OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [language/] [c/] [libm/] [current/] [src/] [double/] [ieee754-core/] [e_log.c] - Blame information for rev 786

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 786 skrzyp
//===========================================================================
2
//
3
//      e_log.c
4
//
5
//      Part of the standard mathematical function library
6
//
7
//===========================================================================
8
// ####ECOSGPLCOPYRIGHTBEGIN####                                            
9
// -------------------------------------------                              
10
// This file is part of eCos, the Embedded Configurable Operating System.   
11
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
12
//
13
// eCos is free software; you can redistribute it and/or modify it under    
14
// the terms of the GNU General Public License as published by the Free     
15
// Software Foundation; either version 2 or (at your option) any later      
16
// version.                                                                 
17
//
18
// eCos is distributed in the hope that it will be useful, but WITHOUT      
19
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or    
20
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License    
21
// for more details.                                                        
22
//
23
// You should have received a copy of the GNU General Public License        
24
// along with eCos; if not, write to the Free Software Foundation, Inc.,    
25
// 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.            
26
//
27
// As a special exception, if other files instantiate templates or use      
28
// macros or inline functions from this file, or you compile this file      
29
// and link it with other works to produce a work based on this file,       
30
// this file does not by itself cause the resulting work to be covered by   
31
// the GNU General Public License. However the source code for this file    
32
// must still be made available in accordance with section (3) of the GNU   
33
// General Public License v2.                                               
34
//
35
// This exception does not invalidate any other reasons why a work based    
36
// on this file might be covered by the GNU General Public License.         
37
// -------------------------------------------                              
38
// ####ECOSGPLCOPYRIGHTEND####                                              
39
//===========================================================================
40
//#####DESCRIPTIONBEGIN####
41
//
42
// Author(s):   jlarmour
43
// Contributors:  jlarmour
44
// Date:        1998-02-13
45
// Purpose:     
46
// Description: 
47
// Usage:       
48
//
49
//####DESCRIPTIONEND####
50
//
51
//===========================================================================
52
 
53
// CONFIGURATION
54
 
55
#include <pkgconf/libm.h>   // Configuration header
56
 
57
// Include the Math library?
58
#ifdef CYGPKG_LIBM     
59
 
60
// Derived from code with the following copyright
61
 
62
 
63
/* @(#)e_log.c 1.3 95/01/18 */
64
/*
65
 * ====================================================
66
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
67
 *
68
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
69
 * Permission to use, copy, modify, and distribute this
70
 * software is freely granted, provided that this notice
71
 * is preserved.
72
 * ====================================================
73
 */
74
 
75
/* __ieee754_log(x)
76
 * Return the logrithm of x
77
 *
78
 * Method :
79
 *   1. Argument Reduction: find k and f such that
80
 *                      x = 2^k * (1+f),
81
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
82
 *
83
 *   2. Approximation of log(1+f).
84
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
85
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
86
 *               = 2s + s*R
87
 *      We use a special Reme algorithm on [0,0.1716] to generate
88
 *      a polynomial of degree 14 to approximate R The maximum error
89
 *      of this polynomial approximation is bounded by 2**-58.45. In
90
 *      other words,
91
 *                      2      4      6      8      10      12      14
92
 *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
93
 *      (the values of Lg1 to Lg7 are listed in the program)
94
 *      and
95
 *          |      2          14          |     -58.45
96
 *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
97
 *          |                             |
98
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
99
 *      In order to guarantee error in log below 1ulp, we compute log
100
 *      by
101
 *              log(1+f) = f - s*(f - R)        (if f is not too large)
102
 *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
103
 *
104
 *      3. Finally,  log(x) = k*ln2 + log(1+f).
105
 *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
106
 *         Here ln2 is split into two floating point number:
107
 *                      ln2_hi + ln2_lo,
108
 *         where n*ln2_hi is always exact for |n| < 2000.
109
 *
110
 * Special cases:
111
 *      log(x) is NaN with signal if x < 0 (including -INF) ;
112
 *      log(+INF) is +INF; log(0) is -INF with signal;
113
 *      log(NaN) is that NaN with no signal.
114
 *
115
 * Accuracy:
116
 *      according to an error analysis, the error is always less than
117
 *      1 ulp (unit in the last place).
118
 *
119
 * Constants:
120
 * The hexadecimal values are the intended ones for the following
121
 * constants. The decimal values may be used, provided that the
122
 * compiler will convert from decimal to binary accurately enough
123
 * to produce the hexadecimal values shown.
124
 */
125
 
126
#include "mathincl/fdlibm.h"
127
 
128
static const double
129
ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
130
ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
131
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
132
Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
133
Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
134
Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
135
Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
136
Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
137
Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
138
Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
139
 
140
static double zero   =  0.0;
141
 
142
        double __ieee754_log(double x)
143
{
144
        double hfsq,f,s,z,R,w,t1,t2,dk;
145
        int k,hx,i,j;
146
        unsigned lx;
147
 
148
        hx = CYG_LIBM_HI(x);            /* high word of x */
149
        lx = CYG_LIBM_LO(x);            /* low  word of x */
150
 
151
        k=0;
152
        if (hx < 0x00100000) {                  /* x < 2**-1022  */
153
            if (((hx&0x7fffffff)|lx)==0)
154
                return -two54/zero;             /* log(+-0)=-inf */
155
            if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
156
            k -= 54; x *= two54; /* subnormal number, scale up x */
157
            hx = CYG_LIBM_HI(x);                /* high word of x */
158
        }
159
        if (hx >= 0x7ff00000) return x+x;
160
        k += (hx>>20)-1023;
161
        hx &= 0x000fffff;
162
        i = (hx+0x95f64)&0x100000;
163
        CYG_LIBM_HI(x) = hx|(i^0x3ff00000);     /* normalize x or x/2 */
164
        k += (i>>20);
165
        f = x-1.0;
166
        if((0x000fffff&(2+hx))<3) {     /* |f| < 2**-20 */
167
            if(f==zero) {
168
                if(k==0) return zero;
169
                else {
170
                    dk=(double)k;
171
                    return dk*ln2_hi+dk*ln2_lo;
172
                }
173
            }
174
            R = f*f*(0.5-0.33333333333333333*f);
175
            if(k==0) return f-R;
176
            else {
177
                dk=(double)k;
178
                return dk*ln2_hi-((R-dk*ln2_lo)-f);
179
            }
180
        }
181
        s = f/(2.0+f);
182
        dk = (double)k;
183
        z = s*s;
184
        i = hx-0x6147a;
185
        w = z*z;
186
        j = 0x6b851-hx;
187
        t1= w*(Lg2+w*(Lg4+w*Lg6));
188
        t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
189
        i |= j;
190
        R = t2+t1;
191
        if(i>0) {
192
            hfsq=0.5*f*f;
193
            if(k==0) return f-(hfsq-s*(hfsq+R)); else
194
                     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
195
        } else {
196
            if(k==0) return f-s*(f-R); else
197
                     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
198
        }
199
}
200
 
201
#endif // ifdef CYGPKG_LIBM     
202
 
203
// EOF e_log.c

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.