1 |
606 |
jeremybenn |
/*
|
2 |
|
|
FreeRTOS V6.1.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
3 |
|
|
|
4 |
|
|
***************************************************************************
|
5 |
|
|
* *
|
6 |
|
|
* If you are: *
|
7 |
|
|
* *
|
8 |
|
|
* + New to FreeRTOS, *
|
9 |
|
|
* + Wanting to learn FreeRTOS or multitasking in general quickly *
|
10 |
|
|
* + Looking for basic training, *
|
11 |
|
|
* + Wanting to improve your FreeRTOS skills and productivity *
|
12 |
|
|
* *
|
13 |
|
|
* then take a look at the FreeRTOS books - available as PDF or paperback *
|
14 |
|
|
* *
|
15 |
|
|
* "Using the FreeRTOS Real Time Kernel - a Practical Guide" *
|
16 |
|
|
* http://www.FreeRTOS.org/Documentation *
|
17 |
|
|
* *
|
18 |
|
|
* A pdf reference manual is also available. Both are usually delivered *
|
19 |
|
|
* to your inbox within 20 minutes to two hours when purchased between 8am *
|
20 |
|
|
* and 8pm GMT (although please allow up to 24 hours in case of *
|
21 |
|
|
* exceptional circumstances). Thank you for your support! *
|
22 |
|
|
* *
|
23 |
|
|
***************************************************************************
|
24 |
|
|
|
25 |
|
|
This file is part of the FreeRTOS distribution.
|
26 |
|
|
|
27 |
|
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
28 |
|
|
the terms of the GNU General Public License (version 2) as published by the
|
29 |
|
|
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
30 |
|
|
***NOTE*** The exception to the GPL is included to allow you to distribute
|
31 |
|
|
a combined work that includes FreeRTOS without being obliged to provide the
|
32 |
|
|
source code for proprietary components outside of the FreeRTOS kernel.
|
33 |
|
|
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT
|
34 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
35 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
36 |
|
|
more details. You should have received a copy of the GNU General Public
|
37 |
|
|
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
38 |
|
|
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
39 |
|
|
by writing to Richard Barry, contact details for whom are available on the
|
40 |
|
|
FreeRTOS WEB site.
|
41 |
|
|
|
42 |
|
|
1 tab == 4 spaces!
|
43 |
|
|
|
44 |
|
|
http://www.FreeRTOS.org - Documentation, latest information, license and
|
45 |
|
|
contact details.
|
46 |
|
|
|
47 |
|
|
http://www.SafeRTOS.com - A version that is certified for use in safety
|
48 |
|
|
critical systems.
|
49 |
|
|
|
50 |
|
|
http://www.OpenRTOS.com - Commercial support, development, porting,
|
51 |
|
|
licensing and training services.
|
52 |
|
|
*/
|
53 |
|
|
|
54 |
|
|
/*
|
55 |
|
|
* This file defines one of the more complex set of demo/test tasks. They are
|
56 |
|
|
* designed to stress test the queue implementation though pseudo simultaneous
|
57 |
|
|
* multiple reads and multiple writes from both tasks of varying priority and
|
58 |
|
|
* interrupts. The interrupts are prioritised such to ensure that nesting
|
59 |
|
|
* occurs (for those ports that support it).
|
60 |
|
|
*
|
61 |
|
|
* The test ensures that, while being accessed from three tasks and two
|
62 |
|
|
* interrupts, all the data sent to the queues is also received from
|
63 |
|
|
* the same queue, and that no duplicate items are either sent or received.
|
64 |
|
|
* The tests also ensure that a low priority task is never able to successfully
|
65 |
|
|
* read from or write to a queue when a task of higher priority is attempting
|
66 |
|
|
* the same operation.
|
67 |
|
|
*/
|
68 |
|
|
|
69 |
|
|
/* Standard includes. */
|
70 |
|
|
#include <string.h>
|
71 |
|
|
|
72 |
|
|
/* SafeRTOS includes. */
|
73 |
|
|
#include "FreeRTOS.h"
|
74 |
|
|
#include "queue.h"
|
75 |
|
|
#include "task.h"
|
76 |
|
|
|
77 |
|
|
/* Demo app includes. */
|
78 |
|
|
#include "IntQueue.h"
|
79 |
|
|
#include "IntQueueTimer.h"
|
80 |
|
|
|
81 |
|
|
/* Priorities used by test tasks. */
|
82 |
|
|
#define intqHIGHER_PRIORITY ( configMAX_PRIORITIES - 2 )
|
83 |
|
|
#define intqLOWER_PRIORITY ( tskIDLE_PRIORITY )
|
84 |
|
|
|
85 |
|
|
/* The number of values to send/receive before checking that all values were
|
86 |
|
|
processed as expected. */
|
87 |
|
|
#define intqNUM_VALUES_TO_LOG ( 200 )
|
88 |
|
|
#define intqSHORT_DELAY ( 75 )
|
89 |
|
|
|
90 |
|
|
/* The value by which the value being sent to or received from a queue should
|
91 |
|
|
increment past intqNUM_VALUES_TO_LOG before we check that all values have been
|
92 |
|
|
sent/received correctly. This is done to ensure that all tasks and interrupts
|
93 |
|
|
accessing the queue have completed their accesses with the
|
94 |
|
|
intqNUM_VALUES_TO_LOG range. */
|
95 |
|
|
#define intqVALUE_OVERRUN ( 50 )
|
96 |
|
|
|
97 |
|
|
/* The delay used by the polling task. A short delay is used for code
|
98 |
|
|
coverage. */
|
99 |
|
|
#define intqONE_TICK_DELAY ( 1 )
|
100 |
|
|
|
101 |
|
|
/* Each task and interrupt is given a unique identifier. This value is used to
|
102 |
|
|
identify which task sent or received each value. The identifier is also used
|
103 |
|
|
to distinguish between two tasks that are running the same task function. */
|
104 |
|
|
#define intqHIGH_PRIORITY_TASK1 ( ( unsigned portBASE_TYPE ) 1 )
|
105 |
|
|
#define intqHIGH_PRIORITY_TASK2 ( ( unsigned portBASE_TYPE ) 2 )
|
106 |
|
|
#define intqLOW_PRIORITY_TASK ( ( unsigned portBASE_TYPE ) 3 )
|
107 |
|
|
#define intqFIRST_INTERRUPT ( ( unsigned portBASE_TYPE ) 4 )
|
108 |
|
|
#define intqSECOND_INTERRUPT ( ( unsigned portBASE_TYPE ) 5 )
|
109 |
|
|
#define intqQUEUE_LENGTH ( ( unsigned portBASE_TYPE ) 10 )
|
110 |
|
|
|
111 |
|
|
/* At least intqMIN_ACCEPTABLE_TASK_COUNT values should be sent to/received
|
112 |
|
|
from each queue by each task, otherwise an error is detected. */
|
113 |
|
|
#define intqMIN_ACCEPTABLE_TASK_COUNT ( 5 )
|
114 |
|
|
|
115 |
|
|
/* Send the next value to the queue that is normally empty. This is called
|
116 |
|
|
from within the interrupts. */
|
117 |
|
|
#define timerNORMALLY_EMPTY_TX() \
|
118 |
|
|
if( xQueueIsQueueFullFromISR( xNormallyEmptyQueue ) != pdTRUE ) \
|
119 |
|
|
{ \
|
120 |
|
|
unsigned portBASE_TYPE uxSavedInterruptStatus; \
|
121 |
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); \
|
122 |
|
|
{ \
|
123 |
|
|
uxValueForNormallyEmptyQueue++; \
|
124 |
|
|
xQueueSendFromISR( xNormallyEmptyQueue, ( void * ) &uxValueForNormallyEmptyQueue, &xHigherPriorityTaskWoken ); \
|
125 |
|
|
} \
|
126 |
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); \
|
127 |
|
|
} \
|
128 |
|
|
|
129 |
|
|
/* Send the next value to the queue that is normally full. This is called
|
130 |
|
|
from within the interrupts. */
|
131 |
|
|
#define timerNORMALLY_FULL_TX() \
|
132 |
|
|
if( xQueueIsQueueFullFromISR( xNormallyFullQueue ) != pdTRUE ) \
|
133 |
|
|
{ \
|
134 |
|
|
unsigned portBASE_TYPE uxSavedInterruptStatus; \
|
135 |
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); \
|
136 |
|
|
{ \
|
137 |
|
|
uxValueForNormallyFullQueue++; \
|
138 |
|
|
xQueueSendFromISR( xNormallyFullQueue, ( void * ) &uxValueForNormallyFullQueue, &xHigherPriorityTaskWoken ); \
|
139 |
|
|
} \
|
140 |
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); \
|
141 |
|
|
} \
|
142 |
|
|
|
143 |
|
|
/* Receive a value from the normally empty queue. This is called from within
|
144 |
|
|
an interrupt. */
|
145 |
|
|
#define timerNORMALLY_EMPTY_RX() \
|
146 |
|
|
if( xQueueReceiveFromISR( xNormallyEmptyQueue, &uxRxedValue, &xHigherPriorityTaskWoken ) != pdPASS ) \
|
147 |
|
|
{ \
|
148 |
|
|
prvQueueAccessLogError( __LINE__ ); \
|
149 |
|
|
} \
|
150 |
|
|
else \
|
151 |
|
|
{ \
|
152 |
|
|
prvRecordValue_NormallyEmpty( uxRxedValue, intqSECOND_INTERRUPT ); \
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
/* Receive a value from the normally full queue. This is called from within
|
156 |
|
|
an interrupt. */
|
157 |
|
|
#define timerNORMALLY_FULL_RX() \
|
158 |
|
|
if( xQueueReceiveFromISR( xNormallyFullQueue, &uxRxedValue, &xHigherPriorityTaskWoken ) == pdPASS ) \
|
159 |
|
|
{ \
|
160 |
|
|
prvRecordValue_NormallyFull( uxRxedValue, intqSECOND_INTERRUPT ); \
|
161 |
|
|
} \
|
162 |
|
|
|
163 |
|
|
|
164 |
|
|
/*-----------------------------------------------------------*/
|
165 |
|
|
|
166 |
|
|
/* The two queues used by the test. */
|
167 |
|
|
static xQueueHandle xNormallyEmptyQueue, xNormallyFullQueue;
|
168 |
|
|
|
169 |
|
|
/* Variables used to detect a stall in one of the tasks. */
|
170 |
|
|
static unsigned portBASE_TYPE uxHighPriorityLoops1 = 0, uxHighPriorityLoops2 = 0, uxLowPriorityLoops1 = 0, uxLowPriorityLoops2 = 0;
|
171 |
|
|
|
172 |
|
|
/* Any unexpected behaviour sets xErrorStatus to fail and log the line that
|
173 |
|
|
caused the error in xErrorLine. */
|
174 |
|
|
static portBASE_TYPE xErrorStatus = pdPASS;
|
175 |
|
|
static volatile unsigned portBASE_TYPE xErrorLine = ( unsigned portBASE_TYPE ) 0;
|
176 |
|
|
|
177 |
|
|
/* Used for sequencing between tasks. */
|
178 |
|
|
static portBASE_TYPE xWasSuspended = pdFALSE;
|
179 |
|
|
|
180 |
|
|
/* The values that are sent to the queues. An incremented value is sent each
|
181 |
|
|
time to each queue. */
|
182 |
|
|
volatile unsigned portBASE_TYPE uxValueForNormallyEmptyQueue = 0, uxValueForNormallyFullQueue = 0;
|
183 |
|
|
|
184 |
|
|
/* A handle to some of the tasks is required so they can be suspended/resumed. */
|
185 |
|
|
xTaskHandle xHighPriorityNormallyEmptyTask1, xHighPriorityNormallyEmptyTask2, xHighPriorityNormallyFullTask1, xHighPriorityNormallyFullTask2;
|
186 |
|
|
|
187 |
|
|
/* When a value is received in a queue the value is ticked off in the array
|
188 |
|
|
the array position of the value is set to a the identifier of the task or
|
189 |
|
|
interrupt that accessed the queue. This way missing or duplicate values can be
|
190 |
|
|
detected. */
|
191 |
|
|
static unsigned portCHAR ucNormallyEmptyReceivedValues[ intqNUM_VALUES_TO_LOG ] = { 0 };
|
192 |
|
|
static unsigned portCHAR ucNormallyFullReceivedValues[ intqNUM_VALUES_TO_LOG ] = { 0 };
|
193 |
|
|
|
194 |
|
|
/* The test tasks themselves. */
|
195 |
|
|
static void prvLowerPriorityNormallyEmptyTask( void *pvParameters );
|
196 |
|
|
static void prvLowerPriorityNormallyFullTask( void *pvParameters );
|
197 |
|
|
static void prvHigherPriorityNormallyEmptyTask( void *pvParameters );
|
198 |
|
|
static void prv1stHigherPriorityNormallyFullTask( void *pvParameters );
|
199 |
|
|
static void prv2ndHigherPriorityNormallyFullTask( void *pvParameters );
|
200 |
|
|
|
201 |
|
|
/* Used to mark the positions within the ucNormallyEmptyReceivedValues and
|
202 |
|
|
ucNormallyFullReceivedValues arrays, while checking for duplicates. */
|
203 |
|
|
static void prvRecordValue_NormallyEmpty( unsigned portBASE_TYPE uxValue, unsigned portBASE_TYPE uxSource );
|
204 |
|
|
static void prvRecordValue_NormallyFull( unsigned portBASE_TYPE uxValue, unsigned portBASE_TYPE uxSource );
|
205 |
|
|
|
206 |
|
|
/* Logs the line on which an error occurred. */
|
207 |
|
|
static void prvQueueAccessLogError( unsigned portBASE_TYPE uxLine );
|
208 |
|
|
|
209 |
|
|
/*-----------------------------------------------------------*/
|
210 |
|
|
|
211 |
|
|
void vStartInterruptQueueTasks( void )
|
212 |
|
|
{
|
213 |
|
|
/* Start the test tasks. */
|
214 |
|
|
xTaskCreate( prvHigherPriorityNormallyEmptyTask, ( signed portCHAR * ) "H1QRx", configMINIMAL_STACK_SIZE, ( void * ) intqHIGH_PRIORITY_TASK1, intqHIGHER_PRIORITY, &xHighPriorityNormallyEmptyTask1 );
|
215 |
|
|
xTaskCreate( prvHigherPriorityNormallyEmptyTask, ( signed portCHAR * ) "H2QRx", configMINIMAL_STACK_SIZE, ( void * ) intqHIGH_PRIORITY_TASK2, intqHIGHER_PRIORITY, &xHighPriorityNormallyEmptyTask2 );
|
216 |
|
|
xTaskCreate( prvLowerPriorityNormallyEmptyTask, ( signed portCHAR * ) "LQRx", configMINIMAL_STACK_SIZE, NULL, intqLOWER_PRIORITY, NULL );
|
217 |
|
|
xTaskCreate( prv1stHigherPriorityNormallyFullTask, ( signed portCHAR * ) "H1QTx", configMINIMAL_STACK_SIZE, ( void * ) intqHIGH_PRIORITY_TASK1, intqHIGHER_PRIORITY, &xHighPriorityNormallyFullTask1 );
|
218 |
|
|
xTaskCreate( prv2ndHigherPriorityNormallyFullTask, ( signed portCHAR * ) "H1QTx", configMINIMAL_STACK_SIZE, ( void * ) intqHIGH_PRIORITY_TASK2, intqHIGHER_PRIORITY, &xHighPriorityNormallyFullTask2 );
|
219 |
|
|
xTaskCreate( prvLowerPriorityNormallyFullTask, ( signed portCHAR * ) "LQRx", configMINIMAL_STACK_SIZE, NULL, intqLOWER_PRIORITY, NULL );
|
220 |
|
|
|
221 |
|
|
/* Create the queues that are accessed by multiple tasks and multiple
|
222 |
|
|
interrupts. */
|
223 |
|
|
xNormallyFullQueue = xQueueCreate( intqQUEUE_LENGTH, ( unsigned portBASE_TYPE ) sizeof( unsigned portBASE_TYPE ) );
|
224 |
|
|
xNormallyEmptyQueue = xQueueCreate( intqQUEUE_LENGTH, ( unsigned portBASE_TYPE ) sizeof( unsigned portBASE_TYPE ) );
|
225 |
|
|
|
226 |
|
|
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
|
227 |
|
|
in use. The queue registry is provided as a means for kernel aware
|
228 |
|
|
debuggers to locate queues and has no purpose if a kernel aware debugger
|
229 |
|
|
is not being used. The call to vQueueAddToRegistry() will be removed
|
230 |
|
|
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
231 |
|
|
defined to be less than 1. */
|
232 |
|
|
vQueueAddToRegistry( xNormallyFullQueue, ( signed portCHAR * ) "NormallyFull" );
|
233 |
|
|
vQueueAddToRegistry( xNormallyEmptyQueue, ( signed portCHAR * ) "NormallyEmpty" );
|
234 |
|
|
}
|
235 |
|
|
/*-----------------------------------------------------------*/
|
236 |
|
|
|
237 |
|
|
static void prvRecordValue_NormallyFull( unsigned portBASE_TYPE uxValue, unsigned portBASE_TYPE uxSource )
|
238 |
|
|
{
|
239 |
|
|
if( uxValue < intqNUM_VALUES_TO_LOG )
|
240 |
|
|
{
|
241 |
|
|
/* We don't expect to receive the same value twice, so if the value
|
242 |
|
|
has already been marked as received an error has occurred. */
|
243 |
|
|
if( ucNormallyFullReceivedValues[ uxValue ] != 0x00 )
|
244 |
|
|
{
|
245 |
|
|
prvQueueAccessLogError( __LINE__ );
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
/* Log that this value has been received. */
|
249 |
|
|
ucNormallyFullReceivedValues[ uxValue ] = uxSource;
|
250 |
|
|
}
|
251 |
|
|
}
|
252 |
|
|
/*-----------------------------------------------------------*/
|
253 |
|
|
|
254 |
|
|
static void prvRecordValue_NormallyEmpty( unsigned portBASE_TYPE uxValue, unsigned portBASE_TYPE uxSource )
|
255 |
|
|
{
|
256 |
|
|
if( uxValue < intqNUM_VALUES_TO_LOG )
|
257 |
|
|
{
|
258 |
|
|
/* We don't expect to receive the same value twice, so if the value
|
259 |
|
|
has already been marked as received an error has occurred. */
|
260 |
|
|
if( ucNormallyEmptyReceivedValues[ uxValue ] != 0x00 )
|
261 |
|
|
{
|
262 |
|
|
prvQueueAccessLogError( __LINE__ );
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/* Log that this value has been received. */
|
266 |
|
|
ucNormallyEmptyReceivedValues[ uxValue ] = uxSource;
|
267 |
|
|
}
|
268 |
|
|
}
|
269 |
|
|
/*-----------------------------------------------------------*/
|
270 |
|
|
|
271 |
|
|
static void prvQueueAccessLogError( unsigned portBASE_TYPE uxLine )
|
272 |
|
|
{
|
273 |
|
|
/* Latch the line number that caused the error. */
|
274 |
|
|
xErrorLine = uxLine;
|
275 |
|
|
xErrorStatus = pdFAIL;
|
276 |
|
|
}
|
277 |
|
|
/*-----------------------------------------------------------*/
|
278 |
|
|
|
279 |
|
|
static void prvHigherPriorityNormallyEmptyTask( void *pvParameters )
|
280 |
|
|
{
|
281 |
|
|
unsigned portBASE_TYPE uxRxed, ux, uxTask1, uxTask2, uxErrorCount1 = 0, uxErrorCount2 = 0;
|
282 |
|
|
|
283 |
|
|
/* The timer should not be started until after the scheduler has started.
|
284 |
|
|
More than one task is running this code so we check the parameter value
|
285 |
|
|
to determine which task should start the timer. */
|
286 |
|
|
if( ( unsigned portBASE_TYPE ) pvParameters == intqHIGH_PRIORITY_TASK1 )
|
287 |
|
|
{
|
288 |
|
|
vInitialiseTimerForIntQueueTest();
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
for( ;; )
|
292 |
|
|
{
|
293 |
|
|
/* Block waiting to receive a value from the normally empty queue.
|
294 |
|
|
Interrupts will write to the queue so we should receive a value. */
|
295 |
|
|
if( xQueueReceive( xNormallyEmptyQueue, &uxRxed, intqSHORT_DELAY ) != pdPASS )
|
296 |
|
|
{
|
297 |
|
|
prvQueueAccessLogError( __LINE__ );
|
298 |
|
|
}
|
299 |
|
|
else
|
300 |
|
|
{
|
301 |
|
|
/* Note which value was received so we can check all expected
|
302 |
|
|
values are received and no values are duplicated. */
|
303 |
|
|
prvRecordValue_NormallyEmpty( uxRxed, ( unsigned portBASE_TYPE ) pvParameters );
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
/* Ensure the other task running this code gets a chance to execute. */
|
307 |
|
|
taskYIELD();
|
308 |
|
|
|
309 |
|
|
if( ( unsigned portBASE_TYPE ) pvParameters == intqHIGH_PRIORITY_TASK1 )
|
310 |
|
|
{
|
311 |
|
|
/* Have we received all the expected values? */
|
312 |
|
|
if( uxValueForNormallyEmptyQueue > ( intqNUM_VALUES_TO_LOG + intqVALUE_OVERRUN ) )
|
313 |
|
|
{
|
314 |
|
|
vTaskSuspend( xHighPriorityNormallyEmptyTask2 );
|
315 |
|
|
|
316 |
|
|
uxTask1 = 0;
|
317 |
|
|
uxTask2 = 0;
|
318 |
|
|
|
319 |
|
|
/* Loop through the array, checking that both tasks have
|
320 |
|
|
placed values into the array, and that no values are missing.
|
321 |
|
|
Start at 1 as we expect position 0 to be unused. */
|
322 |
|
|
for( ux = 1; ux < intqNUM_VALUES_TO_LOG; ux++ )
|
323 |
|
|
{
|
324 |
|
|
if( ucNormallyEmptyReceivedValues[ ux ] == 0 )
|
325 |
|
|
{
|
326 |
|
|
/* A value is missing. */
|
327 |
|
|
prvQueueAccessLogError( __LINE__ );
|
328 |
|
|
}
|
329 |
|
|
else
|
330 |
|
|
{
|
331 |
|
|
if( ucNormallyEmptyReceivedValues[ ux ] == intqHIGH_PRIORITY_TASK1 )
|
332 |
|
|
{
|
333 |
|
|
/* Value was placed into the array by task 1. */
|
334 |
|
|
uxTask1++;
|
335 |
|
|
}
|
336 |
|
|
else if( ucNormallyEmptyReceivedValues[ ux ] == intqHIGH_PRIORITY_TASK2 )
|
337 |
|
|
{
|
338 |
|
|
/* Value was placed into the array by task 2. */
|
339 |
|
|
uxTask2++;
|
340 |
|
|
}
|
341 |
|
|
}
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
if( uxTask1 < intqMIN_ACCEPTABLE_TASK_COUNT )
|
345 |
|
|
{
|
346 |
|
|
/* Only task 2 seemed to log any values. */
|
347 |
|
|
uxErrorCount1++;
|
348 |
|
|
if( uxErrorCount1 > 2 )
|
349 |
|
|
{
|
350 |
|
|
prvQueueAccessLogError( __LINE__ );
|
351 |
|
|
}
|
352 |
|
|
}
|
353 |
|
|
else
|
354 |
|
|
{
|
355 |
|
|
uxErrorCount1 = 0;
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
if( uxTask2 < intqMIN_ACCEPTABLE_TASK_COUNT )
|
359 |
|
|
{
|
360 |
|
|
/* Only task 1 seemed to log any values. */
|
361 |
|
|
uxErrorCount2++;
|
362 |
|
|
if( uxErrorCount2 > 2 )
|
363 |
|
|
{
|
364 |
|
|
prvQueueAccessLogError( __LINE__ );
|
365 |
|
|
}
|
366 |
|
|
}
|
367 |
|
|
else
|
368 |
|
|
{
|
369 |
|
|
uxErrorCount2 = 0;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* Clear the array again, ready to start a new cycle. */
|
373 |
|
|
memset( ucNormallyEmptyReceivedValues, 0x00, sizeof( ucNormallyEmptyReceivedValues ) );
|
374 |
|
|
|
375 |
|
|
uxHighPriorityLoops1++;
|
376 |
|
|
uxValueForNormallyEmptyQueue = 0;
|
377 |
|
|
|
378 |
|
|
/* Suspend ourselves, allowing the lower priority task to
|
379 |
|
|
actually receive something from the queue. Until now it
|
380 |
|
|
will have been prevented from doing so by the higher
|
381 |
|
|
priority tasks. The lower priority task will resume us
|
382 |
|
|
if it receives something. We will then resume the other
|
383 |
|
|
higher priority task. */
|
384 |
|
|
vTaskSuspend( NULL );
|
385 |
|
|
vTaskResume( xHighPriorityNormallyEmptyTask2 );
|
386 |
|
|
}
|
387 |
|
|
}
|
388 |
|
|
}
|
389 |
|
|
}
|
390 |
|
|
/*-----------------------------------------------------------*/
|
391 |
|
|
|
392 |
|
|
static void prvLowerPriorityNormallyEmptyTask( void *pvParameters )
|
393 |
|
|
{
|
394 |
|
|
unsigned portBASE_TYPE uxValue, uxRxed;
|
395 |
|
|
|
396 |
|
|
/* The parameters are not being used so avoid compiler warnings. */
|
397 |
|
|
( void ) pvParameters;
|
398 |
|
|
|
399 |
|
|
for( ;; )
|
400 |
|
|
{
|
401 |
|
|
if( xQueueReceive( xNormallyEmptyQueue, &uxRxed, intqONE_TICK_DELAY ) != errQUEUE_EMPTY )
|
402 |
|
|
{
|
403 |
|
|
/* We should only obtain a value when the high priority task is
|
404 |
|
|
suspended. */
|
405 |
|
|
if( xTaskIsTaskSuspended( xHighPriorityNormallyEmptyTask1 ) == pdFALSE )
|
406 |
|
|
{
|
407 |
|
|
prvQueueAccessLogError( __LINE__ );
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
prvRecordValue_NormallyEmpty( uxRxed, intqLOW_PRIORITY_TASK );
|
411 |
|
|
|
412 |
|
|
/* Wake the higher priority task again. */
|
413 |
|
|
vTaskResume( xHighPriorityNormallyEmptyTask1 );
|
414 |
|
|
uxLowPriorityLoops1++;
|
415 |
|
|
}
|
416 |
|
|
else
|
417 |
|
|
{
|
418 |
|
|
/* Raise our priority while we send so we can preempt the higher
|
419 |
|
|
priority task, and ensure we get the Tx value into the queue. */
|
420 |
|
|
vTaskPrioritySet( NULL, intqHIGHER_PRIORITY + 1 );
|
421 |
|
|
|
422 |
|
|
portENTER_CRITICAL();
|
423 |
|
|
{
|
424 |
|
|
uxValueForNormallyEmptyQueue++;
|
425 |
|
|
uxValue = uxValueForNormallyEmptyQueue;
|
426 |
|
|
}
|
427 |
|
|
portEXIT_CRITICAL();
|
428 |
|
|
|
429 |
|
|
if( xQueueSend( xNormallyEmptyQueue, &uxValue, portMAX_DELAY ) != pdPASS )
|
430 |
|
|
{
|
431 |
|
|
prvQueueAccessLogError( __LINE__ );
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
vTaskPrioritySet( NULL, intqLOWER_PRIORITY );
|
435 |
|
|
}
|
436 |
|
|
}
|
437 |
|
|
}
|
438 |
|
|
/*-----------------------------------------------------------*/
|
439 |
|
|
|
440 |
|
|
static void prv1stHigherPriorityNormallyFullTask( void *pvParameters )
|
441 |
|
|
{
|
442 |
|
|
unsigned portBASE_TYPE uxValueToTx, ux;
|
443 |
|
|
|
444 |
|
|
/* The parameters are not being used so avoid compiler warnings. */
|
445 |
|
|
( void ) pvParameters;
|
446 |
|
|
|
447 |
|
|
/* Make sure the queue starts full or near full. >> 1 as there are two
|
448 |
|
|
high priority tasks. */
|
449 |
|
|
for( ux = 0; ux < ( intqQUEUE_LENGTH >> 1 ); ux++ )
|
450 |
|
|
{
|
451 |
|
|
portENTER_CRITICAL();
|
452 |
|
|
{
|
453 |
|
|
uxValueForNormallyFullQueue++;
|
454 |
|
|
uxValueToTx = uxValueForNormallyFullQueue;
|
455 |
|
|
}
|
456 |
|
|
portEXIT_CRITICAL();
|
457 |
|
|
|
458 |
|
|
xQueueSend( xNormallyFullQueue, &uxValueToTx, intqSHORT_DELAY );
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
for( ;; )
|
462 |
|
|
{
|
463 |
|
|
portENTER_CRITICAL();
|
464 |
|
|
{
|
465 |
|
|
uxValueForNormallyFullQueue++;
|
466 |
|
|
uxValueToTx = uxValueForNormallyFullQueue;
|
467 |
|
|
}
|
468 |
|
|
portEXIT_CRITICAL();
|
469 |
|
|
|
470 |
|
|
if( xQueueSend( xNormallyFullQueue, &uxValueToTx, intqSHORT_DELAY ) != pdPASS )
|
471 |
|
|
{
|
472 |
|
|
/* intqHIGH_PRIORITY_TASK2 is never suspended so we would not
|
473 |
|
|
expect it to ever time out. */
|
474 |
|
|
prvQueueAccessLogError( __LINE__ );
|
475 |
|
|
}
|
476 |
|
|
|
477 |
|
|
/* Allow the other task running this code to run. */
|
478 |
|
|
taskYIELD();
|
479 |
|
|
|
480 |
|
|
/* Have all the expected values been sent to the queue? */
|
481 |
|
|
if( uxValueToTx > ( intqNUM_VALUES_TO_LOG + intqVALUE_OVERRUN ) )
|
482 |
|
|
{
|
483 |
|
|
/* Make sure the other high priority task completes its send of
|
484 |
|
|
any values below intqNUM_VALUE_TO_LOG. */
|
485 |
|
|
vTaskDelay( intqSHORT_DELAY );
|
486 |
|
|
|
487 |
|
|
vTaskSuspend( xHighPriorityNormallyFullTask2 );
|
488 |
|
|
|
489 |
|
|
if( xWasSuspended == pdTRUE )
|
490 |
|
|
{
|
491 |
|
|
/* We would have expected the other high priority task to have
|
492 |
|
|
set this back to false by now. */
|
493 |
|
|
prvQueueAccessLogError( __LINE__ );
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
/* Set the suspended flag so an error is not logged if the other
|
497 |
|
|
task recognises a time out when it is unsuspended. */
|
498 |
|
|
xWasSuspended = pdTRUE;
|
499 |
|
|
|
500 |
|
|
/* Start at 1 as we expect position 0 to be unused. */
|
501 |
|
|
for( ux = 1; ux < intqNUM_VALUES_TO_LOG; ux++ )
|
502 |
|
|
{
|
503 |
|
|
if( ucNormallyFullReceivedValues[ ux ] == 0 )
|
504 |
|
|
{
|
505 |
|
|
/* A value was missing. */
|
506 |
|
|
prvQueueAccessLogError( __LINE__ );
|
507 |
|
|
}
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
/* Reset the array ready for the next cycle. */
|
511 |
|
|
memset( ucNormallyFullReceivedValues, 0x00, sizeof( ucNormallyFullReceivedValues ) );
|
512 |
|
|
|
513 |
|
|
uxHighPriorityLoops2++;
|
514 |
|
|
uxValueForNormallyFullQueue = 0;
|
515 |
|
|
|
516 |
|
|
/* Suspend ourselves, allowing the lower priority task to
|
517 |
|
|
actually receive something from the queue. Until now it
|
518 |
|
|
will have been prevented from doing so by the higher
|
519 |
|
|
priority tasks. The lower priority task will resume us
|
520 |
|
|
if it receives something. We will then resume the other
|
521 |
|
|
higher priority task. */
|
522 |
|
|
vTaskSuspend( NULL );
|
523 |
|
|
vTaskResume( xHighPriorityNormallyFullTask2 );
|
524 |
|
|
}
|
525 |
|
|
}
|
526 |
|
|
}
|
527 |
|
|
/*-----------------------------------------------------------*/
|
528 |
|
|
|
529 |
|
|
static void prv2ndHigherPriorityNormallyFullTask( void *pvParameters )
|
530 |
|
|
{
|
531 |
|
|
unsigned portBASE_TYPE uxValueToTx, ux;
|
532 |
|
|
|
533 |
|
|
/* The parameters are not being used so avoid compiler warnings. */
|
534 |
|
|
( void ) pvParameters;
|
535 |
|
|
|
536 |
|
|
/* Make sure the queue starts full or near full. >> 1 as there are two
|
537 |
|
|
high priority tasks. */
|
538 |
|
|
for( ux = 0; ux < ( intqQUEUE_LENGTH >> 1 ); ux++ )
|
539 |
|
|
{
|
540 |
|
|
portENTER_CRITICAL();
|
541 |
|
|
{
|
542 |
|
|
uxValueForNormallyFullQueue++;
|
543 |
|
|
uxValueToTx = uxValueForNormallyFullQueue;
|
544 |
|
|
}
|
545 |
|
|
portEXIT_CRITICAL();
|
546 |
|
|
|
547 |
|
|
xQueueSend( xNormallyFullQueue, &uxValueToTx, intqSHORT_DELAY );
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
for( ;; )
|
551 |
|
|
{
|
552 |
|
|
portENTER_CRITICAL();
|
553 |
|
|
{
|
554 |
|
|
uxValueForNormallyFullQueue++;
|
555 |
|
|
uxValueToTx = uxValueForNormallyFullQueue;
|
556 |
|
|
}
|
557 |
|
|
portEXIT_CRITICAL();
|
558 |
|
|
|
559 |
|
|
if( xQueueSend( xNormallyFullQueue, &uxValueToTx, intqSHORT_DELAY ) != pdPASS )
|
560 |
|
|
{
|
561 |
|
|
if( xWasSuspended != pdTRUE )
|
562 |
|
|
{
|
563 |
|
|
/* It is ok to time out if the task has been suspended. */
|
564 |
|
|
prvQueueAccessLogError( __LINE__ );
|
565 |
|
|
}
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
xWasSuspended = pdFALSE;
|
569 |
|
|
|
570 |
|
|
taskYIELD();
|
571 |
|
|
}
|
572 |
|
|
}
|
573 |
|
|
/*-----------------------------------------------------------*/
|
574 |
|
|
|
575 |
|
|
static void prvLowerPriorityNormallyFullTask( void *pvParameters )
|
576 |
|
|
{
|
577 |
|
|
unsigned portBASE_TYPE uxValue, uxTxed = 9999;
|
578 |
|
|
|
579 |
|
|
/* The parameters are not being used so avoid compiler warnings. */
|
580 |
|
|
( void ) pvParameters;
|
581 |
|
|
|
582 |
|
|
for( ;; )
|
583 |
|
|
{
|
584 |
|
|
if( xQueueSend( xNormallyFullQueue, &uxTxed, intqONE_TICK_DELAY ) != errQUEUE_FULL )
|
585 |
|
|
{
|
586 |
|
|
/* We would only expect to succeed when the higher priority task
|
587 |
|
|
is suspended. */
|
588 |
|
|
if( xTaskIsTaskSuspended( xHighPriorityNormallyFullTask1 ) == pdFALSE )
|
589 |
|
|
{
|
590 |
|
|
prvQueueAccessLogError( __LINE__ );
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
vTaskResume( xHighPriorityNormallyFullTask1 );
|
594 |
|
|
uxLowPriorityLoops2++;
|
595 |
|
|
}
|
596 |
|
|
else
|
597 |
|
|
{
|
598 |
|
|
/* Raise our priority while we receive so we can preempt the higher
|
599 |
|
|
priority task, and ensure we get the value from the queue. */
|
600 |
|
|
vTaskPrioritySet( NULL, intqHIGHER_PRIORITY + 1 );
|
601 |
|
|
|
602 |
|
|
if( xQueueReceive( xNormallyFullQueue, &uxValue, portMAX_DELAY ) != pdPASS )
|
603 |
|
|
{
|
604 |
|
|
prvQueueAccessLogError( __LINE__ );
|
605 |
|
|
}
|
606 |
|
|
else
|
607 |
|
|
{
|
608 |
|
|
prvRecordValue_NormallyFull( uxValue, intqLOW_PRIORITY_TASK );
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
vTaskPrioritySet( NULL, intqLOWER_PRIORITY );
|
612 |
|
|
}
|
613 |
|
|
}
|
614 |
|
|
}
|
615 |
|
|
/*-----------------------------------------------------------*/
|
616 |
|
|
|
617 |
|
|
portBASE_TYPE xFirstTimerHandler( void )
|
618 |
|
|
{
|
619 |
|
|
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE, uxRxedValue;
|
620 |
|
|
static unsigned portBASE_TYPE uxNextOperation = 0;
|
621 |
|
|
|
622 |
|
|
/* Called from a timer interrupt. Perform various read and write
|
623 |
|
|
accesses on the queues. */
|
624 |
|
|
|
625 |
|
|
uxNextOperation++;
|
626 |
|
|
|
627 |
|
|
if( uxNextOperation & ( unsigned portBASE_TYPE ) 0x01 )
|
628 |
|
|
{
|
629 |
|
|
timerNORMALLY_EMPTY_TX();
|
630 |
|
|
timerNORMALLY_EMPTY_TX();
|
631 |
|
|
timerNORMALLY_EMPTY_TX();
|
632 |
|
|
}
|
633 |
|
|
else
|
634 |
|
|
{
|
635 |
|
|
timerNORMALLY_FULL_RX();
|
636 |
|
|
timerNORMALLY_FULL_RX();
|
637 |
|
|
timerNORMALLY_FULL_RX();
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
return xHigherPriorityTaskWoken;
|
641 |
|
|
}
|
642 |
|
|
/*-----------------------------------------------------------*/
|
643 |
|
|
|
644 |
|
|
portBASE_TYPE xSecondTimerHandler( void )
|
645 |
|
|
{
|
646 |
|
|
unsigned portBASE_TYPE uxRxedValue;
|
647 |
|
|
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
|
648 |
|
|
static unsigned portBASE_TYPE uxNextOperation = 0;
|
649 |
|
|
|
650 |
|
|
/* Called from a timer interrupt. Perform various read and write
|
651 |
|
|
accesses on the queues. */
|
652 |
|
|
|
653 |
|
|
uxNextOperation++;
|
654 |
|
|
|
655 |
|
|
if( uxNextOperation & ( unsigned portBASE_TYPE ) 0x01 )
|
656 |
|
|
{
|
657 |
|
|
timerNORMALLY_EMPTY_TX();
|
658 |
|
|
timerNORMALLY_EMPTY_TX();
|
659 |
|
|
|
660 |
|
|
timerNORMALLY_EMPTY_RX();
|
661 |
|
|
timerNORMALLY_EMPTY_RX();
|
662 |
|
|
}
|
663 |
|
|
else
|
664 |
|
|
{
|
665 |
|
|
timerNORMALLY_FULL_RX();
|
666 |
|
|
timerNORMALLY_FULL_TX();
|
667 |
|
|
timerNORMALLY_FULL_TX();
|
668 |
|
|
timerNORMALLY_FULL_TX();
|
669 |
|
|
timerNORMALLY_FULL_TX();
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
return xHigherPriorityTaskWoken;
|
673 |
|
|
}
|
674 |
|
|
/*-----------------------------------------------------------*/
|
675 |
|
|
|
676 |
|
|
|
677 |
|
|
portBASE_TYPE xAreIntQueueTasksStillRunning( void )
|
678 |
|
|
{
|
679 |
|
|
static unsigned portBASE_TYPE uxLastHighPriorityLoops1 = 0, uxLastHighPriorityLoops2 = 0, uxLastLowPriorityLoops1 = 0, uxLastLowPriorityLoops2 = 0;
|
680 |
|
|
|
681 |
|
|
/* xErrorStatus can be set outside of this function. This function just
|
682 |
|
|
checks that all the tasks are still cycling. */
|
683 |
|
|
|
684 |
|
|
if( uxHighPriorityLoops1 == uxLastHighPriorityLoops1 )
|
685 |
|
|
{
|
686 |
|
|
/* The high priority 1 task has stalled. */
|
687 |
|
|
prvQueueAccessLogError( __LINE__ );
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
uxLastHighPriorityLoops1 = uxHighPriorityLoops1;
|
691 |
|
|
|
692 |
|
|
if( uxHighPriorityLoops2 == uxLastHighPriorityLoops2 )
|
693 |
|
|
{
|
694 |
|
|
/* The high priority 2 task has stalled. */
|
695 |
|
|
prvQueueAccessLogError( __LINE__ );
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
uxLastHighPriorityLoops2 = uxHighPriorityLoops2;
|
699 |
|
|
|
700 |
|
|
if( uxLowPriorityLoops1 == uxLastLowPriorityLoops1 )
|
701 |
|
|
{
|
702 |
|
|
/* The low priority 1 task has stalled. */
|
703 |
|
|
prvQueueAccessLogError( __LINE__ );
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
uxLastLowPriorityLoops1 = uxLowPriorityLoops1;
|
707 |
|
|
|
708 |
|
|
if( uxLowPriorityLoops2 == uxLastLowPriorityLoops2 )
|
709 |
|
|
{
|
710 |
|
|
/* The low priority 2 task has stalled. */
|
711 |
|
|
prvQueueAccessLogError( __LINE__ );
|
712 |
|
|
}
|
713 |
|
|
|
714 |
|
|
uxLastLowPriorityLoops2 = uxLowPriorityLoops2;
|
715 |
|
|
|
716 |
|
|
return xErrorStatus;
|
717 |
|
|
}
|
718 |
|
|
|