OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [language/] [c/] [libm/] [current/] [src/] [double/] [ieee754-core/] [e_lgamma_r.c] - Blame information for rev 786

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 786 skrzyp
//===========================================================================
2
//
3
//      e_lgamma_r.c
4
//
5
//      Part of the standard mathematical function library
6
//
7
//===========================================================================
8
// ####ECOSGPLCOPYRIGHTBEGIN####                                            
9
// -------------------------------------------                              
10
// This file is part of eCos, the Embedded Configurable Operating System.   
11
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
12
//
13
// eCos is free software; you can redistribute it and/or modify it under    
14
// the terms of the GNU General Public License as published by the Free     
15
// Software Foundation; either version 2 or (at your option) any later      
16
// version.                                                                 
17
//
18
// eCos is distributed in the hope that it will be useful, but WITHOUT      
19
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or    
20
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License    
21
// for more details.                                                        
22
//
23
// You should have received a copy of the GNU General Public License        
24
// along with eCos; if not, write to the Free Software Foundation, Inc.,    
25
// 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.            
26
//
27
// As a special exception, if other files instantiate templates or use      
28
// macros or inline functions from this file, or you compile this file      
29
// and link it with other works to produce a work based on this file,       
30
// this file does not by itself cause the resulting work to be covered by   
31
// the GNU General Public License. However the source code for this file    
32
// must still be made available in accordance with section (3) of the GNU   
33
// General Public License v2.                                               
34
//
35
// This exception does not invalidate any other reasons why a work based    
36
// on this file might be covered by the GNU General Public License.         
37
// -------------------------------------------                              
38
// ####ECOSGPLCOPYRIGHTEND####                                              
39
//===========================================================================
40
//#####DESCRIPTIONBEGIN####
41
//
42
// Author(s):   jlarmour
43
// Contributors:  jlarmour
44
// Date:        1998-02-13
45
// Purpose:     
46
// Description: 
47
// Usage:       
48
//
49
//####DESCRIPTIONEND####
50
//
51
//===========================================================================
52
 
53
// CONFIGURATION
54
 
55
#include <pkgconf/libm.h>   // Configuration header
56
 
57
// Include the Math library?
58
#ifdef CYGPKG_LIBM     
59
 
60
// Derived from code with the following copyright
61
 
62
 
63
/* @(#)e_lgamma_r.c 1.3 95/01/18 */
64
/*
65
 * ====================================================
66
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
67
 *
68
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
69
 * Permission to use, copy, modify, and distribute this
70
 * software is freely granted, provided that this notice
71
 * is preserved.
72
 * ====================================================
73
 *
74
 */
75
 
76
/* __ieee754_lgamma_r(x, signgamp)
77
 * Reentrant version of the logarithm of the Gamma function
78
 * with user provide pointer for the sign of Gamma(x).
79
 *
80
 * Method:
81
 *   1. Argument Reduction for 0 < x <= 8
82
 *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
83
 *      reduce x to a number in [1.5,2.5] by
84
 *              lgamma(1+s) = log(s) + lgamma(s)
85
 *      for example,
86
 *              lgamma(7.3) = log(6.3) + lgamma(6.3)
87
 *                          = log(6.3*5.3) + lgamma(5.3)
88
 *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
89
 *   2. Polynomial approximation of lgamma around its
90
 *      minimun ymin=1.461632144968362245 to maintain monotonicity.
91
 *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
92
 *              Let z = x-ymin;
93
 *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
94
 *      where
95
 *              poly(z) is a 14 degree polynomial.
96
 *   2. Rational approximation in the primary interval [2,3]
97
 *      We use the following approximation:
98
 *              s = x-2.0;
99
 *              lgamma(x) = 0.5*s + s*P(s)/Q(s)
100
 *      with accuracy
101
 *              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
102
 *      Our algorithms are based on the following observation
103
 *
104
 *                             zeta(2)-1    2    zeta(3)-1    3
105
 * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
106
 *                                 2                 3
107
 *
108
 *      where Euler = 0.5771... is the Euler constant, which is very
109
 *      close to 0.5.
110
 *
111
 *   3. For x>=8, we have
112
 *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
113
 *      (better formula:
114
 *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
115
 *      Let z = 1/x, then we approximation
116
 *              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
117
 *      by
118
 *                                  3       5             11
119
 *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
120
 *      where
121
 *              |w - f(z)| < 2**-58.74
122
 *
123
 *   4. For negative x, since (G is gamma function)
124
 *              -x*G(-x)*G(x) = pi/sin(pi*x),
125
 *      we have
126
 *              G(x) = pi/(sin(pi*x)*(-x)*G(-x))
127
 *      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
128
 *      Hence, for x<0, signgam = sign(sin(pi*x)) and
129
 *              lgamma(x) = log(|Gamma(x)|)
130
 *                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
131
 *      Note: one should avoid compute pi*(-x) directly in the
132
 *            computation of sin(pi*(-x)).
133
 *
134
 *   5. Special Cases
135
 *              lgamma(2+s) ~ s*(1-Euler) for tiny s
136
 *              lgamma(1)=lgamma(2)=0
137
 *              lgamma(x) ~ -log(x) for tiny x
138
 *              lgamma(0) = lgamma(inf) = inf
139
 *              lgamma(-integer) = +-inf
140
 *
141
 */
142
 
143
#include "mathincl/fdlibm.h"
144
 
145
static const double
146
two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
147
half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
148
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
149
pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
150
a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
151
a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
152
a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
153
a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
154
a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
155
a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
156
a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
157
a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
158
a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
159
a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
160
a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
161
a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
162
tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
163
tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
164
/* tt = -(tail of tf) */
165
tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
166
t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
167
t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
168
t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
169
t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
170
t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
171
t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
172
t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
173
t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
174
t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
175
t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
176
t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
177
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
178
t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
179
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
180
t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
181
u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
182
u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
183
u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
184
u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
185
u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
186
u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
187
v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
188
v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
189
v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
190
v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
191
v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
192
s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
193
s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
194
s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
195
s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
196
s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
197
s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
198
s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
199
r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
200
r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
201
r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
202
r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
203
r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
204
r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
205
w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
206
w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
207
w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
208
w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
209
w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
210
w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
211
w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
212
 
213
static double zero=  0.00000000000000000000e+00;
214
 
215
        static double sin_pi(double x)
216
{
217
        double y,z;
218
        int n,ix;
219
 
220
        ix = 0x7fffffff&CYG_LIBM_HI(x);
221
 
222
        if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
223
        y = -x;         /* x is assume negative */
224
 
225
    /*
226
     * argument reduction, make sure inexact flag not raised if input
227
     * is an integer
228
     */
229
        z = floor(y);
230
        if(z!=y) {                              /* inexact anyway */
231
            y  *= 0.5;
232
            y   = 2.0*(y - floor(y));           /* y = |x| mod 2.0 */
233
            n   = (int) (y*4.0);
234
        } else {
235
            if(ix>=0x43400000) {
236
                y = zero; n = 0;                 /* y must be even */
237
            } else {
238
                if(ix<0x43300000) z = y+two52;  /* exact */
239
                n   = CYG_LIBM_LO(z)&1;        /* lower word of z */
240
                y  = n;
241
                n<<= 2;
242
            }
243
        }
244
        switch (n) {
245
            case 0:   y =  __kernel_sin(pi*y,zero,0); break;
246
            case 1:
247
            case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;
248
            case 3:
249
            case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;
250
            case 5:
251
            case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;
252
            default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;
253
            }
254
        return -y;
255
}
256
 
257
 
258
        double __ieee754_lgamma_r(double x, int *signgamp)
259
{
260
        double t,y,z,nadj,p,p1,p2,p3,q,r,w;
261
        int i,hx,lx,ix;
262
 
263
        nadj = 0.0;             /* to placate compiler */
264
        hx = CYG_LIBM_HI(x);
265
        lx = CYG_LIBM_LO(x);
266
 
267
    /* purge off +-inf, NaN, +-0, and negative arguments */
268
        *signgamp = 1;
269
        ix = hx&0x7fffffff;
270
        if(ix>=0x7ff00000) return x*x;
271
        if((ix|lx)==0) return one/zero;
272
        if(ix<0x3b900000) {     /* |x|<2**-70, return -log(|x|) */
273
            if(hx<0) {
274
                *signgamp = -1;
275
                return -__ieee754_log(-x);
276
            } else return -__ieee754_log(x);
277
        }
278
        if(hx<0) {
279
            if(ix>=0x43300000)  /* |x|>=2**52, must be -integer */
280
                return one/zero;
281
            t = sin_pi(x);
282
            if(t==zero) return one/zero; /* -integer */
283
            nadj = __ieee754_log(pi/fabs(t*x));
284
            if(t<zero) *signgamp = -1;
285
            x = -x;
286
        }
287
 
288
    /* purge off 1 and 2 */
289
        if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
290
    /* for x < 2.0 */
291
        else if(ix<0x40000000) {
292
            if(ix<=0x3feccccc) {        /* lgamma(x) = lgamma(x+1)-log(x) */
293
                r = -__ieee754_log(x);
294
                if(ix>=0x3FE76944) {y = one-x; i= 0;}
295
                else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
296
                else {y = x; i=2;}
297
            } else {
298
                r = zero;
299
                if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
300
                else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
301
                else {y=x-one;i=2;}
302
            }
303
            switch(i) {
304
              case 0:
305
                z = y*y;
306
                p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
307
                p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
308
                p  = y*p1+p2;
309
                r  += (p-0.5*y); break;
310
              case 1:
311
                z = y*y;
312
                w = z*y;
313
                p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp */
314
                p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
315
                p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
316
                p  = z*p1-(tt-w*(p2+y*p3));
317
                r += (tf + p); break;
318
              case 2:
319
                p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
320
                p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
321
                r += (-0.5*y + p1/p2);
322
            }
323
        }
324
        else if(ix<0x40200000) {                        /* x < 8.0 */
325
            i = (int)x;
326
            t = zero;
327
            y = x-(double)i;
328
            p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
329
            q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
330
            r = half*y+p/q;
331
            z = one;    /* lgamma(1+s) = log(s) + lgamma(s) */
332
            switch(i) {
333
            case 7: z *= (y+6.0);       /* FALLTHRU */
334
            case 6: z *= (y+5.0);       /* FALLTHRU */
335
            case 5: z *= (y+4.0);       /* FALLTHRU */
336
            case 4: z *= (y+3.0);       /* FALLTHRU */
337
            case 3: z *= (y+2.0);       /* FALLTHRU */
338
                    r += __ieee754_log(z); break;
339
            }
340
    /* 8.0 <= x < 2**58 */
341
        } else if (ix < 0x43900000) {
342
            t = __ieee754_log(x);
343
            z = one/x;
344
            y = z*z;
345
            w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
346
            r = (x-half)*(t-one)+w;
347
        } else
348
    /* 2**58 <= x <= inf */
349
            r =  x*(__ieee754_log(x)-one);
350
        if(hx<0) r = nadj - r;
351
        return r;
352
}
353
 
354
#endif // ifdef CYGPKG_LIBM     
355
 
356
// EOF e_lgamma_r.c

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.