| 1 |
606 |
jeremybenn |
/* @file
|
| 2 |
|
|
*
|
| 3 |
|
|
* This is the IP packet segmentation and reassembly implementation.
|
| 4 |
|
|
*
|
| 5 |
|
|
*/
|
| 6 |
|
|
|
| 7 |
|
|
/*
|
| 8 |
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
| 9 |
|
|
* All rights reserved.
|
| 10 |
|
|
*
|
| 11 |
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
| 12 |
|
|
* are permitted provided that the following conditions are met:
|
| 13 |
|
|
*
|
| 14 |
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
| 15 |
|
|
* this list of conditions and the following disclaimer.
|
| 16 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
| 17 |
|
|
* this list of conditions and the following disclaimer in the documentation
|
| 18 |
|
|
* and/or other materials provided with the distribution.
|
| 19 |
|
|
* 3. The name of the author may not be used to endorse or promote products
|
| 20 |
|
|
* derived from this software without specific prior written permission.
|
| 21 |
|
|
*
|
| 22 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
| 23 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
| 24 |
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
| 25 |
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| 26 |
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
| 27 |
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
| 28 |
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
| 29 |
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
| 30 |
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
| 31 |
|
|
* OF SUCH DAMAGE.
|
| 32 |
|
|
*
|
| 33 |
|
|
* This file is part of the lwIP TCP/IP stack.
|
| 34 |
|
|
*
|
| 35 |
|
|
* Author: Jani Monoses <jani@iv.ro>
|
| 36 |
|
|
* original reassembly code by Adam Dunkels <adam@sics.se>
|
| 37 |
|
|
*
|
| 38 |
|
|
*/
|
| 39 |
|
|
|
| 40 |
|
|
#include <string.h>
|
| 41 |
|
|
|
| 42 |
|
|
#include "lwip/opt.h"
|
| 43 |
|
|
#include "lwip/ip.h"
|
| 44 |
|
|
#include "lwip/ip_frag.h"
|
| 45 |
|
|
#include "lwip/netif.h"
|
| 46 |
|
|
#include "lwip/snmp.h"
|
| 47 |
|
|
#include "lwip/stats.h"
|
| 48 |
|
|
|
| 49 |
|
|
static u8_t ip_reassbuf[IP_HLEN + IP_REASS_BUFSIZE];
|
| 50 |
|
|
static u8_t ip_reassbitmap[IP_REASS_BUFSIZE / (8 * 8) + 1];
|
| 51 |
|
|
static const u8_t bitmap_bits[8] = { 0xff, 0x7f, 0x3f, 0x1f,
|
| 52 |
|
|
0x0f, 0x07, 0x03, 0x01
|
| 53 |
|
|
};
|
| 54 |
|
|
static u16_t ip_reasslen;
|
| 55 |
|
|
static u8_t ip_reassflags;
|
| 56 |
|
|
#define IP_REASS_FLAG_LASTFRAG 0x01
|
| 57 |
|
|
|
| 58 |
|
|
static u8_t ip_reasstmr;
|
| 59 |
|
|
|
| 60 |
|
|
/*
|
| 61 |
|
|
* Copy len bytes from offset in pbuf to buffer
|
| 62 |
|
|
*
|
| 63 |
|
|
* helper used by both ip_reass and ip_frag
|
| 64 |
|
|
*/
|
| 65 |
|
|
static struct pbuf *
|
| 66 |
|
|
copy_from_pbuf(struct pbuf *p, u16_t * offset,
|
| 67 |
|
|
u8_t * buffer, u16_t len)
|
| 68 |
|
|
{
|
| 69 |
|
|
u16_t l;
|
| 70 |
|
|
|
| 71 |
|
|
p->payload = (u8_t *)p->payload + *offset;
|
| 72 |
|
|
p->len -= *offset;
|
| 73 |
|
|
while (len) {
|
| 74 |
|
|
l = len < p->len ? len : p->len;
|
| 75 |
|
|
memcpy(buffer, p->payload, l);
|
| 76 |
|
|
buffer += l;
|
| 77 |
|
|
len -= l;
|
| 78 |
|
|
if (len)
|
| 79 |
|
|
p = p->next;
|
| 80 |
|
|
else
|
| 81 |
|
|
*offset = l;
|
| 82 |
|
|
}
|
| 83 |
|
|
return p;
|
| 84 |
|
|
}
|
| 85 |
|
|
|
| 86 |
|
|
|
| 87 |
|
|
/**
|
| 88 |
|
|
* Initializes IP reassembly and fragmentation states.
|
| 89 |
|
|
*/
|
| 90 |
|
|
void
|
| 91 |
|
|
ip_frag_init(void)
|
| 92 |
|
|
{
|
| 93 |
|
|
ip_reasstmr = 0;
|
| 94 |
|
|
ip_reassflags = 0;
|
| 95 |
|
|
ip_reasslen = 0;
|
| 96 |
|
|
memset(ip_reassbitmap, 0, sizeof(ip_reassbitmap));
|
| 97 |
|
|
}
|
| 98 |
|
|
|
| 99 |
|
|
/**
|
| 100 |
|
|
* Reassembly timer base function
|
| 101 |
|
|
* for both NO_SYS == 0 and 1 (!).
|
| 102 |
|
|
*
|
| 103 |
|
|
* Should be called every 1000 msec.
|
| 104 |
|
|
*/
|
| 105 |
|
|
void
|
| 106 |
|
|
ip_reass_tmr(void)
|
| 107 |
|
|
{
|
| 108 |
|
|
if (ip_reasstmr > 0) {
|
| 109 |
|
|
ip_reasstmr--;
|
| 110 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)ip_reasstmr));
|
| 111 |
|
|
if (ip_reasstmr == 0) {
|
| 112 |
|
|
/* reassembly timed out */
|
| 113 |
|
|
snmp_inc_ipreasmfails();
|
| 114 |
|
|
}
|
| 115 |
|
|
}
|
| 116 |
|
|
}
|
| 117 |
|
|
|
| 118 |
|
|
/**
|
| 119 |
|
|
* Reassembles incoming IP fragments into an IP datagram.
|
| 120 |
|
|
*
|
| 121 |
|
|
* @param p points to a pbuf chain of the fragment
|
| 122 |
|
|
* @return NULL if reassembly is incomplete, ? otherwise
|
| 123 |
|
|
*/
|
| 124 |
|
|
struct pbuf *
|
| 125 |
|
|
ip_reass(struct pbuf *p)
|
| 126 |
|
|
{
|
| 127 |
|
|
struct pbuf *q;
|
| 128 |
|
|
struct ip_hdr *fraghdr, *iphdr;
|
| 129 |
|
|
u16_t offset, len;
|
| 130 |
|
|
u16_t i;
|
| 131 |
|
|
|
| 132 |
|
|
IPFRAG_STATS_INC(ip_frag.recv);
|
| 133 |
|
|
snmp_inc_ipreasmreqds();
|
| 134 |
|
|
|
| 135 |
|
|
iphdr = (struct ip_hdr *) ip_reassbuf;
|
| 136 |
|
|
fraghdr = (struct ip_hdr *) p->payload;
|
| 137 |
|
|
/* If ip_reasstmr is zero, no packet is present in the buffer, so we
|
| 138 |
|
|
write the IP header of the fragment into the reassembly
|
| 139 |
|
|
buffer. The timer is updated with the maximum age. */
|
| 140 |
|
|
if (ip_reasstmr == 0) {
|
| 141 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: new packet\n"));
|
| 142 |
|
|
memcpy(iphdr, fraghdr, IP_HLEN);
|
| 143 |
|
|
ip_reasstmr = IP_REASS_MAXAGE;
|
| 144 |
|
|
ip_reassflags = 0;
|
| 145 |
|
|
/* Clear the bitmap. */
|
| 146 |
|
|
memset(ip_reassbitmap, 0, sizeof(ip_reassbitmap));
|
| 147 |
|
|
}
|
| 148 |
|
|
|
| 149 |
|
|
/* Check if the incoming fragment matches the one currently present
|
| 150 |
|
|
in the reasembly buffer. If so, we proceed with copying the
|
| 151 |
|
|
fragment into the buffer. */
|
| 152 |
|
|
if (ip_addr_cmp(&iphdr->src, &fraghdr->src) &&
|
| 153 |
|
|
ip_addr_cmp(&iphdr->dest, &fraghdr->dest) &&
|
| 154 |
|
|
IPH_ID(iphdr) == IPH_ID(fraghdr)) {
|
| 155 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: matching previous fragment ID=%"X16_F"\n",
|
| 156 |
|
|
ntohs(IPH_ID(fraghdr))));
|
| 157 |
|
|
IPFRAG_STATS_INC(ip_frag.cachehit);
|
| 158 |
|
|
/* Find out the offset in the reassembly buffer where we should
|
| 159 |
|
|
copy the fragment. */
|
| 160 |
|
|
len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
|
| 161 |
|
|
offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
|
| 162 |
|
|
|
| 163 |
|
|
/* If the offset or the offset + fragment length overflows the
|
| 164 |
|
|
reassembly buffer, we discard the entire packet. */
|
| 165 |
|
|
if ((offset > IP_REASS_BUFSIZE) || ((offset + len) > IP_REASS_BUFSIZE)) {
|
| 166 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 167 |
|
|
("ip_reass: fragment outside of buffer (%"S16_F":%"S16_F"/%"S16_F").\n", offset,
|
| 168 |
|
|
offset + len, IP_REASS_BUFSIZE));
|
| 169 |
|
|
ip_reasstmr = 0;
|
| 170 |
|
|
snmp_inc_ipreasmfails();
|
| 171 |
|
|
goto nullreturn;
|
| 172 |
|
|
}
|
| 173 |
|
|
|
| 174 |
|
|
/* Copy the fragment into the reassembly buffer, at the right
|
| 175 |
|
|
offset. */
|
| 176 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 177 |
|
|
("ip_reass: copying with offset %"S16_F" into %"S16_F":%"S16_F"\n", offset,
|
| 178 |
|
|
IP_HLEN + offset, IP_HLEN + offset + len));
|
| 179 |
|
|
i = IPH_HL(fraghdr) * 4;
|
| 180 |
|
|
copy_from_pbuf(p, &i, &ip_reassbuf[IP_HLEN + offset], len);
|
| 181 |
|
|
|
| 182 |
|
|
/* Update the bitmap. */
|
| 183 |
|
|
if (offset / (8 * 8) == (offset + len) / (8 * 8)) {
|
| 184 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 185 |
|
|
("ip_reass: updating single byte in bitmap.\n"));
|
| 186 |
|
|
/* If the two endpoints are in the same byte, we only update that byte. */
|
| 187 |
|
|
LWIP_ASSERT("offset / (8 * 8) < sizeof(ip_reassbitmap)",
|
| 188 |
|
|
offset / (8 * 8) < sizeof(ip_reassbitmap));
|
| 189 |
|
|
ip_reassbitmap[offset / (8 * 8)] |=
|
| 190 |
|
|
bitmap_bits[(offset / 8) & 7] &
|
| 191 |
|
|
~bitmap_bits[((offset + len) / 8) & 7];
|
| 192 |
|
|
} else {
|
| 193 |
|
|
/* If the two endpoints are in different bytes, we update the
|
| 194 |
|
|
bytes in the endpoints and fill the stuff inbetween with
|
| 195 |
|
|
0xff. */
|
| 196 |
|
|
LWIP_ASSERT("offset / (8 * 8) < sizeof(ip_reassbitmap)",
|
| 197 |
|
|
offset / (8 * 8) < sizeof(ip_reassbitmap));
|
| 198 |
|
|
ip_reassbitmap[offset / (8 * 8)] |= bitmap_bits[(offset / 8) & 7];
|
| 199 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 200 |
|
|
("ip_reass: updating many bytes in bitmap (%"S16_F":%"S16_F").\n",
|
| 201 |
|
|
1 + offset / (8 * 8), (offset + len) / (8 * 8)));
|
| 202 |
|
|
for (i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) {
|
| 203 |
|
|
ip_reassbitmap[i] = 0xff;
|
| 204 |
|
|
}
|
| 205 |
|
|
LWIP_ASSERT("(offset + len) / (8 * 8) < sizeof(ip_reassbitmap)",
|
| 206 |
|
|
(offset + len) / (8 * 8) < sizeof(ip_reassbitmap));
|
| 207 |
|
|
ip_reassbitmap[(offset + len) / (8 * 8)] |=
|
| 208 |
|
|
~bitmap_bits[((offset + len) / 8) & 7];
|
| 209 |
|
|
}
|
| 210 |
|
|
|
| 211 |
|
|
/* If this fragment has the More Fragments flag set to zero, we
|
| 212 |
|
|
know that this is the last fragment, so we can calculate the
|
| 213 |
|
|
size of the entire packet. We also set the
|
| 214 |
|
|
IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
|
| 215 |
|
|
the final fragment. */
|
| 216 |
|
|
|
| 217 |
|
|
if ((ntohs(IPH_OFFSET(fraghdr)) & IP_MF) == 0) {
|
| 218 |
|
|
ip_reassflags |= IP_REASS_FLAG_LASTFRAG;
|
| 219 |
|
|
ip_reasslen = offset + len;
|
| 220 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 221 |
|
|
("ip_reass: last fragment seen, total len %"S16_F"\n",
|
| 222 |
|
|
ip_reasslen));
|
| 223 |
|
|
}
|
| 224 |
|
|
|
| 225 |
|
|
/* Finally, we check if we have a full packet in the buffer. We do
|
| 226 |
|
|
this by checking if we have the last fragment and if all bits
|
| 227 |
|
|
in the bitmap are set. */
|
| 228 |
|
|
if (ip_reassflags & IP_REASS_FLAG_LASTFRAG) {
|
| 229 |
|
|
/* Check all bytes up to and including all but the last byte in
|
| 230 |
|
|
the bitmap. */
|
| 231 |
|
|
LWIP_ASSERT("ip_reasslen / (8 * 8) - 1 < sizeof(ip_reassbitmap)",
|
| 232 |
|
|
ip_reasslen / (8 * 8) - 1 < ((u16_t) sizeof(ip_reassbitmap)));
|
| 233 |
|
|
for (i = 0; i < ip_reasslen / (8 * 8) - 1; ++i) {
|
| 234 |
|
|
if (ip_reassbitmap[i] != 0xff) {
|
| 235 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 236 |
|
|
("ip_reass: last fragment seen, bitmap %"S16_F"/%"S16_F" failed (%"X16_F")\n",
|
| 237 |
|
|
i, ip_reasslen / (8 * 8) - 1, ip_reassbitmap[i]));
|
| 238 |
|
|
goto nullreturn;
|
| 239 |
|
|
}
|
| 240 |
|
|
}
|
| 241 |
|
|
/* Check the last byte in the bitmap. It should contain just the
|
| 242 |
|
|
right amount of bits. */
|
| 243 |
|
|
LWIP_ASSERT("ip_reasslen / (8 * 8) < sizeof(ip_reassbitmap)",
|
| 244 |
|
|
ip_reasslen / (8 * 8) < sizeof(ip_reassbitmap));
|
| 245 |
|
|
if (ip_reassbitmap[ip_reasslen / (8 * 8)] !=
|
| 246 |
|
|
(u8_t) ~ bitmap_bits[ip_reasslen / 8 & 7]) {
|
| 247 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 248 |
|
|
("ip_reass: last fragment seen, bitmap %"S16_F" didn't contain %"X16_F" (%"X16_F")\n",
|
| 249 |
|
|
ip_reasslen / (8 * 8), ~bitmap_bits[ip_reasslen / 8 & 7],
|
| 250 |
|
|
ip_reassbitmap[ip_reasslen / (8 * 8)]));
|
| 251 |
|
|
goto nullreturn;
|
| 252 |
|
|
}
|
| 253 |
|
|
|
| 254 |
|
|
/* Pretend to be a "normal" (i.e., not fragmented) IP packet
|
| 255 |
|
|
from now on. */
|
| 256 |
|
|
ip_reasslen += IP_HLEN;
|
| 257 |
|
|
|
| 258 |
|
|
IPH_LEN_SET(iphdr, htons(ip_reasslen));
|
| 259 |
|
|
IPH_OFFSET_SET(iphdr, 0);
|
| 260 |
|
|
IPH_CHKSUM_SET(iphdr, 0);
|
| 261 |
|
|
IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
|
| 262 |
|
|
|
| 263 |
|
|
/* If we have come this far, we have a full packet in the
|
| 264 |
|
|
buffer, so we allocate a pbuf and copy the packet into it. We
|
| 265 |
|
|
also reset the timer. */
|
| 266 |
|
|
ip_reasstmr = 0;
|
| 267 |
|
|
pbuf_free(p);
|
| 268 |
|
|
p = pbuf_alloc(PBUF_LINK, ip_reasslen, PBUF_POOL);
|
| 269 |
|
|
if (p != NULL) {
|
| 270 |
|
|
i = 0;
|
| 271 |
|
|
for (q = p; q != NULL; q = q->next) {
|
| 272 |
|
|
/* Copy enough bytes to fill this pbuf in the chain. The
|
| 273 |
|
|
available data in the pbuf is given by the q->len variable. */
|
| 274 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 275 |
|
|
("ip_reass: memcpy from %p (%"S16_F") to %p, %"S16_F" bytes\n",
|
| 276 |
|
|
(void *)&ip_reassbuf[i], i, q->payload,
|
| 277 |
|
|
q->len > ip_reasslen - i ? ip_reasslen - i : q->len));
|
| 278 |
|
|
memcpy(q->payload, &ip_reassbuf[i],
|
| 279 |
|
|
q->len > ip_reasslen - i ? ip_reasslen - i : q->len);
|
| 280 |
|
|
i += q->len;
|
| 281 |
|
|
}
|
| 282 |
|
|
IPFRAG_STATS_INC(ip_frag.fw);
|
| 283 |
|
|
snmp_inc_ipreasmoks();
|
| 284 |
|
|
} else {
|
| 285 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
| 286 |
|
|
("ip_reass: pbuf_alloc(PBUF_LINK, ip_reasslen=%"U16_F", PBUF_POOL) failed\n", ip_reasslen));
|
| 287 |
|
|
IPFRAG_STATS_INC(ip_frag.memerr);
|
| 288 |
|
|
snmp_inc_ipreasmfails();
|
| 289 |
|
|
}
|
| 290 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: p %p\n", (void*)p));
|
| 291 |
|
|
return p;
|
| 292 |
|
|
}
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
nullreturn:
|
| 296 |
|
|
IPFRAG_STATS_INC(ip_frag.drop);
|
| 297 |
|
|
pbuf_free(p);
|
| 298 |
|
|
return NULL;
|
| 299 |
|
|
}
|
| 300 |
|
|
|
| 301 |
|
|
static u8_t buf[MEM_ALIGN_SIZE(IP_FRAG_MAX_MTU)];
|
| 302 |
|
|
|
| 303 |
|
|
/**
|
| 304 |
|
|
* Fragment an IP datagram if too large for the netif.
|
| 305 |
|
|
*
|
| 306 |
|
|
* Chop the datagram in MTU sized chunks and send them in order
|
| 307 |
|
|
* by using a fixed size static memory buffer (PBUF_ROM)
|
| 308 |
|
|
*/
|
| 309 |
|
|
err_t
|
| 310 |
|
|
ip_frag(struct pbuf *p, struct netif *netif, struct ip_addr *dest)
|
| 311 |
|
|
{
|
| 312 |
|
|
struct pbuf *rambuf;
|
| 313 |
|
|
struct pbuf *header;
|
| 314 |
|
|
struct ip_hdr *iphdr;
|
| 315 |
|
|
u16_t nfb = 0;
|
| 316 |
|
|
u16_t left, cop;
|
| 317 |
|
|
u16_t mtu = netif->mtu;
|
| 318 |
|
|
u16_t ofo, omf;
|
| 319 |
|
|
u16_t last;
|
| 320 |
|
|
u16_t poff = IP_HLEN;
|
| 321 |
|
|
u16_t tmp;
|
| 322 |
|
|
|
| 323 |
|
|
/* Get a RAM based MTU sized pbuf */
|
| 324 |
|
|
rambuf = pbuf_alloc(PBUF_LINK, 0, PBUF_REF);
|
| 325 |
|
|
if (rambuf == NULL) {
|
| 326 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc(PBUF_LINK, 0, PBUF_REF) failed\n"));
|
| 327 |
|
|
return ERR_MEM;
|
| 328 |
|
|
}
|
| 329 |
|
|
rambuf->tot_len = rambuf->len = mtu;
|
| 330 |
|
|
rambuf->payload = MEM_ALIGN((void *)buf);
|
| 331 |
|
|
|
| 332 |
|
|
/* Copy the IP header in it */
|
| 333 |
|
|
iphdr = rambuf->payload;
|
| 334 |
|
|
memcpy(iphdr, p->payload, IP_HLEN);
|
| 335 |
|
|
|
| 336 |
|
|
/* Save original offset */
|
| 337 |
|
|
tmp = ntohs(IPH_OFFSET(iphdr));
|
| 338 |
|
|
ofo = tmp & IP_OFFMASK;
|
| 339 |
|
|
omf = tmp & IP_MF;
|
| 340 |
|
|
|
| 341 |
|
|
left = p->tot_len - IP_HLEN;
|
| 342 |
|
|
|
| 343 |
|
|
while (left) {
|
| 344 |
|
|
last = (left <= mtu - IP_HLEN);
|
| 345 |
|
|
|
| 346 |
|
|
/* Set new offset and MF flag */
|
| 347 |
|
|
ofo += nfb;
|
| 348 |
|
|
tmp = omf | (IP_OFFMASK & (ofo));
|
| 349 |
|
|
if (!last)
|
| 350 |
|
|
tmp = tmp | IP_MF;
|
| 351 |
|
|
IPH_OFFSET_SET(iphdr, htons(tmp));
|
| 352 |
|
|
|
| 353 |
|
|
/* Fill this fragment */
|
| 354 |
|
|
nfb = (mtu - IP_HLEN) / 8;
|
| 355 |
|
|
cop = last ? left : nfb * 8;
|
| 356 |
|
|
|
| 357 |
|
|
p = copy_from_pbuf(p, &poff, (u8_t *) iphdr + IP_HLEN, cop);
|
| 358 |
|
|
|
| 359 |
|
|
/* Correct header */
|
| 360 |
|
|
IPH_LEN_SET(iphdr, htons(cop + IP_HLEN));
|
| 361 |
|
|
IPH_CHKSUM_SET(iphdr, 0);
|
| 362 |
|
|
IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
|
| 363 |
|
|
|
| 364 |
|
|
if (last)
|
| 365 |
|
|
pbuf_realloc(rambuf, left + IP_HLEN);
|
| 366 |
|
|
/* This part is ugly: we alloc a RAM based pbuf for
|
| 367 |
|
|
* the link level header for each chunk and then
|
| 368 |
|
|
* free it.A PBUF_ROM style pbuf for which pbuf_header
|
| 369 |
|
|
* worked would make things simpler.
|
| 370 |
|
|
*/
|
| 371 |
|
|
header = pbuf_alloc(PBUF_LINK, 0, PBUF_RAM);
|
| 372 |
|
|
if (header != NULL) {
|
| 373 |
|
|
pbuf_chain(header, rambuf);
|
| 374 |
|
|
netif->output(netif, header, dest);
|
| 375 |
|
|
IPFRAG_STATS_INC(ip_frag.xmit);
|
| 376 |
|
|
snmp_inc_ipfragcreates();
|
| 377 |
|
|
pbuf_free(header);
|
| 378 |
|
|
} else {
|
| 379 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc() for header failed\n"));
|
| 380 |
|
|
pbuf_free(rambuf);
|
| 381 |
|
|
return ERR_MEM;
|
| 382 |
|
|
}
|
| 383 |
|
|
left -= cop;
|
| 384 |
|
|
}
|
| 385 |
|
|
pbuf_free(rambuf);
|
| 386 |
|
|
snmp_inc_ipfragoks();
|
| 387 |
|
|
return ERR_OK;
|
| 388 |
|
|
}
|