1 |
786 |
skrzyp |
//==========================================================================
|
2 |
|
|
//
|
3 |
|
|
// iop310_misc.c
|
4 |
|
|
//
|
5 |
|
|
// HAL misc board support code for XScale IOP310
|
6 |
|
|
//
|
7 |
|
|
//==========================================================================
|
8 |
|
|
// ####ECOSGPLCOPYRIGHTBEGIN####
|
9 |
|
|
// -------------------------------------------
|
10 |
|
|
// This file is part of eCos, the Embedded Configurable Operating System.
|
11 |
|
|
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
12 |
|
|
//
|
13 |
|
|
// eCos is free software; you can redistribute it and/or modify it under
|
14 |
|
|
// the terms of the GNU General Public License as published by the Free
|
15 |
|
|
// Software Foundation; either version 2 or (at your option) any later
|
16 |
|
|
// version.
|
17 |
|
|
//
|
18 |
|
|
// eCos is distributed in the hope that it will be useful, but WITHOUT
|
19 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
20 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
21 |
|
|
// for more details.
|
22 |
|
|
//
|
23 |
|
|
// You should have received a copy of the GNU General Public License
|
24 |
|
|
// along with eCos; if not, write to the Free Software Foundation, Inc.,
|
25 |
|
|
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
26 |
|
|
//
|
27 |
|
|
// As a special exception, if other files instantiate templates or use
|
28 |
|
|
// macros or inline functions from this file, or you compile this file
|
29 |
|
|
// and link it with other works to produce a work based on this file,
|
30 |
|
|
// this file does not by itself cause the resulting work to be covered by
|
31 |
|
|
// the GNU General Public License. However the source code for this file
|
32 |
|
|
// must still be made available in accordance with section (3) of the GNU
|
33 |
|
|
// General Public License v2.
|
34 |
|
|
//
|
35 |
|
|
// This exception does not invalidate any other reasons why a work based
|
36 |
|
|
// on this file might be covered by the GNU General Public License.
|
37 |
|
|
// -------------------------------------------
|
38 |
|
|
// ####ECOSGPLCOPYRIGHTEND####
|
39 |
|
|
//==========================================================================
|
40 |
|
|
//#####DESCRIPTIONBEGIN####
|
41 |
|
|
//
|
42 |
|
|
// Author(s): msalter
|
43 |
|
|
// Contributors: msalter, gthomas
|
44 |
|
|
// Date: 2000-10-10
|
45 |
|
|
// Purpose: HAL board support
|
46 |
|
|
// Description: Implementations of HAL board interfaces
|
47 |
|
|
//
|
48 |
|
|
//####DESCRIPTIONEND####
|
49 |
|
|
//
|
50 |
|
|
//========================================================================*/
|
51 |
|
|
|
52 |
|
|
#include <pkgconf/hal.h>
|
53 |
|
|
#include <pkgconf/system.h>
|
54 |
|
|
#include CYGBLD_HAL_PLATFORM_H
|
55 |
|
|
#include CYGHWR_MEMORY_LAYOUT_H
|
56 |
|
|
|
57 |
|
|
#include <cyg/infra/cyg_type.h> // base types
|
58 |
|
|
#include <cyg/infra/cyg_trac.h> // tracing macros
|
59 |
|
|
#include <cyg/infra/cyg_ass.h> // assertion macros
|
60 |
|
|
|
61 |
|
|
#include <cyg/hal/hal_io.h> // IO macros
|
62 |
|
|
#include <cyg/hal/hal_stub.h> // Stub macros
|
63 |
|
|
#include <cyg/hal/hal_if.h> // calling interface API
|
64 |
|
|
#include <cyg/hal/hal_arch.h> // Register state info
|
65 |
|
|
#include <cyg/hal/hal_diag.h>
|
66 |
|
|
#include <cyg/hal/hal_intr.h> // Interrupt names
|
67 |
|
|
#include <cyg/hal/hal_cache.h>
|
68 |
|
|
#include <cyg/hal/hal_iop310.h> // Hardware definitions
|
69 |
|
|
#include <cyg/infra/diag.h> // diag_printf
|
70 |
|
|
#include <cyg/hal/drv_api.h> // CYG_ISR_HANDLED
|
71 |
|
|
|
72 |
|
|
static cyg_uint32 nfiq_ISR(cyg_vector_t vector, cyg_addrword_t data);
|
73 |
|
|
static cyg_uint32 nirq_ISR(cyg_vector_t vector, cyg_addrword_t data);
|
74 |
|
|
static cyg_uint32 nmi_mcu_ISR(cyg_vector_t vector, cyg_addrword_t data);
|
75 |
|
|
static cyg_uint32 nmi_patu_ISR(cyg_vector_t vector, cyg_addrword_t data);
|
76 |
|
|
static cyg_uint32 nmi_satu_ISR(cyg_vector_t vector, cyg_addrword_t data);
|
77 |
|
|
static cyg_uint32 nmi_pb_ISR(cyg_vector_t vector, cyg_addrword_t data);
|
78 |
|
|
static cyg_uint32 nmi_sb_ISR(cyg_vector_t vector, cyg_addrword_t data);
|
79 |
|
|
|
80 |
|
|
// Some initialization has already been done before we get here.
|
81 |
|
|
//
|
82 |
|
|
// Set up the interrupt environment.
|
83 |
|
|
// Set up the MMU so that we can use caches.
|
84 |
|
|
// Enable caches.
|
85 |
|
|
// - All done!
|
86 |
|
|
|
87 |
|
|
void hal_hardware_init(void)
|
88 |
|
|
{
|
89 |
|
|
hal_xscale_core_init();
|
90 |
|
|
|
91 |
|
|
// Route INTA-INTD to IRQ pin
|
92 |
|
|
// The Yavapai manual is incorrect in that a '1' value
|
93 |
|
|
// routes to the IRQ line, not a '0' value.
|
94 |
|
|
*PIRSR_REG = 0x0f;
|
95 |
|
|
|
96 |
|
|
// Disable all interrupt sources:
|
97 |
|
|
*IIMR_REG = 0x7f;
|
98 |
|
|
*OIMR_REG = 0x7f; // don't mask INTD which is really xint3
|
99 |
|
|
|
100 |
|
|
// Let the platform do any specific initializations
|
101 |
|
|
hal_plf_hardware_init();
|
102 |
|
|
|
103 |
|
|
// Mask off all interrupts via xint3
|
104 |
|
|
*X3MASK_REG = 0x1F;
|
105 |
|
|
|
106 |
|
|
// Let the timer run at a default rate (for delays)
|
107 |
|
|
hal_clock_initialize(CYGNUM_HAL_RTC_PERIOD);
|
108 |
|
|
|
109 |
|
|
// Set up eCos/ROM interfaces
|
110 |
|
|
hal_if_init();
|
111 |
|
|
|
112 |
|
|
// attach some builtin interrupt handlers
|
113 |
|
|
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_NIRQ, &nirq_ISR, CYGNUM_HAL_INTERRUPT_NIRQ, 0);
|
114 |
|
|
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_NIRQ);
|
115 |
|
|
|
116 |
|
|
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_NFIQ, &nfiq_ISR, CYGNUM_HAL_INTERRUPT_NFIQ, 0);
|
117 |
|
|
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_NFIQ);
|
118 |
|
|
|
119 |
|
|
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_MCU_ERR, &nmi_mcu_ISR, CYGNUM_HAL_INTERRUPT_MCU_ERR, 0);
|
120 |
|
|
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_MCU_ERR);
|
121 |
|
|
|
122 |
|
|
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_PATU_ERR, &nmi_patu_ISR, CYGNUM_HAL_INTERRUPT_PATU_ERR, 0);
|
123 |
|
|
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_PATU_ERR);
|
124 |
|
|
|
125 |
|
|
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_SATU_ERR, &nmi_satu_ISR, CYGNUM_HAL_INTERRUPT_SATU_ERR, 0);
|
126 |
|
|
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_SATU_ERR);
|
127 |
|
|
|
128 |
|
|
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_PBDG_ERR, &nmi_pb_ISR, CYGNUM_HAL_INTERRUPT_PBDG_ERR, 0);
|
129 |
|
|
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_PBDG_ERR);
|
130 |
|
|
|
131 |
|
|
HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_SBDG_ERR, &nmi_sb_ISR, CYGNUM_HAL_INTERRUPT_SBDG_ERR, 0);
|
132 |
|
|
HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_SBDG_ERR);
|
133 |
|
|
|
134 |
|
|
#if 0
|
135 |
|
|
// Enable FIQ
|
136 |
|
|
{
|
137 |
|
|
unsigned rtmp = 0;
|
138 |
|
|
|
139 |
|
|
asm volatile ("mrs %0,cpsr\n"
|
140 |
|
|
"bic %0,%0,#0x40\n"
|
141 |
|
|
"msr cpsr,%0\n"
|
142 |
|
|
: "=r"(rtmp) : );
|
143 |
|
|
}
|
144 |
|
|
#endif
|
145 |
|
|
|
146 |
|
|
// Enable caches
|
147 |
|
|
HAL_DCACHE_ENABLE();
|
148 |
|
|
HAL_ICACHE_ENABLE();
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
/*------------------------------------------------------------------------*/
|
152 |
|
|
|
153 |
|
|
//
|
154 |
|
|
// Memory layout
|
155 |
|
|
//
|
156 |
|
|
|
157 |
|
|
externC cyg_uint8 *
|
158 |
|
|
hal_arm_mem_real_region_top( cyg_uint8 *regionend )
|
159 |
|
|
{
|
160 |
|
|
CYG_ASSERT( hal_dram_size > 0, "Didn't detect DRAM size!" );
|
161 |
|
|
CYG_ASSERT( hal_dram_size <= 512<<20,
|
162 |
|
|
"More than 512MB reported - that can't be right" );
|
163 |
|
|
|
164 |
|
|
// is it the "normal" end of the DRAM region? If so, it should be
|
165 |
|
|
// replaced by the real size
|
166 |
|
|
if ( regionend ==
|
167 |
|
|
((cyg_uint8 *)CYGMEM_REGION_ram + CYGMEM_REGION_ram_SIZE) ) {
|
168 |
|
|
regionend = (cyg_uint8 *)CYGMEM_REGION_ram + hal_dram_size;
|
169 |
|
|
}
|
170 |
|
|
return regionend;
|
171 |
|
|
} // hal_arm_mem_real_region_top()
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
// -------------------------------------------------------------------------
|
175 |
|
|
|
176 |
|
|
// Clock can come from the PMU or from an external timer.
|
177 |
|
|
// The external timer is the preferred choice.
|
178 |
|
|
|
179 |
|
|
#if CYGNUM_HAL_INTERRUPT_RTC == CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL
|
180 |
|
|
|
181 |
|
|
// Proper version that uses the clock counter in the PMU to do proper
|
182 |
|
|
// interrupts that require acknowledgement and all that good stuff.
|
183 |
|
|
|
184 |
|
|
static cyg_uint32 hal_clock_init_period; // The START value, it counts up
|
185 |
|
|
|
186 |
|
|
void hal_clock_initialize(cyg_uint32 period)
|
187 |
|
|
{
|
188 |
|
|
// event types both zero; clear all 3 interrupts;
|
189 |
|
|
// disable all 3 counter interrupts;
|
190 |
|
|
// CCNT counts every processor cycle; reset all counters;
|
191 |
|
|
// enable PMU.
|
192 |
|
|
register cyg_uint32 init = 0x00000707;
|
193 |
|
|
asm volatile (
|
194 |
|
|
"mcr p14,0,%0,c0,c0,0;" // write into PMNC
|
195 |
|
|
:
|
196 |
|
|
: "r"(init)
|
197 |
|
|
/*:*/
|
198 |
|
|
);
|
199 |
|
|
// the CCNT in the PMU counts *up* then interrupts at overflow
|
200 |
|
|
// ie. at 0x1_0000_0000 as it were.
|
201 |
|
|
// So init to 0xffffffff - period + 1 to get the right answer.
|
202 |
|
|
period = (~period) + 1;
|
203 |
|
|
hal_clock_init_period = period;
|
204 |
|
|
hal_clock_reset( 0, 0 );
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
// This routine is called during a clock interrupt.
|
208 |
|
|
// (before acknowledging the interrupt)
|
209 |
|
|
void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period)
|
210 |
|
|
{
|
211 |
|
|
asm volatile (
|
212 |
|
|
"mrc p14,0,r0,c1,c0,0;" // read from CCNT - how long since OVFL
|
213 |
|
|
"add %0, %0, r0;" // synchronize with previous overflow
|
214 |
|
|
"mcr p14,0,%0,c1,c0,0;" // write into CCNT
|
215 |
|
|
:
|
216 |
|
|
: "r"(hal_clock_init_period)
|
217 |
|
|
: "r0"
|
218 |
|
|
);
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
// Read the current value of the clock, returning the number of hardware
|
222 |
|
|
// "ticks" that have occurred (i.e. how far away the current value is from
|
223 |
|
|
// the start)
|
224 |
|
|
|
225 |
|
|
void hal_clock_read(cyg_uint32 *pvalue)
|
226 |
|
|
{
|
227 |
|
|
register cyg_uint32 now;
|
228 |
|
|
asm volatile (
|
229 |
|
|
"mrc p14,0,%0,c1,c0,0;" // read from CCNT
|
230 |
|
|
: "=r"(now)
|
231 |
|
|
:
|
232 |
|
|
/*:*/
|
233 |
|
|
);
|
234 |
|
|
*pvalue = now - hal_clock_init_period;
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
// Delay for some usecs.
|
238 |
|
|
void hal_delay_us(cyg_uint32 delay)
|
239 |
|
|
{
|
240 |
|
|
int i;
|
241 |
|
|
// the loop is going to take 3 ticks. At 600 MHz, to give uS, multiply
|
242 |
|
|
// by 600/3 = 200. No volatile is needed on i; gcc recognizes delay
|
243 |
|
|
// loops and does NOT elide them.
|
244 |
|
|
for ( i = 200 * delay; i ; i--)
|
245 |
|
|
;
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
#else // external timer
|
249 |
|
|
|
250 |
|
|
static cyg_uint32 _period;
|
251 |
|
|
|
252 |
|
|
void hal_clock_initialize(cyg_uint32 period)
|
253 |
|
|
{
|
254 |
|
|
_period = period;
|
255 |
|
|
|
256 |
|
|
// disable timer
|
257 |
|
|
EXT_TIMER_INT_DISAB();
|
258 |
|
|
EXT_TIMER_CNT_DISAB();
|
259 |
|
|
|
260 |
|
|
*TIMER_LA0_REG_ADDR = period;
|
261 |
|
|
*TIMER_LA1_REG_ADDR = period >> 8;
|
262 |
|
|
*TIMER_LA2_REG_ADDR = period >> 16;
|
263 |
|
|
|
264 |
|
|
EXT_TIMER_INT_ENAB();
|
265 |
|
|
EXT_TIMER_CNT_ENAB();
|
266 |
|
|
}
|
267 |
|
|
|
268 |
|
|
// Dynamically set the timer interrupt rate.
|
269 |
|
|
// Not for eCos application use at all, just special GPROF code in RedBoot.
|
270 |
|
|
|
271 |
|
|
void
|
272 |
|
|
hal_clock_reinitialize( int *pfreq, /* inout */
|
273 |
|
|
unsigned int *pperiod, /* inout */
|
274 |
|
|
unsigned int old_hz ) /* in */
|
275 |
|
|
{
|
276 |
|
|
unsigned int newp = 0, period, i = 0;
|
277 |
|
|
int hz;
|
278 |
|
|
int do_set_hw;
|
279 |
|
|
|
280 |
|
|
// Arbitrary choice somewhat - so the CPU can make
|
281 |
|
|
// progress with the clock set like this, we hope.
|
282 |
|
|
#define MIN_TICKS (500)
|
283 |
|
|
#define MAX_TICKS (0xffffff) // 24-bit timer
|
284 |
|
|
|
285 |
|
|
if ( ! pfreq || ! pperiod )
|
286 |
|
|
return; // we cannot even report a problem!
|
287 |
|
|
|
288 |
|
|
hz = *pfreq;
|
289 |
|
|
period = *pperiod;
|
290 |
|
|
|
291 |
|
|
// Requested HZ:
|
292 |
|
|
// 0 => tell me the current value (no change, implemented in caller)
|
293 |
|
|
// - 1 => tell me the slowest (no change)
|
294 |
|
|
// - 2 => tell me the default (no change, implemented in caller)
|
295 |
|
|
// -nnn => tell me what you would choose for nnn (no change)
|
296 |
|
|
// MIN_INT => tell me the fastest (no change)
|
297 |
|
|
//
|
298 |
|
|
// 1 => tell me the slowest (sets the clock)
|
299 |
|
|
// MAX_INT => tell me the fastest (sets the clock)
|
300 |
|
|
|
301 |
|
|
do_set_hw = (hz > 0);
|
302 |
|
|
if ( hz < 0 )
|
303 |
|
|
hz = -hz;
|
304 |
|
|
|
305 |
|
|
// Be paranoid about bad args, and very defensive about underflows
|
306 |
|
|
if ( 0 < hz && 0 < period && 0 < old_hz ) {
|
307 |
|
|
|
308 |
|
|
newp = period * old_hz / (unsigned)hz;
|
309 |
|
|
|
310 |
|
|
if ( newp < MIN_TICKS ) {
|
311 |
|
|
newp = MIN_TICKS;
|
312 |
|
|
// recalculate to get the exact delay for this integral hz
|
313 |
|
|
// and hunt hz down to an acceptable value if necessary
|
314 |
|
|
i = period * old_hz / newp;
|
315 |
|
|
if ( i ) do {
|
316 |
|
|
newp = period * old_hz / i;
|
317 |
|
|
i--;
|
318 |
|
|
} while (newp < MIN_TICKS && i);
|
319 |
|
|
}
|
320 |
|
|
else if ( newp > MAX_TICKS ) {
|
321 |
|
|
newp = MAX_TICKS;
|
322 |
|
|
// recalculate to get the exact delay for this integral hz
|
323 |
|
|
// and hunt hz up to an acceptable value if necessary
|
324 |
|
|
i = period * old_hz / newp;
|
325 |
|
|
if ( i ) do {
|
326 |
|
|
newp = period * old_hz / i;
|
327 |
|
|
i++;
|
328 |
|
|
} while (newp > MAX_TICKS && i);
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
// Recalculate the actual value installed.
|
332 |
|
|
i = period * old_hz / newp;
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
*pfreq = i;
|
336 |
|
|
*pperiod = newp;
|
337 |
|
|
|
338 |
|
|
if ( do_set_hw ) {
|
339 |
|
|
hal_clock_initialize( newp );
|
340 |
|
|
}
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
// This routine is called during a clock interrupt.
|
344 |
|
|
|
345 |
|
|
void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period)
|
346 |
|
|
{
|
347 |
|
|
// to clear the timer interrupt, clear the timer interrupt
|
348 |
|
|
// enable, then re-set the int. enable bit
|
349 |
|
|
EXT_TIMER_INT_DISAB();
|
350 |
|
|
EXT_TIMER_INT_ENAB();
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
// Read the current value of the clock, returning the number of hardware
|
354 |
|
|
// "ticks" that have occurred (i.e. how far away the current value is from
|
355 |
|
|
// the start)
|
356 |
|
|
|
357 |
|
|
void hal_clock_read(cyg_uint32 *pvalue)
|
358 |
|
|
{
|
359 |
|
|
cyg_uint8 cnt0, cnt1, cnt2, cnt3;
|
360 |
|
|
cyg_uint32 timer_val;;
|
361 |
|
|
|
362 |
|
|
// first read latches the count
|
363 |
|
|
// Actually, it looks like there is a hardware problem where
|
364 |
|
|
// invalid counts get latched. This do while loop appears
|
365 |
|
|
// to get around the problem.
|
366 |
|
|
do {
|
367 |
|
|
cnt0 = *TIMER_LA0_REG_ADDR & TIMER_COUNT_MASK;
|
368 |
|
|
} while (cnt0 == 0);
|
369 |
|
|
cnt1 = *TIMER_LA1_REG_ADDR & TIMER_COUNT_MASK;
|
370 |
|
|
cnt2 = *TIMER_LA2_REG_ADDR & TIMER_COUNT_MASK;
|
371 |
|
|
cnt3 = *TIMER_LA3_REG_ADDR & 0xf; /* only 4 bits in most sig. */
|
372 |
|
|
|
373 |
|
|
/* now build up the count value */
|
374 |
|
|
timer_val = ((cnt0 & 0x40) >> 1) | (cnt0 & 0x1f);
|
375 |
|
|
timer_val |= (((cnt1 & 0x40) >> 1) | (cnt1 & 0x1f)) << 6;
|
376 |
|
|
timer_val |= (((cnt2 & 0x40) >> 1) | (cnt2 & 0x1f)) << 12;
|
377 |
|
|
timer_val |= cnt3 << 18;
|
378 |
|
|
|
379 |
|
|
*pvalue = timer_val;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
// Delay for some usecs.
|
383 |
|
|
void hal_delay_us(cyg_uint32 delay)
|
384 |
|
|
{
|
385 |
|
|
#define _CNT_MASK 0x3fffff
|
386 |
|
|
#define _TICKS_PER_USEC (EXT_TIMER_CLK_FREQ / 1000000)
|
387 |
|
|
cyg_uint32 now, last, diff, ticks;
|
388 |
|
|
|
389 |
|
|
hal_clock_read(&last);
|
390 |
|
|
diff = ticks = 0;
|
391 |
|
|
|
392 |
|
|
while (delay > ticks) {
|
393 |
|
|
hal_clock_read(&now);
|
394 |
|
|
|
395 |
|
|
if (now < last)
|
396 |
|
|
diff += ((_period - last) + now);
|
397 |
|
|
else
|
398 |
|
|
diff += (now - last);
|
399 |
|
|
|
400 |
|
|
last = now;
|
401 |
|
|
|
402 |
|
|
if (diff >= _TICKS_PER_USEC) {
|
403 |
|
|
ticks += (diff / _TICKS_PER_USEC);
|
404 |
|
|
diff %= _TICKS_PER_USEC;
|
405 |
|
|
}
|
406 |
|
|
}
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
#endif
|
410 |
|
|
|
411 |
|
|
// -------------------------------------------------------------------------
|
412 |
|
|
|
413 |
|
|
typedef cyg_uint32 cyg_ISR(cyg_uint32 vector, CYG_ADDRWORD data);
|
414 |
|
|
|
415 |
|
|
extern void cyg_interrupt_post_dsr( CYG_ADDRWORD intr_obj );
|
416 |
|
|
|
417 |
|
|
static inline cyg_uint32
|
418 |
|
|
hal_call_isr (cyg_uint32 vector)
|
419 |
|
|
{
|
420 |
|
|
cyg_ISR *isr;
|
421 |
|
|
CYG_ADDRWORD data;
|
422 |
|
|
cyg_uint32 isr_ret;
|
423 |
|
|
|
424 |
|
|
isr = (cyg_ISR*) hal_interrupt_handlers[vector];
|
425 |
|
|
data = hal_interrupt_data[vector];
|
426 |
|
|
|
427 |
|
|
isr_ret = (*isr) (vector, data);
|
428 |
|
|
|
429 |
|
|
#ifdef CYGFUN_HAL_COMMON_KERNEL_SUPPORT
|
430 |
|
|
if (isr_ret & CYG_ISR_CALL_DSR) {
|
431 |
|
|
cyg_interrupt_post_dsr (hal_interrupt_objects[vector]);
|
432 |
|
|
}
|
433 |
|
|
#endif
|
434 |
|
|
|
435 |
|
|
return isr_ret & ~CYG_ISR_CALL_DSR;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
void _scrub_ecc(unsigned p)
|
439 |
|
|
{
|
440 |
|
|
asm volatile ("ldrb r4, [%0]\n"
|
441 |
|
|
"strb r4, [%0]\n" : : "r"(p) );
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
static cyg_uint32 nmi_mcu_ISR(cyg_vector_t vector, cyg_addrword_t data)
|
445 |
|
|
{
|
446 |
|
|
cyg_uint32 eccr_reg;
|
447 |
|
|
|
448 |
|
|
// Read current state of ECC register
|
449 |
|
|
eccr_reg = *ECCR_REG;
|
450 |
|
|
|
451 |
|
|
// Turn off all ecc error reporting
|
452 |
|
|
*ECCR_REG = 0x4;
|
453 |
|
|
|
454 |
|
|
// Check for ECC Error 0
|
455 |
|
|
if(*MCISR_REG & 0x1) {
|
456 |
|
|
|
457 |
|
|
#ifdef DEBUG_NMI
|
458 |
|
|
diag_printf("ELOG0 = 0x%X\n", *ELOG0_REG);
|
459 |
|
|
diag_printf("ECC Error Detected at Address 0x%X\n",*ECAR0_REG);
|
460 |
|
|
#endif
|
461 |
|
|
|
462 |
|
|
// Check for single-bit error
|
463 |
|
|
if(!(*ELOG0_REG & 0x00000100)) {
|
464 |
|
|
// call ECC restoration function
|
465 |
|
|
_scrub_ecc(*ECAR0_REG);
|
466 |
|
|
|
467 |
|
|
// Clear the MCISR
|
468 |
|
|
*MCISR_REG = 0x1;
|
469 |
|
|
} else {
|
470 |
|
|
#ifdef DEBUG_NMI
|
471 |
|
|
diag_printf("Multi-bit or nibble error\n");
|
472 |
|
|
#endif
|
473 |
|
|
}
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
// Check for ECC Error 1
|
477 |
|
|
if(*MCISR_REG & 0x2) {
|
478 |
|
|
|
479 |
|
|
#ifdef DEBUG_NMI
|
480 |
|
|
diag_printf("ELOG0 = 0x%X\n",*ELOG1_REG);
|
481 |
|
|
diag_printf("ECC Error Detected at Address 0x%X\n",*ECAR1_REG);
|
482 |
|
|
#endif
|
483 |
|
|
|
484 |
|
|
// Check for single-bit error
|
485 |
|
|
if(!(*ELOG1_REG & 0x00000100)) {
|
486 |
|
|
// call ECC restoration function
|
487 |
|
|
_scrub_ecc(*ECAR1_REG);
|
488 |
|
|
|
489 |
|
|
// Clear the MCISR
|
490 |
|
|
*MCISR_REG = 0x2;
|
491 |
|
|
}
|
492 |
|
|
else {
|
493 |
|
|
#ifdef DEBUG_NMI
|
494 |
|
|
diag_printf("Multi-bit or nibble error\n");
|
495 |
|
|
#endif
|
496 |
|
|
}
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
// Check for ECC Error N
|
500 |
|
|
if(*MCISR_REG & 0x4) {
|
501 |
|
|
// Clear the MCISR
|
502 |
|
|
*MCISR_REG = 0x4;
|
503 |
|
|
diag_printf("Uncorrectable error during RMW\n");
|
504 |
|
|
}
|
505 |
|
|
|
506 |
|
|
// Restore ECCR register
|
507 |
|
|
*ECCR_REG = eccr_reg;
|
508 |
|
|
|
509 |
|
|
// clear the interrupt condition
|
510 |
|
|
*MCISR_REG = *MCISR_REG & 7;
|
511 |
|
|
|
512 |
|
|
return CYG_ISR_HANDLED;
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
static cyg_uint32 nmi_patu_ISR(cyg_vector_t vector, cyg_addrword_t data)
|
516 |
|
|
{
|
517 |
|
|
cyg_uint32 status;
|
518 |
|
|
|
519 |
|
|
status = *PATUISR_REG;
|
520 |
|
|
|
521 |
|
|
#ifdef DEBUG_NMI
|
522 |
|
|
if (status & 0x001) diag_printf ("PPCI Master Parity Error\n");
|
523 |
|
|
if (status & 0x002) diag_printf ("PPCI Target Abort (target)\n");
|
524 |
|
|
if (status & 0x004) diag_printf ("PPCI Target Abort (master)\n");
|
525 |
|
|
if (status & 0x008) diag_printf ("PPCI Master Abort\n");
|
526 |
|
|
if (status & 0x010) diag_printf ("Primary P_SERR# Detected\n");
|
527 |
|
|
if (status & 0x080) diag_printf ("Internal Bus Master Abort\n");
|
528 |
|
|
if (status & 0x100) diag_printf ("PATU BIST Interrupt\n");
|
529 |
|
|
if (status & 0x200) diag_printf ("PPCI Parity Error Detected\n");
|
530 |
|
|
if (status & 0x400) diag_printf ("Primary P_SERR# Asserted\n");
|
531 |
|
|
#endif
|
532 |
|
|
|
533 |
|
|
*PATUISR_REG = status & 0x79f;
|
534 |
|
|
*PATUSR_REG |= 0xf900;
|
535 |
|
|
|
536 |
|
|
return CYG_ISR_HANDLED;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
|
540 |
|
|
static cyg_uint32 nmi_satu_ISR(cyg_vector_t vector, cyg_addrword_t data)
|
541 |
|
|
{
|
542 |
|
|
cyg_uint32 status;
|
543 |
|
|
|
544 |
|
|
status = *SATUISR_REG;
|
545 |
|
|
|
546 |
|
|
#ifdef DEBUG_NMI
|
547 |
|
|
if (status & 0x001) diag_printf ("SPCI Master Parity Error\n");
|
548 |
|
|
if (status & 0x002) diag_printf ("SPCI Target Abort (target)\n");
|
549 |
|
|
if (status & 0x004) diag_printf ("SPCI Target Abort (master)\n");
|
550 |
|
|
if (status & 0x008) diag_printf ("SPCI Master Abort\n");
|
551 |
|
|
if (status & 0x010) diag_printf ("Secondary P_SERR# Detected\n");
|
552 |
|
|
if (status & 0x080) diag_printf ("Internal Bus Master Abort\n");
|
553 |
|
|
if (status & 0x200) diag_printf ("SPCI Parity Error Detected\n");
|
554 |
|
|
if (status & 0x400) diag_printf ("Secondary P_SERR# Asserted\n");
|
555 |
|
|
#endif
|
556 |
|
|
|
557 |
|
|
*SATUISR_REG = status & 0x69f;
|
558 |
|
|
*SATUSR_REG |= 0xf900;
|
559 |
|
|
|
560 |
|
|
return CYG_ISR_HANDLED;
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
static cyg_uint32 nmi_pb_ISR(cyg_vector_t vector, cyg_addrword_t data)
|
564 |
|
|
{
|
565 |
|
|
cyg_uint32 status;
|
566 |
|
|
|
567 |
|
|
status = *PBISR_REG;
|
568 |
|
|
|
569 |
|
|
#ifdef DEBUG_NMI
|
570 |
|
|
if (status & 0x001) diag_printf ("PPCI Master Parity Error\n");
|
571 |
|
|
if (status & 0x002) diag_printf ("PPCI Target Abort (target)\n");
|
572 |
|
|
if (status & 0x004) diag_printf ("PPCI Target Abort (master)\n");
|
573 |
|
|
if (status & 0x008) diag_printf ("PPCI Master Abort\n");
|
574 |
|
|
if (status & 0x010) diag_printf ("Primary P_SERR# Asserted\n");
|
575 |
|
|
if (status & 0x020) diag_printf ("PPCI Parity Error Detected\n");
|
576 |
|
|
#endif
|
577 |
|
|
|
578 |
|
|
*PBISR_REG = status & 0x3f;
|
579 |
|
|
*PSR_REG |= 0xf900;
|
580 |
|
|
|
581 |
|
|
return CYG_ISR_HANDLED;
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
|
585 |
|
|
static cyg_uint32 nmi_sb_ISR(cyg_vector_t vector, cyg_addrword_t data)
|
586 |
|
|
{
|
587 |
|
|
cyg_uint32 status;
|
588 |
|
|
|
589 |
|
|
status = *SBISR_REG;
|
590 |
|
|
|
591 |
|
|
*SBISR_REG = status & 0x7f;
|
592 |
|
|
*SSR_REG |= 0xf900;
|
593 |
|
|
|
594 |
|
|
return CYG_ISR_HANDLED;
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
|
598 |
|
|
static cyg_uint32 nfiq_ISR(cyg_vector_t vector, cyg_addrword_t data)
|
599 |
|
|
{
|
600 |
|
|
cyg_uint32 sources;
|
601 |
|
|
int i, isr_ret;
|
602 |
|
|
|
603 |
|
|
// Check NMI
|
604 |
|
|
sources = *NISR_REG;
|
605 |
|
|
for (i = 0; i < 12; i++) {
|
606 |
|
|
if (sources & (1<<i)) {
|
607 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_MCU_ERR + i);
|
608 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "Interrupt not handled");
|
609 |
|
|
return isr_ret;
|
610 |
|
|
}
|
611 |
|
|
}
|
612 |
|
|
return 0;
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
static cyg_uint32 nirq_ISR(cyg_vector_t vector, cyg_addrword_t data)
|
616 |
|
|
{
|
617 |
|
|
cyg_uint32 sources;
|
618 |
|
|
int i, isr_ret;
|
619 |
|
|
cyg_uint32 xint3_isr, xint3_mask;
|
620 |
|
|
|
621 |
|
|
// Check XINT3
|
622 |
|
|
sources = (xint3_isr = *X3ISR_REG) & ~(xint3_mask = *X3MASK_REG);
|
623 |
|
|
for (i = 0; i <= CYGNUM_HAL_INTERRUPT_XINT3_BITS; i++) {
|
624 |
|
|
if (sources & (1 << i)) {
|
625 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_XINT3_BIT0 + i);
|
626 |
|
|
if ((isr_ret & CYG_ISR_HANDLED) == 0) {
|
627 |
|
|
diag_printf("XINT3 int not handled - ISR: %02x, MASK: %02x\n", xint3_isr, ~xint3_mask);
|
628 |
|
|
}
|
629 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "XINT3 Interrupt not handled");
|
630 |
|
|
return isr_ret;
|
631 |
|
|
}
|
632 |
|
|
}
|
633 |
|
|
// What to do about S_INTA-S_INTC?
|
634 |
|
|
|
635 |
|
|
// Check XINT6
|
636 |
|
|
sources = *X6ISR_REG;
|
637 |
|
|
for (i = 0; i < 3; i++) {
|
638 |
|
|
// check DMA irqs
|
639 |
|
|
if (sources & (1<<i)) {
|
640 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_DMA_0 + i);
|
641 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "DMA Interrupt not handled");
|
642 |
|
|
return isr_ret;
|
643 |
|
|
}
|
644 |
|
|
}
|
645 |
|
|
if (sources & 0x10) {
|
646 |
|
|
// performance monitor
|
647 |
|
|
_80312_EMISR = *EMISR_REG;
|
648 |
|
|
if (_80312_EMISR & 1) {
|
649 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_GTSC);
|
650 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "GTSC Interrupt not handled");
|
651 |
|
|
}
|
652 |
|
|
if (_80312_EMISR & 0x7ffe) {
|
653 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_PEC);
|
654 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "PEC Interrupt not handled");
|
655 |
|
|
}
|
656 |
|
|
return 0;
|
657 |
|
|
}
|
658 |
|
|
if (sources & 0x20) {
|
659 |
|
|
// Application Accelerator Unit
|
660 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_AAIP);
|
661 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "AAIP Interrupt not handled");
|
662 |
|
|
return isr_ret;
|
663 |
|
|
}
|
664 |
|
|
|
665 |
|
|
// Check XINT7
|
666 |
|
|
sources = *X7ISR_REG;
|
667 |
|
|
if (sources & 2) {
|
668 |
|
|
// I2C Unit
|
669 |
|
|
cyg_uint32 i2c_sources = *ISR_REG;
|
670 |
|
|
|
671 |
|
|
if (i2c_sources & (1<<7)) {
|
672 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_I2C_RX_FULL);
|
673 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "I2C RX FULL Interrupt not handled");
|
674 |
|
|
}
|
675 |
|
|
if (i2c_sources & (1<<6)) {
|
676 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY);
|
677 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "I2C TX EMPTY Interrupt not handled");
|
678 |
|
|
}
|
679 |
|
|
if (i2c_sources & (1<<10)) {
|
680 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_I2C_BUS_ERR);
|
681 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "I2C BUS ERR Interrupt not handled");
|
682 |
|
|
}
|
683 |
|
|
if (i2c_sources & (1<<4)) {
|
684 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_I2C_STOP);
|
685 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "I2C STOP Interrupt not handled");
|
686 |
|
|
}
|
687 |
|
|
if (i2c_sources & (1<<5)) {
|
688 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_I2C_LOSS);
|
689 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "I2C LOSS Interrupt not handled");
|
690 |
|
|
}
|
691 |
|
|
if (i2c_sources & (1<<9)) {
|
692 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_I2C_ADDRESS);
|
693 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "I2C ADDRESS Interrupt not handled");
|
694 |
|
|
}
|
695 |
|
|
return 0;
|
696 |
|
|
}
|
697 |
|
|
if (sources & 4) {
|
698 |
|
|
// Messaging Unit
|
699 |
|
|
cyg_uint32 inb_sources = *IISR_REG;
|
700 |
|
|
|
701 |
|
|
if (inb_sources & (1<<0)) {
|
702 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_MESSAGE_0);
|
703 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "MESSAGE 0 Interrupt not handled");
|
704 |
|
|
}
|
705 |
|
|
if (inb_sources & (1<<1)) {
|
706 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_MESSAGE_1);
|
707 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "MESSAGE 1 Interrupt not handled");
|
708 |
|
|
}
|
709 |
|
|
if (inb_sources & (1<<2)) {
|
710 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_DOORBELL);
|
711 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "DOORBELL Interrupt not handled");
|
712 |
|
|
}
|
713 |
|
|
if (inb_sources & (1<<4)) {
|
714 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_QUEUE_POST);
|
715 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "QUEUE POST Interrupt not handled");
|
716 |
|
|
}
|
717 |
|
|
if (inb_sources & (1<<6)) {
|
718 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_INDEX_REGISTER);
|
719 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "INDEX REGISTER Interrupt not handled");
|
720 |
|
|
}
|
721 |
|
|
return 0;
|
722 |
|
|
}
|
723 |
|
|
if (sources & 8) {
|
724 |
|
|
// BIST
|
725 |
|
|
isr_ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_BIST);
|
726 |
|
|
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "BIST Interrupt not handled");
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
return 0;
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
// This routine is called to respond to a hardware interrupt (IRQ). It
|
733 |
|
|
// should interrogate the hardware and return the IRQ vector number.
|
734 |
|
|
int hal_IRQ_handler(void)
|
735 |
|
|
{
|
736 |
|
|
int sources, masks;
|
737 |
|
|
|
738 |
|
|
asm volatile ( // read the interrupt source reg INTSRC
|
739 |
|
|
"mrc p13,0,%0,c4,c0,0;"
|
740 |
|
|
: "=r"(sources)
|
741 |
|
|
:
|
742 |
|
|
/*:*/
|
743 |
|
|
);
|
744 |
|
|
asm volatile ( // read the interrupt control reg INTCTL
|
745 |
|
|
"mrc p13,0,%0,c0,c0,0;"
|
746 |
|
|
: "=r"(masks)
|
747 |
|
|
:
|
748 |
|
|
/*:*/
|
749 |
|
|
);
|
750 |
|
|
// is a source both unmasked and active?
|
751 |
|
|
if ( (0 != (1 & masks)) && (0 != ((8 << 28) & sources)) )
|
752 |
|
|
return CYGNUM_HAL_INTERRUPT_NFIQ;
|
753 |
|
|
if ( (0 != (2 & masks)) && (0 != ((4 << 28) & sources)) )
|
754 |
|
|
return CYGNUM_HAL_INTERRUPT_NIRQ;
|
755 |
|
|
if ( (0 != (8 & masks)) && (0 != ((2 << 28) & sources)) )
|
756 |
|
|
return CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT;
|
757 |
|
|
if ( (0 != (4 & masks)) && (0 != ((1 << 28) & sources)) ) {
|
758 |
|
|
// more complicated; it's the PMU.
|
759 |
|
|
asm volatile ( // read the PMNC perfmon control reg
|
760 |
|
|
"mrc p14,0,%0,c0,c0,0;"
|
761 |
|
|
: "=r"(sources)
|
762 |
|
|
:
|
763 |
|
|
/*:*/
|
764 |
|
|
);
|
765 |
|
|
// sources is now the PMNC performance monitor control register
|
766 |
|
|
// enable bits are 4..6, status bits are 8..10
|
767 |
|
|
sources = (sources >> 4) & (sources >> 8);
|
768 |
|
|
if ( 1 & sources )
|
769 |
|
|
return CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL;
|
770 |
|
|
if ( 2 & sources )
|
771 |
|
|
return CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL;
|
772 |
|
|
if ( 4 & sources )
|
773 |
|
|
return CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL;
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
return CYGNUM_HAL_INTERRUPT_NONE; // This shouldn't happen!
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
//
|
780 |
|
|
// Interrupt control
|
781 |
|
|
//
|
782 |
|
|
|
783 |
|
|
void hal_interrupt_mask(int vector)
|
784 |
|
|
{
|
785 |
|
|
int mask = 0;
|
786 |
|
|
int submask = 0;
|
787 |
|
|
switch ( vector ) {
|
788 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL:
|
789 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL:
|
790 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL:
|
791 |
|
|
submask = vector - CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL; // 0 to 2
|
792 |
|
|
// select interrupt enable bit and also enable the perfmon per se
|
793 |
|
|
submask = (1 << (submask + 4)); // bits 4-6 are masks
|
794 |
|
|
asm volatile (
|
795 |
|
|
"mrc p14,0,r1,c0,c0,0;"
|
796 |
|
|
"bic r1, r1, #0x700;" // clear the overflow/interrupt flags
|
797 |
|
|
"bic r1, r1, #0x006;" // clear the reset bits
|
798 |
|
|
"bic %0, r1, %0;" // preserve r1; better for debugging
|
799 |
|
|
"tsts %0, #0x070;" // are all 3 sources now off?
|
800 |
|
|
"biceq %0, %0, #1;" // if so, disable entirely.
|
801 |
|
|
"mcr p14,0,%0,c0,c0,0;"
|
802 |
|
|
:
|
803 |
|
|
: "r"(submask)
|
804 |
|
|
: "r1"
|
805 |
|
|
);
|
806 |
|
|
mask = 4;
|
807 |
|
|
break;
|
808 |
|
|
case CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT:
|
809 |
|
|
// Nothing specific to do here
|
810 |
|
|
mask = 8;
|
811 |
|
|
break;
|
812 |
|
|
case CYGNUM_HAL_INTERRUPT_NIRQ :
|
813 |
|
|
mask = 2;
|
814 |
|
|
break;
|
815 |
|
|
case CYGNUM_HAL_INTERRUPT_NFIQ :
|
816 |
|
|
mask = 1;
|
817 |
|
|
break;
|
818 |
|
|
case CYGNUM_HAL_INTERRUPT_GTSC:
|
819 |
|
|
*GTMR_REG &= ~1;
|
820 |
|
|
return;
|
821 |
|
|
case CYGNUM_HAL_INTERRUPT_PEC:
|
822 |
|
|
*ESR_REG &= ~(1<<16);
|
823 |
|
|
return;
|
824 |
|
|
case CYGNUM_HAL_INTERRUPT_AAIP:
|
825 |
|
|
*ADCR_REG &= ~1;
|
826 |
|
|
return;
|
827 |
|
|
case CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY ... CYGNUM_HAL_INTERRUPT_I2C_ADDRESS:
|
828 |
|
|
*ICR_REG &= ~(1<<(vector - CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY));
|
829 |
|
|
return;
|
830 |
|
|
case CYGNUM_HAL_INTERRUPT_MESSAGE_0 ... CYGNUM_HAL_INTERRUPT_INDEX_REGISTER:
|
831 |
|
|
*IIMR_REG &= ~(1<<(vector - CYGNUM_HAL_INTERRUPT_MESSAGE_0));
|
832 |
|
|
return;
|
833 |
|
|
case CYGNUM_HAL_INTERRUPT_BIST:
|
834 |
|
|
*ATUCR_REG &= ~(1<<3);
|
835 |
|
|
return;
|
836 |
|
|
case CYGNUM_HAL_INTERRUPT_P_SERR: // FIQ
|
837 |
|
|
*ATUCR_REG &= ~(1<<9);
|
838 |
|
|
return;
|
839 |
|
|
case CYGNUM_HAL_INTERRUPT_S_SERR: // FIQ
|
840 |
|
|
*ATUCR_REG &= ~(1<<10);
|
841 |
|
|
return;
|
842 |
|
|
case CYGNUM_HAL_INTERRUPT_XINT3_BIT0 ... CYGNUM_HAL_INTERRUPT_XINT3_BIT4:
|
843 |
|
|
*X3MASK_REG |= (1<<(vector - CYGNUM_HAL_INTERRUPT_XINT3_BIT0));
|
844 |
|
|
return;
|
845 |
|
|
|
846 |
|
|
#ifdef CYGNUM_HAL_INTERRUPT_PCI_S_INTC
|
847 |
|
|
// The hardware doesn't (yet?) provide masking or status for these
|
848 |
|
|
// even though they can trigger cpu interrupts. ISRs will need to
|
849 |
|
|
// poll the device to see if the device actually triggered the
|
850 |
|
|
// interrupt.
|
851 |
|
|
case CYGNUM_HAL_INTERRUPT_PCI_S_INTC:
|
852 |
|
|
case CYGNUM_HAL_INTERRUPT_PCI_S_INTB:
|
853 |
|
|
case CYGNUM_HAL_INTERRUPT_PCI_S_INTA:
|
854 |
|
|
default:
|
855 |
|
|
/* do nothing */
|
856 |
|
|
return;
|
857 |
|
|
#endif
|
858 |
|
|
}
|
859 |
|
|
asm volatile (
|
860 |
|
|
"mrc p13,0,r1,c0,c0,0;"
|
861 |
|
|
"bic r1, r1, %0;"
|
862 |
|
|
"mcr p13,0,r1,c0,c0,0;"
|
863 |
|
|
:
|
864 |
|
|
: "r"(mask)
|
865 |
|
|
: "r1"
|
866 |
|
|
);
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
void hal_interrupt_unmask(int vector)
|
870 |
|
|
{
|
871 |
|
|
int mask = 0;
|
872 |
|
|
int submask = 0;
|
873 |
|
|
switch ( vector ) {
|
874 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL:
|
875 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL:
|
876 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL:
|
877 |
|
|
submask = vector - CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL; // 0 to 2
|
878 |
|
|
// select interrupt enable bit and also enable the perfmon per se
|
879 |
|
|
submask = 1 + (1 << (submask + 4)); // bits 4-6 are masks
|
880 |
|
|
asm volatile (
|
881 |
|
|
"mrc p14,0,r1,c0,c0,0;"
|
882 |
|
|
"bic r1, r1, #0x700;" // clear the overflow/interrupt flags
|
883 |
|
|
"bic r1, r1, #0x006;" // clear the reset bits
|
884 |
|
|
"orr %0, r1, %0;" // preserve r1; better for debugging
|
885 |
|
|
"mcr p14,0,%0,c0,c0,0;"
|
886 |
|
|
"mrc p13,0,r2,c8,c0,0;" // steer PMU interrupt to IRQ
|
887 |
|
|
"and r2, r2, #2;" // preserve the other bit (BCU steer)
|
888 |
|
|
"mcr p13,0,r2,c8,c0,0;"
|
889 |
|
|
:
|
890 |
|
|
: "r"(submask)
|
891 |
|
|
: "r1","r2"
|
892 |
|
|
);
|
893 |
|
|
mask = 4;
|
894 |
|
|
break;
|
895 |
|
|
case CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT:
|
896 |
|
|
asm volatile (
|
897 |
|
|
"mrc p13,0,r2,c8,c0,0;" // steer BCU interrupt to IRQ
|
898 |
|
|
"and r2, r2, #1;" // preserve the other bit (PMU steer)
|
899 |
|
|
"mcr p13,0,r2,c8,c0,0;"
|
900 |
|
|
:
|
901 |
|
|
:
|
902 |
|
|
: "r2"
|
903 |
|
|
);
|
904 |
|
|
mask = 8;
|
905 |
|
|
break;
|
906 |
|
|
case CYGNUM_HAL_INTERRUPT_NIRQ :
|
907 |
|
|
mask = 2;
|
908 |
|
|
break;
|
909 |
|
|
case CYGNUM_HAL_INTERRUPT_NFIQ :
|
910 |
|
|
mask = 1;
|
911 |
|
|
break;
|
912 |
|
|
case CYGNUM_HAL_INTERRUPT_GTSC:
|
913 |
|
|
*GTMR_REG |= 1;
|
914 |
|
|
return;
|
915 |
|
|
case CYGNUM_HAL_INTERRUPT_PEC:
|
916 |
|
|
*ESR_REG |= (1<<16);
|
917 |
|
|
return;
|
918 |
|
|
case CYGNUM_HAL_INTERRUPT_AAIP:
|
919 |
|
|
*ADCR_REG |= 1;
|
920 |
|
|
return;
|
921 |
|
|
case CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY ... CYGNUM_HAL_INTERRUPT_I2C_ADDRESS:
|
922 |
|
|
*ICR_REG |= (1<<(vector - CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY));
|
923 |
|
|
return;
|
924 |
|
|
case CYGNUM_HAL_INTERRUPT_MESSAGE_0 ... CYGNUM_HAL_INTERRUPT_INDEX_REGISTER:
|
925 |
|
|
*IIMR_REG |= (1<<(vector - CYGNUM_HAL_INTERRUPT_MESSAGE_0));
|
926 |
|
|
return;
|
927 |
|
|
case CYGNUM_HAL_INTERRUPT_BIST:
|
928 |
|
|
*ATUCR_REG |= (1<<3);
|
929 |
|
|
return;
|
930 |
|
|
case CYGNUM_HAL_INTERRUPT_P_SERR: // FIQ
|
931 |
|
|
*ATUCR_REG |= (1<<9);
|
932 |
|
|
return;
|
933 |
|
|
case CYGNUM_HAL_INTERRUPT_S_SERR: // FIQ
|
934 |
|
|
*ATUCR_REG |= (1<<10);
|
935 |
|
|
return;
|
936 |
|
|
case CYGNUM_HAL_INTERRUPT_XINT3_BIT0 ... CYGNUM_HAL_INTERRUPT_XINT3_BIT4:
|
937 |
|
|
*X3MASK_REG &= ~(1<<(vector - CYGNUM_HAL_INTERRUPT_XINT3_BIT0));
|
938 |
|
|
return;
|
939 |
|
|
|
940 |
|
|
#ifdef CYGNUM_HAL_INTERRUPT_PCI_S_INTC
|
941 |
|
|
// The hardware doesn't (yet?) provide masking or status for these
|
942 |
|
|
// even though they can trigger cpu interrupts. ISRs will need to
|
943 |
|
|
// poll the device to see if the device actually triggered the
|
944 |
|
|
// interrupt.
|
945 |
|
|
case CYGNUM_HAL_INTERRUPT_PCI_S_INTC:
|
946 |
|
|
case CYGNUM_HAL_INTERRUPT_PCI_S_INTB:
|
947 |
|
|
case CYGNUM_HAL_INTERRUPT_PCI_S_INTA:
|
948 |
|
|
default:
|
949 |
|
|
/* do nothing */
|
950 |
|
|
return;
|
951 |
|
|
#endif
|
952 |
|
|
}
|
953 |
|
|
asm volatile (
|
954 |
|
|
"mrc p13,0,r1,c0,c0,0;"
|
955 |
|
|
"orr %0, r1, %0;"
|
956 |
|
|
"mcr p13,0,%0,c0,c0,0;"
|
957 |
|
|
:
|
958 |
|
|
: "r"(mask)
|
959 |
|
|
: "r1"
|
960 |
|
|
);
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
void hal_interrupt_acknowledge(int vector)
|
964 |
|
|
{
|
965 |
|
|
int submask = 0;
|
966 |
|
|
switch ( vector ) {
|
967 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL:
|
968 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL:
|
969 |
|
|
case CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL:
|
970 |
|
|
submask = vector - CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL; // 0 to 2
|
971 |
|
|
// select interrupt enable bit and also enable the perfmon per se
|
972 |
|
|
submask = (1 << (submask + 8)); // bits 8-10 are status; write 1 clr
|
973 |
|
|
// Careful not to ack other interrupts or zero any counters:
|
974 |
|
|
asm volatile (
|
975 |
|
|
"mrc p14,0,r1,c0,c0,0;"
|
976 |
|
|
"bic r1, r1, #0x700;" // clear the overflow/interrupt flags
|
977 |
|
|
"bic r1, r1, #0x006;" // clear the reset bits
|
978 |
|
|
"orr %0, r1, %0;" // preserve r1; better for debugging
|
979 |
|
|
"mcr p14,0,%0,c0,c0,0;"
|
980 |
|
|
:
|
981 |
|
|
: "r"(submask)
|
982 |
|
|
: "r1"
|
983 |
|
|
);
|
984 |
|
|
break;
|
985 |
|
|
case CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT:
|
986 |
|
|
case CYGNUM_HAL_INTERRUPT_NIRQ :
|
987 |
|
|
case CYGNUM_HAL_INTERRUPT_NFIQ :
|
988 |
|
|
default:
|
989 |
|
|
/* do nothing */
|
990 |
|
|
return;
|
991 |
|
|
}
|
992 |
|
|
}
|
993 |
|
|
|
994 |
|
|
void hal_interrupt_configure(int vector, int level, int up)
|
995 |
|
|
{
|
996 |
|
|
}
|
997 |
|
|
|
998 |
|
|
void hal_interrupt_set_level(int vector, int level)
|
999 |
|
|
{
|
1000 |
|
|
}
|
1001 |
|
|
|
1002 |
|
|
/*------------------------------------------------------------------------*/
|
1003 |
|
|
// EOF iop310_misc.c
|