
|
397 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_LCDINTR 14
|
398 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_SSEOTI 15
|
399 |
|
|
{-1, AAEC_UART2_UMS3EOI}, // CYGNUM_HAL_INTERRUPT_UART3INTR 16
|
400 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_SCIINTR 17
|
401 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_AACINTR 18
|
402 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_MMCINTR 19
|
403 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_USBINTR 20
|
404 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_DMAINTR 21
|
405 |
|
|
{-1, AAEC_TMR_T3EOI}, // CYGNUM_HAL_INTERRUPT_TC3OI 22
|
406 |
|
|
{ 4, 0}, // CYGNUM_HAL_INTERRUPT_SCI_VCCEN CYGNUM_HAL_INTERRUPT_GPIO4INTR
|
407 |
|
|
{ 5, 0}, // CYGNUM_HAL_INTERRUPT_SCI_DETECT CYGNUM_HAL_INTERRUPT_GPIO5INTR
|
408 |
|
|
{ 6, 0}, // CYGNUM_HAL_INTERRUPT_PCMCIA_RDY1 CYGNUM_HAL_INTERRUPT_GPIO6INTR
|
409 |
|
|
{ 7, 0}, // CYGNUM_HAL_INTERRUPT_PCMCIA_RDY2 CYGNUM_HAL_INTERRUPT_GPIO7INTR
|
410 |
|
|
{-1, 0}, // CYGNUM_HAL_INTERRUPT_BMIINTR 27
|
411 |
|
|
};
|
412 |
|
|
|
413 |
|
|
void hal_interrupt_mask(int vector)
|
414 |
|
|
{
|
415 |
|
|
CYG_ASSERT(vector <= CYGNUM_HAL_ISR_MAX &&
|
416 |
|
|
vector >= CYGNUM_HAL_ISR_MIN , "Invalid vector");
|
417 |
|
|
|
418 |
|
|
if (vector <= CYGNUM_HAL_INTERRUPT_BMIINTR) {
|
419 |
|
|
HAL_WRITE_UINT32(AAEC_INT_ENC, (1 << vector));
|
420 |
|
|
}
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
void hal_interrupt_unmask(int vector)
|
424 |
|
|
{
|
425 |
|
|
CYG_ASSERT(vector <= CYGNUM_HAL_ISR_MAX &&
|
426 |
|
|
vector >= CYGNUM_HAL_ISR_MIN , "Invalid vector");
|
427 |
|
|
|
428 |
|
|
if (vector <= CYGNUM_HAL_INTERRUPT_BMIINTR) {
|
429 |
|
|
HAL_WRITE_UINT32(AAEC_INT_ENS, (1 << vector));
|
430 |
|
|
}
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
void hal_interrupt_acknowledge(int vector)
|
434 |
|
|
{
|
435 |
|
|
cyg_haladdress eoi;
|
436 |
|
|
int gpio;
|
437 |
|
|
CYG_ASSERT(vector <= CYGNUM_HAL_ISR_MAX &&
|
438 |
|
|
vector >= CYGNUM_HAL_ISR_MIN , "Invalid vector");
|
439 |
|
|
|
440 |
|
|
if (vector <= CYGNUM_HAL_INTERRUPT_BMIINTR) {
|
441 |
|
|
// Must be cleared at the source
|
442 |
|
|
if ((eoi = AAED2000_INTMAP[vector].eoi) != 0) {
|
443 |
|
|
HAL_WRITE_UINT32(eoi, 0); // Any write clears interrupt
|
444 |
|
|
} else if ((gpio = AAED2000_INTMAP[vector].gpio_int) >= 0) {
|
445 |
|
|
// GPIO interrupts require special care
|
446 |
|
|
HAL_WRITE_UINT32(AAEC_GPIO_FEOI, (1<<gpio));
|
447 |
|
|
}
|
448 |
|
|
}
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
void hal_interrupt_configure(int vector, int level, int up)
|
452 |
|
|
{
|
453 |
|
|
int gpio;
|
454 |
|
|
CYG_ASSERT(vector <= CYGNUM_HAL_ISR_MAX &&
|
455 |
|
|
vector >= CYGNUM_HAL_ISR_MIN , "Invalid vector");
|
456 |
|
|
if (vector <= CYGNUM_HAL_INTERRUPT_BMIINTR) {
|
457 |
|
|
if ((gpio = AAED2000_INTMAP[vector].gpio_int) >= 0) {
|
458 |
|
|
// Only GPIO interrupts can be configured
|
459 |
|
|
int mask = (1<<gpio);
|
460 |
|
|
cyg_uint32 cur;
|
461 |
|
|
// Set type (level or edge)
|
462 |
|
|
HAL_READ_UINT32(AAEC_GPIO_INT_TYPE1, cur);
|
463 |
|
|
if (level) {
|
464 |
|
|
// Level driven
|
465 |
|
|
cur &= ~mask;
|
466 |
|
|
} else {
|
467 |
|
|
// Edge driven
|
468 |
|
|
cur |= mask;
|
469 |
|
|
}
|
470 |
|
|
HAL_WRITE_UINT32(AAEC_GPIO_INT_TYPE1, cur);
|
471 |
|
|
// Set level (high/rising or low/falling)
|
472 |
|
|
HAL_READ_UINT32(AAEC_GPIO_INT_TYPE2, cur);
|
473 |
|
|
if (up) {
|
474 |
|
|
// Trigger on high/rising
|
475 |
|
|
cur |= mask;
|
476 |
|
|
} else {
|
477 |
|
|
// Trigger on low/falling
|
478 |
|
|
cur &= ~mask;
|
479 |
|
|
}
|
480 |
|
|
HAL_WRITE_UINT32(AAEC_GPIO_INT_TYPE2, cur);
|
481 |
|
|
// Enable as interrupt
|
482 |
|
|
HAL_READ_UINT32(AAEC_GPIO_INTEN, cur);
|
483 |
|
|
cur |= mask;
|
484 |
|
|
HAL_WRITE_UINT32(AAEC_GPIO_INTEN, cur);
|
485 |
|
|
}
|
486 |
|
|
}
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
void hal_interrupt_set_level(int vector, int level)
|
490 |
|
|
{
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
cyg_uint32
|
494 |
|
|
hal_virt_to_phys_address(cyg_uint32 virt)
|
495 |
|
|
{
|
496 |
|
|
cyg_uint32 phys = 0xFFFFFFFF, dram_page;
|
497 |
|
|
static cyg_uint32 _dram_map[] = {
|
498 |
|
|
0xF0000000, 0xF1000000, 0xF4000000, 0xF5000000,
|
499 |
|
|
0xF8000000, 0xF9000000, 0xFC000000, 0xFD000000
|
500 |
|
|
};
|
501 |
|
|
|
502 |
|
|
// Hard-wired, rather than walk the tables
|
503 |
|
|
switch ((virt & 0xF0000000) >> 28) {
|
504 |
|
|
case 0x0: // DRAM
|
505 |
|
|
if ((virt & 0x0E000000) == 0) {
|
506 |
|
|
dram_page = _dram_map[((virt & 0x01C00000) >> 22)];
|
507 |
|
|
phys = dram_page | virt;
|
508 |
|
|
} else {
|
509 |
|
|
phys = 0xFFFFFFFF;
|
510 |
|
|
}
|
511 |
|
|
break;
|
512 |
|
|
case 0x6: // FLASH
|
513 |
|
|
phys = (virt & 0x0FFFFFFF);
|
514 |
|
|
break;
|
515 |
|
|
case 0x1:
|
516 |
|
|
case 0x2:
|
517 |
|
|
case 0x7:
|
518 |
|
|
case 0x9:
|
519 |
|
|
case 0xA:
|
520 |
|
|
case 0xB:
|
521 |
|
|
case 0xC:
|
522 |
|
|
case 0xD:
|
523 |
|
|
case 0xE:
|
524 |
|
|
// Not mapped
|
525 |
|
|
phys = 0xFFFFFFFF;
|
526 |
|
|
break;
|
527 |
|
|
case 0x3:
|
528 |
|
|
case 0x4:
|
529 |
|
|
case 0x5:
|
530 |
|
|
case 0x8:
|
531 |
|
|
case 0xF:
|
532 |
|
|
// Mapped 1-1
|
533 |
|
|
phys = virt;
|
534 |
|
|
break;
|
535 |
|
|
}
|
536 |
|
|
return phys;
|
537 |
|
|
}
|