1 |
578 |
jeremybenn |
/*
|
2 |
|
|
FreeRTOS V6.1.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
3 |
|
|
|
4 |
|
|
***************************************************************************
|
5 |
|
|
* *
|
6 |
|
|
* If you are: *
|
7 |
|
|
* *
|
8 |
|
|
* + New to FreeRTOS, *
|
9 |
|
|
* + Wanting to learn FreeRTOS or multitasking in general quickly *
|
10 |
|
|
* + Looking for basic training, *
|
11 |
|
|
* + Wanting to improve your FreeRTOS skills and productivity *
|
12 |
|
|
* *
|
13 |
|
|
* then take a look at the FreeRTOS books - available as PDF or paperback *
|
14 |
|
|
* *
|
15 |
|
|
* "Using the FreeRTOS Real Time Kernel - a Practical Guide" *
|
16 |
|
|
* http://www.FreeRTOS.org/Documentation *
|
17 |
|
|
* *
|
18 |
|
|
* A pdf reference manual is also available. Both are usually delivered *
|
19 |
|
|
* to your inbox within 20 minutes to two hours when purchased between 8am *
|
20 |
|
|
* and 8pm GMT (although please allow up to 24 hours in case of *
|
21 |
|
|
* exceptional circumstances). Thank you for your support! *
|
22 |
|
|
* *
|
23 |
|
|
***************************************************************************
|
24 |
|
|
|
25 |
|
|
This file is part of the FreeRTOS distribution.
|
26 |
|
|
|
27 |
|
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
28 |
|
|
the terms of the GNU General Public License (version 2) as published by the
|
29 |
|
|
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
30 |
|
|
***NOTE*** The exception to the GPL is included to allow you to distribute
|
31 |
|
|
a combined work that includes FreeRTOS without being obliged to provide the
|
32 |
|
|
source code for proprietary components outside of the FreeRTOS kernel.
|
33 |
|
|
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT
|
34 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
35 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
36 |
|
|
more details. You should have received a copy of the GNU General Public
|
37 |
|
|
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
38 |
|
|
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
39 |
|
|
by writing to Richard Barry, contact details for whom are available on the
|
40 |
|
|
FreeRTOS WEB site.
|
41 |
|
|
|
42 |
|
|
1 tab == 4 spaces!
|
43 |
|
|
|
44 |
|
|
http://www.FreeRTOS.org - Documentation, latest information, license and
|
45 |
|
|
contact details.
|
46 |
|
|
|
47 |
|
|
http://www.SafeRTOS.com - A version that is certified for use in safety
|
48 |
|
|
critical systems.
|
49 |
|
|
|
50 |
|
|
http://www.OpenRTOS.com - Commercial support, development, porting,
|
51 |
|
|
licensing and training services.
|
52 |
|
|
*/
|
53 |
|
|
|
54 |
|
|
/* Kernel includes. */
|
55 |
|
|
#include "FreeRTOS.h"
|
56 |
|
|
#include "semphr.h"
|
57 |
|
|
#include "task.h"
|
58 |
|
|
|
59 |
|
|
/* Hardware includes. */
|
60 |
|
|
#include "fecbd.h"
|
61 |
|
|
#include "mii.h"
|
62 |
|
|
#include "eth_phy.h"
|
63 |
|
|
#include "eth.h"
|
64 |
|
|
|
65 |
|
|
/* uIP includes. */
|
66 |
|
|
#include "uip.h"
|
67 |
|
|
#include "uip_arp.h"
|
68 |
|
|
|
69 |
|
|
/* Delay between polling the PHY to see if a link has been established. */
|
70 |
|
|
#define fecLINK_DELAY ( 500 / portTICK_RATE_MS )
|
71 |
|
|
|
72 |
|
|
/* Delay to wait for an MII access. */
|
73 |
|
|
#define fecMII_DELAY ( 10 / portTICK_RATE_MS )
|
74 |
|
|
#define fecMAX_POLLS ( 20 )
|
75 |
|
|
|
76 |
|
|
/* Constants used to delay while waiting for a tx descriptor to be free. */
|
77 |
|
|
#define fecMAX_WAIT_FOR_TX_BUFFER ( 200 / portTICK_RATE_MS )
|
78 |
|
|
|
79 |
|
|
/* We only use a single Tx descriptor which can lead to Txed packets being sent
|
80 |
|
|
twice (due to a bug in the FEC silicon). However, in this case the bug is used
|
81 |
|
|
to our advantage in that it means the uip-split mechanism is not required. */
|
82 |
|
|
#define fecNUM_FEC_TX_BUFFERS ( 1 )
|
83 |
|
|
#define fecTX_BUFFER_TO_USE ( 0 )
|
84 |
|
|
/*-----------------------------------------------------------*/
|
85 |
|
|
|
86 |
|
|
/* The semaphore used to wake the uIP task when data arrives. */
|
87 |
|
|
xSemaphoreHandle xFECSemaphore = NULL, xTxSemaphore = NULL;
|
88 |
|
|
|
89 |
|
|
/* The buffer used by the uIP stack. In this case the pointer is used to
|
90 |
|
|
point to one of the Rx buffers to effect a zero copy policy. */
|
91 |
|
|
unsigned portCHAR *uip_buf;
|
92 |
|
|
|
93 |
|
|
/* The DMA descriptors. This is a char array to allow us to align it correctly. */
|
94 |
|
|
static unsigned portCHAR xFECTxDescriptors_unaligned[ ( fecNUM_FEC_TX_BUFFERS * sizeof( FECBD ) ) + 16 ];
|
95 |
|
|
static unsigned portCHAR xFECRxDescriptors_unaligned[ ( configNUM_FEC_RX_BUFFERS * sizeof( FECBD ) ) + 16 ];
|
96 |
|
|
static FECBD *xFECTxDescriptors;
|
97 |
|
|
static FECBD *xFECRxDescriptors;
|
98 |
|
|
|
99 |
|
|
/* The DMA buffers. These are char arrays to allow them to be aligned correctly. */
|
100 |
|
|
static unsigned portCHAR ucFECRxBuffers[ ( configNUM_FEC_RX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
|
101 |
|
|
static unsigned portBASE_TYPE uxNextRxBuffer = 0, uxIndexToBufferOwner = 0;
|
102 |
|
|
|
103 |
|
|
/*-----------------------------------------------------------*/
|
104 |
|
|
|
105 |
|
|
/*
|
106 |
|
|
* Enable all the required interrupts in the FEC and in the interrupt controller.
|
107 |
|
|
*/
|
108 |
|
|
static void prvEnableFECInterrupts( void );
|
109 |
|
|
|
110 |
|
|
/*
|
111 |
|
|
* Reset the FEC if we get into an unrecoverable state.
|
112 |
|
|
*/
|
113 |
|
|
static void prvResetFEC( portBASE_TYPE xCalledFromISR );
|
114 |
|
|
|
115 |
|
|
/********************************************************************/
|
116 |
|
|
|
117 |
|
|
/*
|
118 |
|
|
* FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
|
119 |
|
|
*
|
120 |
|
|
* Write a value to a PHY's MII register.
|
121 |
|
|
*
|
122 |
|
|
* Parameters:
|
123 |
|
|
* ch FEC channel
|
124 |
|
|
* phy_addr Address of the PHY.
|
125 |
|
|
* reg_addr Address of the register in the PHY.
|
126 |
|
|
* data Data to be written to the PHY register.
|
127 |
|
|
*
|
128 |
|
|
* Return Values:
|
129 |
|
|
* 0 on failure
|
130 |
|
|
* 1 on success.
|
131 |
|
|
*
|
132 |
|
|
* Please refer to your PHY manual for registers and their meanings.
|
133 |
|
|
* mii_write() polls for the FEC's MII interrupt event and clears it.
|
134 |
|
|
* If after a suitable amount of time the event isn't triggered, a
|
135 |
|
|
* value of 0 is returned.
|
136 |
|
|
*/
|
137 |
|
|
static int fec_mii_write( int phy_addr, int reg_addr, int data )
|
138 |
|
|
{
|
139 |
|
|
int timeout, iReturn;
|
140 |
|
|
uint32 eimr;
|
141 |
|
|
|
142 |
|
|
/* Clear the MII interrupt bit */
|
143 |
|
|
MCF_FEC_EIR = MCF_FEC_EIR_MII;
|
144 |
|
|
|
145 |
|
|
/* Mask the MII interrupt */
|
146 |
|
|
eimr = MCF_FEC_EIMR;
|
147 |
|
|
MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
|
148 |
|
|
|
149 |
|
|
/* Write to the MII Management Frame Register to kick-off the MII write */
|
150 |
|
|
MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_WRITE | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10 | MCF_FEC_MMFR_DATA( data );
|
151 |
|
|
|
152 |
|
|
/* Poll for the MII interrupt (interrupt should be masked) */
|
153 |
|
|
for( timeout = 0; timeout < fecMAX_POLLS; timeout++ )
|
154 |
|
|
{
|
155 |
|
|
if( MCF_FEC_EIR & MCF_FEC_EIR_MII )
|
156 |
|
|
{
|
157 |
|
|
break;
|
158 |
|
|
}
|
159 |
|
|
else
|
160 |
|
|
{
|
161 |
|
|
vTaskDelay( fecMII_DELAY );
|
162 |
|
|
}
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
if( timeout == fecMAX_POLLS )
|
166 |
|
|
{
|
167 |
|
|
iReturn = 0;
|
168 |
|
|
}
|
169 |
|
|
else
|
170 |
|
|
{
|
171 |
|
|
iReturn = 1;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
/* Clear the MII interrupt bit */
|
175 |
|
|
MCF_FEC_EIR = MCF_FEC_EIR_MII;
|
176 |
|
|
|
177 |
|
|
/* Restore the EIMR */
|
178 |
|
|
MCF_FEC_EIMR = eimr;
|
179 |
|
|
|
180 |
|
|
return iReturn;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
/********************************************************************/
|
184 |
|
|
/*
|
185 |
|
|
* FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
|
186 |
|
|
*
|
187 |
|
|
* Read a value from a PHY's MII register.
|
188 |
|
|
*
|
189 |
|
|
* Parameters:
|
190 |
|
|
* ch FEC channel
|
191 |
|
|
* phy_addr Address of the PHY.
|
192 |
|
|
* reg_addr Address of the register in the PHY.
|
193 |
|
|
* data Pointer to storage for the Data to be read
|
194 |
|
|
* from the PHY register (passed by reference)
|
195 |
|
|
*
|
196 |
|
|
* Return Values:
|
197 |
|
|
* 0 on failure
|
198 |
|
|
* 1 on success.
|
199 |
|
|
*
|
200 |
|
|
* Please refer to your PHY manual for registers and their meanings.
|
201 |
|
|
* mii_read() polls for the FEC's MII interrupt event and clears it.
|
202 |
|
|
* If after a suitable amount of time the event isn't triggered, a
|
203 |
|
|
* value of 0 is returned.
|
204 |
|
|
*/
|
205 |
|
|
static int fec_mii_read( int phy_addr, int reg_addr, unsigned portSHORT* data )
|
206 |
|
|
{
|
207 |
|
|
int timeout, iReturn;
|
208 |
|
|
uint32 eimr;
|
209 |
|
|
|
210 |
|
|
/* Clear the MII interrupt bit */
|
211 |
|
|
MCF_FEC_EIR = MCF_FEC_EIR_MII;
|
212 |
|
|
|
213 |
|
|
/* Mask the MII interrupt */
|
214 |
|
|
eimr = MCF_FEC_EIMR;
|
215 |
|
|
MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
|
216 |
|
|
|
217 |
|
|
/* Write to the MII Management Frame Register to kick-off the MII read */
|
218 |
|
|
MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_READ | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10;
|
219 |
|
|
|
220 |
|
|
/* Poll for the MII interrupt (interrupt should be masked) */
|
221 |
|
|
for( timeout = 0; timeout < fecMAX_POLLS; timeout++ )
|
222 |
|
|
{
|
223 |
|
|
if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
|
224 |
|
|
{
|
225 |
|
|
break;
|
226 |
|
|
}
|
227 |
|
|
else
|
228 |
|
|
{
|
229 |
|
|
vTaskDelay( fecMII_DELAY );
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
if( timeout == fecMAX_POLLS )
|
234 |
|
|
{
|
235 |
|
|
iReturn = 0;
|
236 |
|
|
}
|
237 |
|
|
else
|
238 |
|
|
{
|
239 |
|
|
*data = (uint16)(MCF_FEC_MMFR & 0x0000FFFF);
|
240 |
|
|
iReturn = 1;
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
/* Clear the MII interrupt bit */
|
244 |
|
|
MCF_FEC_EIR = MCF_FEC_EIR_MII;
|
245 |
|
|
|
246 |
|
|
/* Restore the EIMR */
|
247 |
|
|
MCF_FEC_EIMR = eimr;
|
248 |
|
|
|
249 |
|
|
return iReturn;
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
|
253 |
|
|
/********************************************************************/
|
254 |
|
|
/*
|
255 |
|
|
* FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
|
256 |
|
|
*
|
257 |
|
|
* Generate the hash table settings for the given address
|
258 |
|
|
*
|
259 |
|
|
* Parameters:
|
260 |
|
|
* addr 48-bit (6 byte) Address to generate the hash for
|
261 |
|
|
*
|
262 |
|
|
* Return Value:
|
263 |
|
|
* The 6 most significant bits of the 32-bit CRC result
|
264 |
|
|
*/
|
265 |
|
|
static unsigned portCHAR fec_hash_address( const unsigned portCHAR* addr )
|
266 |
|
|
{
|
267 |
|
|
unsigned portLONG crc;
|
268 |
|
|
unsigned portCHAR byte;
|
269 |
|
|
int i, j;
|
270 |
|
|
|
271 |
|
|
crc = 0xFFFFFFFF;
|
272 |
|
|
for(i=0; i<6; ++i)
|
273 |
|
|
{
|
274 |
|
|
byte = addr[i];
|
275 |
|
|
for(j=0; j<8; ++j)
|
276 |
|
|
{
|
277 |
|
|
if((byte & 0x01)^(crc & 0x01))
|
278 |
|
|
{
|
279 |
|
|
crc >>= 1;
|
280 |
|
|
crc = crc ^ 0xEDB88320;
|
281 |
|
|
}
|
282 |
|
|
else
|
283 |
|
|
{
|
284 |
|
|
crc >>= 1;
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
byte >>= 1;
|
288 |
|
|
}
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
return (unsigned portCHAR)(crc >> 26);
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
/********************************************************************/
|
295 |
|
|
/*
|
296 |
|
|
* FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
|
297 |
|
|
*
|
298 |
|
|
* Set the Physical (Hardware) Address and the Individual Address
|
299 |
|
|
* Hash in the selected FEC
|
300 |
|
|
*
|
301 |
|
|
* Parameters:
|
302 |
|
|
* ch FEC channel
|
303 |
|
|
* pa Physical (Hardware) Address for the selected FEC
|
304 |
|
|
*/
|
305 |
|
|
static void fec_set_address( const unsigned portCHAR *pa )
|
306 |
|
|
{
|
307 |
|
|
unsigned portCHAR crc;
|
308 |
|
|
|
309 |
|
|
/*
|
310 |
|
|
* Set the Physical Address
|
311 |
|
|
*/
|
312 |
|
|
/* Set the source address for the controller */
|
313 |
|
|
MCF_FEC_PALR = ( pa[ 0 ] << 24 ) | ( pa[ 1 ] << 16 ) | ( pa[ 2 ] << 8 ) | ( pa[ 3 ] << 0 );
|
314 |
|
|
MCF_FEC_PAUR = ( pa[ 4 ] << 24 ) | ( pa[ 5 ] << 16 );
|
315 |
|
|
|
316 |
|
|
/*
|
317 |
|
|
* Calculate and set the hash for given Physical Address
|
318 |
|
|
* in the Individual Address Hash registers
|
319 |
|
|
*/
|
320 |
|
|
crc = fec_hash_address( pa );
|
321 |
|
|
if( crc >= 32 )
|
322 |
|
|
{
|
323 |
|
|
MCF_FEC_IAUR |= (unsigned portLONG)(1 << (crc - 32));
|
324 |
|
|
}
|
325 |
|
|
else
|
326 |
|
|
{
|
327 |
|
|
MCF_FEC_IALR |= (unsigned portLONG)(1 << crc);
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
/*-----------------------------------------------------------*/
|
331 |
|
|
|
332 |
|
|
static void prvInitialiseFECBuffers( void )
|
333 |
|
|
{
|
334 |
|
|
unsigned portBASE_TYPE ux;
|
335 |
|
|
unsigned portCHAR *pcBufPointer;
|
336 |
|
|
|
337 |
|
|
/* Correctly align the Tx descriptor pointer. */
|
338 |
|
|
pcBufPointer = &( xFECTxDescriptors_unaligned[ 0 ] );
|
339 |
|
|
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
|
340 |
|
|
{
|
341 |
|
|
pcBufPointer++;
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
xFECTxDescriptors = ( FECBD * ) pcBufPointer;
|
345 |
|
|
|
346 |
|
|
/* Likewise the Rx descriptor pointer. */
|
347 |
|
|
pcBufPointer = &( xFECRxDescriptors_unaligned[ 0 ] );
|
348 |
|
|
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
|
349 |
|
|
{
|
350 |
|
|
pcBufPointer++;
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
xFECRxDescriptors = ( FECBD * ) pcBufPointer;
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
/* Setup the Tx buffers and descriptors. There is no separate Tx buffer
|
357 |
|
|
to point to (the Rx buffers are actually used) so the data member is
|
358 |
|
|
set to NULL for now. */
|
359 |
|
|
for( ux = 0; ux < fecNUM_FEC_TX_BUFFERS; ux++ )
|
360 |
|
|
{
|
361 |
|
|
xFECTxDescriptors[ ux ].status = TX_BD_TC;
|
362 |
|
|
xFECTxDescriptors[ ux ].data = NULL;
|
363 |
|
|
xFECTxDescriptors[ ux ].length = 0;
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
/* Setup the Rx buffers and descriptors, having first ensured correct
|
367 |
|
|
alignment. */
|
368 |
|
|
pcBufPointer = &( ucFECRxBuffers[ 0 ] );
|
369 |
|
|
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
|
370 |
|
|
{
|
371 |
|
|
pcBufPointer++;
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
for( ux = 0; ux < configNUM_FEC_RX_BUFFERS; ux++ )
|
375 |
|
|
{
|
376 |
|
|
xFECRxDescriptors[ ux ].status = RX_BD_E;
|
377 |
|
|
xFECRxDescriptors[ ux ].length = configFEC_BUFFER_SIZE;
|
378 |
|
|
xFECRxDescriptors[ ux ].data = pcBufPointer;
|
379 |
|
|
pcBufPointer += configFEC_BUFFER_SIZE;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
/* Set the wrap bit in the last descriptors to form a ring. */
|
383 |
|
|
xFECTxDescriptors[ fecNUM_FEC_TX_BUFFERS - 1 ].status |= TX_BD_W;
|
384 |
|
|
xFECRxDescriptors[ configNUM_FEC_RX_BUFFERS - 1 ].status |= RX_BD_W;
|
385 |
|
|
|
386 |
|
|
uxNextRxBuffer = 0;
|
387 |
|
|
}
|
388 |
|
|
/*-----------------------------------------------------------*/
|
389 |
|
|
|
390 |
|
|
void vFECInit( void )
|
391 |
|
|
{
|
392 |
|
|
unsigned portSHORT usData;
|
393 |
|
|
struct uip_eth_addr xAddr;
|
394 |
|
|
unsigned portBASE_TYPE ux;
|
395 |
|
|
|
396 |
|
|
/* The MAC address is set at the foot of FreeRTOSConfig.h. */
|
397 |
|
|
const unsigned portCHAR ucMACAddress[6] =
|
398 |
|
|
{
|
399 |
|
|
configMAC_0, configMAC_1,configMAC_2, configMAC_3, configMAC_4, configMAC_5
|
400 |
|
|
};
|
401 |
|
|
|
402 |
|
|
/* Create the semaphore used by the ISR to wake the uIP task. */
|
403 |
|
|
vSemaphoreCreateBinary( xFECSemaphore );
|
404 |
|
|
|
405 |
|
|
/* Create the semaphore used to unblock any tasks that might be waiting
|
406 |
|
|
for a Tx descriptor. */
|
407 |
|
|
vSemaphoreCreateBinary( xTxSemaphore );
|
408 |
|
|
|
409 |
|
|
/* Initialise all the buffers and descriptors used by the DMA. */
|
410 |
|
|
prvInitialiseFECBuffers();
|
411 |
|
|
|
412 |
|
|
for( usData = 0; usData < 6; usData++ )
|
413 |
|
|
{
|
414 |
|
|
xAddr.addr[ usData ] = ucMACAddress[ usData ];
|
415 |
|
|
}
|
416 |
|
|
uip_setethaddr( xAddr );
|
417 |
|
|
|
418 |
|
|
/* Set the Reset bit and clear the Enable bit */
|
419 |
|
|
MCF_FEC_ECR = MCF_FEC_ECR_RESET;
|
420 |
|
|
|
421 |
|
|
/* Wait at least 8 clock cycles */
|
422 |
|
|
for( usData = 0; usData < 10; usData++ )
|
423 |
|
|
{
|
424 |
|
|
asm( "NOP" );
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/* Set MII speed to 2.5MHz. */
|
428 |
|
|
MCF_FEC_MSCR = MCF_FEC_MSCR_MII_SPEED( ( ( ( configCPU_CLOCK_HZ / 1000000 ) / 5 ) + 1 ) );
|
429 |
|
|
|
430 |
|
|
/* Initialize PLDPAR to enable Ethernet LEDs. */
|
431 |
|
|
MCF_GPIO_PLDPAR = MCF_GPIO_PLDPAR_ACTLED_ACTLED | MCF_GPIO_PLDPAR_LINKLED_LINKLED | MCF_GPIO_PLDPAR_SPDLED_SPDLED
|
432 |
|
|
| MCF_GPIO_PLDPAR_DUPLED_DUPLED | MCF_GPIO_PLDPAR_COLLED_COLLED | MCF_GPIO_PLDPAR_RXLED_RXLED
|
433 |
|
|
| MCF_GPIO_PLDPAR_TXLED_TXLED;
|
434 |
|
|
|
435 |
|
|
/* Initialize Port TA to enable Axcel control. */
|
436 |
|
|
MCF_GPIO_PTAPAR = 0x00;
|
437 |
|
|
MCF_GPIO_DDRTA = 0x0F;
|
438 |
|
|
MCF_GPIO_PORTTA = 0x04;
|
439 |
|
|
|
440 |
|
|
/* Set phy address to zero. */
|
441 |
|
|
MCF_EPHY_EPHYCTL1 = MCF_EPHY_EPHYCTL1_PHYADD( 0 );
|
442 |
|
|
|
443 |
|
|
/* Enable EPHY module with PHY clocks disabled. Do not turn on PHY clocks
|
444 |
|
|
until both FEC and EPHY are completely setup (see Below). */
|
445 |
|
|
MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0_DIS100 | MCF_EPHY_EPHYCTL0_DIS10);
|
446 |
|
|
|
447 |
|
|
/* Enable auto_neg at start-up */
|
448 |
|
|
MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0 & (MCF_EPHY_EPHYCTL0_ANDIS));
|
449 |
|
|
|
450 |
|
|
/* Enable EPHY module. */
|
451 |
|
|
MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0_EPHYEN | MCF_EPHY_EPHYCTL0);
|
452 |
|
|
|
453 |
|
|
/* Let PHY PLLs be determined by PHY. */
|
454 |
|
|
MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0 & ~(MCF_EPHY_EPHYCTL0_DIS100 | MCF_EPHY_EPHYCTL0_DIS10));
|
455 |
|
|
|
456 |
|
|
/* Settle. */
|
457 |
|
|
vTaskDelay( fecLINK_DELAY );
|
458 |
|
|
|
459 |
|
|
/* Can we talk to the PHY? */
|
460 |
|
|
do
|
461 |
|
|
{
|
462 |
|
|
vTaskDelay( fecLINK_DELAY );
|
463 |
|
|
usData = 0;
|
464 |
|
|
fec_mii_read( configPHY_ADDRESS, PHY_PHYIDR1, &usData );
|
465 |
|
|
|
466 |
|
|
} while( usData == 0xffff );
|
467 |
|
|
|
468 |
|
|
do
|
469 |
|
|
{
|
470 |
|
|
/* Start auto negotiate. */
|
471 |
|
|
fec_mii_write( configPHY_ADDRESS, PHY_BMCR, ( PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE ) );
|
472 |
|
|
|
473 |
|
|
/* Wait for auto negotiate to complete. */
|
474 |
|
|
do
|
475 |
|
|
{
|
476 |
|
|
ux++;
|
477 |
|
|
if( ux > 10 )
|
478 |
|
|
{
|
479 |
|
|
/* Hardware bug workaround! Force 100Mbps half duplex. */
|
480 |
|
|
while( !fec_mii_read( configPHY_ADDRESS, 0, &usData ) ){};
|
481 |
|
|
usData &= ~0x2000; /* 10Mbps */
|
482 |
|
|
usData &= ~0x0100; /* Half Duplex */
|
483 |
|
|
usData &= ~0x1000; /* Manual Mode */
|
484 |
|
|
while( !fec_mii_write( configPHY_ADDRESS, 0, usData ) ){};
|
485 |
|
|
while( !fec_mii_write( configPHY_ADDRESS, 0, (usData|0x0200) )){}; /* Force re-negotiate */
|
486 |
|
|
break;
|
487 |
|
|
}
|
488 |
|
|
vTaskDelay( fecLINK_DELAY );
|
489 |
|
|
fec_mii_read( configPHY_ADDRESS, PHY_BMSR, &usData );
|
490 |
|
|
|
491 |
|
|
} while( !( usData & PHY_BMSR_AN_COMPLETE ) );
|
492 |
|
|
|
493 |
|
|
} while( 0 ); //while( !( usData & PHY_BMSR_LINK ) );
|
494 |
|
|
|
495 |
|
|
/* When we get here we have a link - find out what has been negotiated. */
|
496 |
|
|
fec_mii_read( configPHY_ADDRESS, PHY_ANLPAR, &usData );
|
497 |
|
|
|
498 |
|
|
if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_100BTX ) )
|
499 |
|
|
{
|
500 |
|
|
/* Speed is 100. */
|
501 |
|
|
}
|
502 |
|
|
else
|
503 |
|
|
{
|
504 |
|
|
/* Speed is 10. */
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_10BTX_FDX ) )
|
508 |
|
|
{
|
509 |
|
|
MCF_FEC_RCR &= (unsigned portLONG)~MCF_FEC_RCR_DRT;
|
510 |
|
|
MCF_FEC_TCR |= MCF_FEC_TCR_FDEN;
|
511 |
|
|
}
|
512 |
|
|
else
|
513 |
|
|
{
|
514 |
|
|
MCF_FEC_RCR |= MCF_FEC_RCR_DRT;
|
515 |
|
|
MCF_FEC_TCR &= (unsigned portLONG)~MCF_FEC_TCR_FDEN;
|
516 |
|
|
}
|
517 |
|
|
|
518 |
|
|
/* Clear the Individual and Group Address Hash registers */
|
519 |
|
|
MCF_FEC_IALR = 0;
|
520 |
|
|
MCF_FEC_IAUR = 0;
|
521 |
|
|
MCF_FEC_GALR = 0;
|
522 |
|
|
MCF_FEC_GAUR = 0;
|
523 |
|
|
|
524 |
|
|
/* Set the Physical Address for the selected FEC */
|
525 |
|
|
fec_set_address( ucMACAddress );
|
526 |
|
|
|
527 |
|
|
/* Set Rx Buffer Size */
|
528 |
|
|
MCF_FEC_EMRBR = (unsigned portSHORT)configFEC_BUFFER_SIZE;
|
529 |
|
|
|
530 |
|
|
/* Point to the start of the circular Rx buffer descriptor queue */
|
531 |
|
|
MCF_FEC_ERDSR = ( volatile unsigned portLONG ) &( xFECRxDescriptors[ 0 ] );
|
532 |
|
|
|
533 |
|
|
/* Point to the start of the circular Tx buffer descriptor queue */
|
534 |
|
|
MCF_FEC_ETSDR = ( volatile unsigned portLONG ) &( xFECTxDescriptors[ 0 ] );
|
535 |
|
|
|
536 |
|
|
/* Mask all FEC interrupts */
|
537 |
|
|
MCF_FEC_EIMR = ( unsigned portLONG ) -1;
|
538 |
|
|
|
539 |
|
|
/* Clear all FEC interrupt events */
|
540 |
|
|
MCF_FEC_EIR = ( unsigned portLONG ) -1;
|
541 |
|
|
|
542 |
|
|
/* Initialize the Receive Control Register */
|
543 |
|
|
MCF_FEC_RCR = MCF_FEC_RCR_MAX_FL(ETH_MAX_FRM) | MCF_FEC_RCR_FCE;
|
544 |
|
|
|
545 |
|
|
MCF_FEC_RCR |= MCF_FEC_RCR_MII_MODE;
|
546 |
|
|
|
547 |
|
|
#if( configUSE_PROMISCUOUS_MODE == 1 )
|
548 |
|
|
{
|
549 |
|
|
MCF_FEC_RCR |= MCF_FEC_RCR_PROM;
|
550 |
|
|
}
|
551 |
|
|
#endif
|
552 |
|
|
|
553 |
|
|
prvEnableFECInterrupts();
|
554 |
|
|
|
555 |
|
|
/* Finally... enable. */
|
556 |
|
|
MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
|
557 |
|
|
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
|
558 |
|
|
}
|
559 |
|
|
/*-----------------------------------------------------------*/
|
560 |
|
|
|
561 |
|
|
static void prvEnableFECInterrupts( void )
|
562 |
|
|
{
|
563 |
|
|
const unsigned portBASE_TYPE uxFirstFECVector = 23, uxLastFECVector = 35;
|
564 |
|
|
unsigned portBASE_TYPE ux;
|
565 |
|
|
|
566 |
|
|
#if configFEC_INTERRUPT_PRIORITY > configMAX_SYSCALL_INTERRUPT_PRIORITY
|
567 |
|
|
#error configFEC_INTERRUPT_PRIORITY must be less than or equal to configMAX_SYSCALL_INTERRUPT_PRIORITY
|
568 |
|
|
#endif
|
569 |
|
|
|
570 |
|
|
/* Set the priority of each of the FEC interrupts. */
|
571 |
|
|
for( ux = uxFirstFECVector; ux <= uxLastFECVector; ux++ )
|
572 |
|
|
{
|
573 |
|
|
MCF_INTC0_ICR( ux ) = MCF_INTC_ICR_IL( configFEC_INTERRUPT_PRIORITY );
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Enable the FEC interrupts in the mask register */
|
577 |
|
|
MCF_INTC0_IMRH &= ~( MCF_INTC_IMRH_INT_MASK33 | MCF_INTC_IMRH_INT_MASK34 | MCF_INTC_IMRH_INT_MASK35 );
|
578 |
|
|
MCF_INTC0_IMRL &= ~( MCF_INTC_IMRL_INT_MASK25 | MCF_INTC_IMRL_INT_MASK26 | MCF_INTC_IMRL_INT_MASK27
|
579 |
|
|
| MCF_INTC_IMRL_INT_MASK28 | MCF_INTC_IMRL_INT_MASK29 | MCF_INTC_IMRL_INT_MASK30
|
580 |
|
|
| MCF_INTC_IMRL_INT_MASK31 | MCF_INTC_IMRL_INT_MASK23 | MCF_INTC_IMRL_INT_MASK24
|
581 |
|
|
| MCF_INTC_IMRL_MASKALL );
|
582 |
|
|
|
583 |
|
|
/* Clear any pending FEC interrupt events */
|
584 |
|
|
MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;
|
585 |
|
|
|
586 |
|
|
/* Unmask all FEC interrupts */
|
587 |
|
|
MCF_FEC_EIMR = MCF_FEC_EIMR_UNMASK_ALL;
|
588 |
|
|
}
|
589 |
|
|
/*-----------------------------------------------------------*/
|
590 |
|
|
|
591 |
|
|
static void prvResetFEC( portBASE_TYPE xCalledFromISR )
|
592 |
|
|
{
|
593 |
|
|
portBASE_TYPE x;
|
594 |
|
|
|
595 |
|
|
/* A critical section is used unless this function is being called from
|
596 |
|
|
an ISR. */
|
597 |
|
|
if( xCalledFromISR == pdFALSE )
|
598 |
|
|
{
|
599 |
|
|
taskENTER_CRITICAL();
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
{
|
603 |
|
|
/* Reset all buffers and descriptors. */
|
604 |
|
|
prvInitialiseFECBuffers();
|
605 |
|
|
|
606 |
|
|
/* Set the Reset bit and clear the Enable bit */
|
607 |
|
|
MCF_FEC_ECR = MCF_FEC_ECR_RESET;
|
608 |
|
|
|
609 |
|
|
/* Wait at least 8 clock cycles */
|
610 |
|
|
for( x = 0; x < 10; x++ )
|
611 |
|
|
{
|
612 |
|
|
asm( "NOP" );
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
/* Re-enable. */
|
616 |
|
|
MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
|
617 |
|
|
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
if( xCalledFromISR == pdFALSE )
|
621 |
|
|
{
|
622 |
|
|
taskEXIT_CRITICAL();
|
623 |
|
|
}
|
624 |
|
|
}
|
625 |
|
|
/*-----------------------------------------------------------*/
|
626 |
|
|
|
627 |
|
|
unsigned short usFECGetRxedData( void )
|
628 |
|
|
{
|
629 |
|
|
unsigned portSHORT usLen;
|
630 |
|
|
|
631 |
|
|
/* Obtain the size of the packet and put it into the "len" variable. */
|
632 |
|
|
usLen = xFECRxDescriptors[ uxNextRxBuffer ].length;
|
633 |
|
|
|
634 |
|
|
if( ( usLen != 0 ) && ( ( xFECRxDescriptors[ uxNextRxBuffer ].status & RX_BD_E ) == 0 ) )
|
635 |
|
|
{
|
636 |
|
|
uip_buf = xFECRxDescriptors[ uxNextRxBuffer ].data;
|
637 |
|
|
}
|
638 |
|
|
else
|
639 |
|
|
{
|
640 |
|
|
usLen = 0;
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
return usLen;
|
644 |
|
|
}
|
645 |
|
|
/*-----------------------------------------------------------*/
|
646 |
|
|
|
647 |
|
|
void vFECRxProcessingCompleted( void )
|
648 |
|
|
{
|
649 |
|
|
/* Free the descriptor as the buffer it points to is no longer in use. */
|
650 |
|
|
xFECRxDescriptors[ uxNextRxBuffer ].status |= RX_BD_E;
|
651 |
|
|
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
|
652 |
|
|
uxNextRxBuffer++;
|
653 |
|
|
if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
|
654 |
|
|
{
|
655 |
|
|
uxNextRxBuffer = 0;
|
656 |
|
|
}
|
657 |
|
|
}
|
658 |
|
|
/*-----------------------------------------------------------*/
|
659 |
|
|
|
660 |
|
|
void vFECSendData( void )
|
661 |
|
|
{
|
662 |
|
|
/* Ensure no Tx frames are outstanding. */
|
663 |
|
|
if( xSemaphoreTake( xTxSemaphore, fecMAX_WAIT_FOR_TX_BUFFER ) == pdPASS )
|
664 |
|
|
{
|
665 |
|
|
/* Get a DMA buffer into which we can write the data to send. */
|
666 |
|
|
if( xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].status & TX_BD_R )
|
667 |
|
|
{
|
668 |
|
|
/*** ERROR didn't expect this. Sledge hammer error handling. ***/
|
669 |
|
|
prvResetFEC( pdFALSE );
|
670 |
|
|
|
671 |
|
|
/* Make sure we leave the semaphore in the expected state as nothing
|
672 |
|
|
is being transmitted this will not happen in the Tx ISR. */
|
673 |
|
|
xSemaphoreGive( xTxSemaphore );
|
674 |
|
|
}
|
675 |
|
|
else
|
676 |
|
|
{
|
677 |
|
|
/* Setup the buffer descriptor for transmission. The data being
|
678 |
|
|
sent is actually stored in one of the Rx descriptor buffers,
|
679 |
|
|
pointed to by uip_buf. */
|
680 |
|
|
xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].length = uip_len;
|
681 |
|
|
xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].status |= ( TX_BD_R | TX_BD_L );
|
682 |
|
|
xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].data = uip_buf;
|
683 |
|
|
|
684 |
|
|
/* Remember which Rx descriptor owns the buffer we are sending. */
|
685 |
|
|
uxIndexToBufferOwner = uxNextRxBuffer;
|
686 |
|
|
|
687 |
|
|
/* We have finished with this Rx descriptor now. */
|
688 |
|
|
uxNextRxBuffer++;
|
689 |
|
|
if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
|
690 |
|
|
{
|
691 |
|
|
uxNextRxBuffer = 0;
|
692 |
|
|
}
|
693 |
|
|
|
694 |
|
|
/* Continue the Tx DMA (in case it was waiting for a new TxBD) */
|
695 |
|
|
MCF_FEC_TDAR = MCF_FEC_TDAR_X_DES_ACTIVE;
|
696 |
|
|
}
|
697 |
|
|
}
|
698 |
|
|
else
|
699 |
|
|
{
|
700 |
|
|
/* Gave up waiting. Free the buffer back to the DMA. */
|
701 |
|
|
vFECRxProcessingCompleted();
|
702 |
|
|
}
|
703 |
|
|
}
|
704 |
|
|
/*-----------------------------------------------------------*/
|
705 |
|
|
|
706 |
|
|
void vFEC_ISR( void )
|
707 |
|
|
{
|
708 |
|
|
unsigned portLONG ulEvent;
|
709 |
|
|
portBASE_TYPE xHighPriorityTaskWoken = pdFALSE;
|
710 |
|
|
|
711 |
|
|
/* This handler is called in response to any of the many separate FEC
|
712 |
|
|
interrupt. */
|
713 |
|
|
|
714 |
|
|
/* Find the cause of the interrupt, then clear the interrupt. */
|
715 |
|
|
ulEvent = MCF_FEC_EIR & MCF_FEC_EIMR;
|
716 |
|
|
MCF_FEC_EIR = ulEvent;
|
717 |
|
|
|
718 |
|
|
if( ( ulEvent & MCF_FEC_EIR_RXB ) || ( ulEvent & MCF_FEC_EIR_RXF ) )
|
719 |
|
|
{
|
720 |
|
|
/* A packet has been received. Wake the handler task. */
|
721 |
|
|
xSemaphoreGiveFromISR( xFECSemaphore, &xHighPriorityTaskWoken );
|
722 |
|
|
}
|
723 |
|
|
|
724 |
|
|
if( ulEvent & ( MCF_FEC_EIR_UN | MCF_FEC_EIR_RL | MCF_FEC_EIR_LC | MCF_FEC_EIR_EBERR | MCF_FEC_EIR_BABT | MCF_FEC_EIR_BABR | MCF_FEC_EIR_HBERR ) )
|
725 |
|
|
{
|
726 |
|
|
/* Sledge hammer error handling. */
|
727 |
|
|
prvResetFEC( pdTRUE );
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
if( ( ulEvent & MCF_FEC_EIR_TXF ) || ( ulEvent & MCF_FEC_EIR_TXB ) )
|
731 |
|
|
{
|
732 |
|
|
/* The buffer being sent is pointed to by an Rx descriptor, now the
|
733 |
|
|
buffer has been sent we can mark the Rx descriptor as free again. */
|
734 |
|
|
xFECRxDescriptors[ uxIndexToBufferOwner ].status |= RX_BD_E;
|
735 |
|
|
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
|
736 |
|
|
xSemaphoreGiveFromISR( xTxSemaphore, &xHighPriorityTaskWoken );
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
portEND_SWITCHING_ISR( xHighPriorityTaskWoken );
|
740 |
|
|
}
|
741 |
|
|
/*-----------------------------------------------------------*/
|
742 |
|
|
|
743 |
|
|
/* Install the many different interrupt vectors, all of which call the same
|
744 |
|
|
handler function. */
|
745 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_87( void ) { vFEC_ISR(); }
|
746 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_88( void ) { vFEC_ISR(); }
|
747 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_89( void ) { vFEC_ISR(); }
|
748 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_90( void ) { vFEC_ISR(); }
|
749 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_91( void ) { vFEC_ISR(); }
|
750 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_92( void ) { vFEC_ISR(); }
|
751 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_93( void ) { vFEC_ISR(); }
|
752 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_94( void ) { vFEC_ISR(); }
|
753 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_95( void ) { vFEC_ISR(); }
|
754 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_96( void ) { vFEC_ISR(); }
|
755 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_97( void ) { vFEC_ISR(); }
|
756 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_98( void ) { vFEC_ISR(); }
|
757 |
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_99( void ) { vFEC_ISR(); }
|
758 |
|
|
|
759 |
|
|
|