1 |
606 |
jeremybenn |
/* @file
|
2 |
|
|
*
|
3 |
|
|
* This is the IP packet segmentation and reassembly implementation.
|
4 |
|
|
*
|
5 |
|
|
*/
|
6 |
|
|
|
7 |
|
|
/*
|
8 |
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
9 |
|
|
* All rights reserved.
|
10 |
|
|
*
|
11 |
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
12 |
|
|
* are permitted provided that the following conditions are met:
|
13 |
|
|
*
|
14 |
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
15 |
|
|
* this list of conditions and the following disclaimer.
|
16 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
17 |
|
|
* this list of conditions and the following disclaimer in the documentation
|
18 |
|
|
* and/or other materials provided with the distribution.
|
19 |
|
|
* 3. The name of the author may not be used to endorse or promote products
|
20 |
|
|
* derived from this software without specific prior written permission.
|
21 |
|
|
*
|
22 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
23 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
24 |
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
25 |
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
26 |
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
27 |
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
28 |
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
29 |
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
30 |
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
31 |
|
|
* OF SUCH DAMAGE.
|
32 |
|
|
*
|
33 |
|
|
* This file is part of the lwIP TCP/IP stack.
|
34 |
|
|
*
|
35 |
|
|
* Author: Jani Monoses <jani@iv.ro>
|
36 |
|
|
* original reassembly code by Adam Dunkels <adam@sics.se>
|
37 |
|
|
*
|
38 |
|
|
*/
|
39 |
|
|
|
40 |
|
|
#include <string.h>
|
41 |
|
|
|
42 |
|
|
#include "lwip/opt.h"
|
43 |
|
|
#include "lwip/ip.h"
|
44 |
|
|
#include "lwip/ip_frag.h"
|
45 |
|
|
#include "lwip/netif.h"
|
46 |
|
|
#include "lwip/snmp.h"
|
47 |
|
|
#include "lwip/stats.h"
|
48 |
|
|
|
49 |
|
|
static u8_t ip_reassbuf[IP_HLEN + IP_REASS_BUFSIZE];
|
50 |
|
|
static u8_t ip_reassbitmap[IP_REASS_BUFSIZE / (8 * 8) + 1];
|
51 |
|
|
static const u8_t bitmap_bits[8] = { 0xff, 0x7f, 0x3f, 0x1f,
|
52 |
|
|
0x0f, 0x07, 0x03, 0x01
|
53 |
|
|
};
|
54 |
|
|
static u16_t ip_reasslen;
|
55 |
|
|
static u8_t ip_reassflags;
|
56 |
|
|
#define IP_REASS_FLAG_LASTFRAG 0x01
|
57 |
|
|
|
58 |
|
|
static u8_t ip_reasstmr;
|
59 |
|
|
|
60 |
|
|
/*
|
61 |
|
|
* Copy len bytes from offset in pbuf to buffer
|
62 |
|
|
*
|
63 |
|
|
* helper used by both ip_reass and ip_frag
|
64 |
|
|
*/
|
65 |
|
|
static struct pbuf *
|
66 |
|
|
copy_from_pbuf(struct pbuf *p, u16_t * offset,
|
67 |
|
|
u8_t * buffer, u16_t len)
|
68 |
|
|
{
|
69 |
|
|
u16_t l;
|
70 |
|
|
|
71 |
|
|
p->payload = (u8_t *)p->payload + *offset;
|
72 |
|
|
p->len -= *offset;
|
73 |
|
|
while (len) {
|
74 |
|
|
l = len < p->len ? len : p->len;
|
75 |
|
|
memcpy(buffer, p->payload, l);
|
76 |
|
|
buffer += l;
|
77 |
|
|
len -= l;
|
78 |
|
|
if (len)
|
79 |
|
|
p = p->next;
|
80 |
|
|
else
|
81 |
|
|
*offset = l;
|
82 |
|
|
}
|
83 |
|
|
return p;
|
84 |
|
|
}
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
/**
|
88 |
|
|
* Initializes IP reassembly and fragmentation states.
|
89 |
|
|
*/
|
90 |
|
|
void
|
91 |
|
|
ip_frag_init(void)
|
92 |
|
|
{
|
93 |
|
|
ip_reasstmr = 0;
|
94 |
|
|
ip_reassflags = 0;
|
95 |
|
|
ip_reasslen = 0;
|
96 |
|
|
memset(ip_reassbitmap, 0, sizeof(ip_reassbitmap));
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
/**
|
100 |
|
|
* Reassembly timer base function
|
101 |
|
|
* for both NO_SYS == 0 and 1 (!).
|
102 |
|
|
*
|
103 |
|
|
* Should be called every 1000 msec.
|
104 |
|
|
*/
|
105 |
|
|
void
|
106 |
|
|
ip_reass_tmr(void)
|
107 |
|
|
{
|
108 |
|
|
if (ip_reasstmr > 0) {
|
109 |
|
|
ip_reasstmr--;
|
110 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)ip_reasstmr));
|
111 |
|
|
if (ip_reasstmr == 0) {
|
112 |
|
|
/* reassembly timed out */
|
113 |
|
|
snmp_inc_ipreasmfails();
|
114 |
|
|
}
|
115 |
|
|
}
|
116 |
|
|
}
|
117 |
|
|
|
118 |
|
|
/**
|
119 |
|
|
* Reassembles incoming IP fragments into an IP datagram.
|
120 |
|
|
*
|
121 |
|
|
* @param p points to a pbuf chain of the fragment
|
122 |
|
|
* @return NULL if reassembly is incomplete, ? otherwise
|
123 |
|
|
*/
|
124 |
|
|
struct pbuf *
|
125 |
|
|
ip_reass(struct pbuf *p)
|
126 |
|
|
{
|
127 |
|
|
struct pbuf *q;
|
128 |
|
|
struct ip_hdr *fraghdr, *iphdr;
|
129 |
|
|
u16_t offset, len;
|
130 |
|
|
u16_t i;
|
131 |
|
|
|
132 |
|
|
IPFRAG_STATS_INC(ip_frag.recv);
|
133 |
|
|
snmp_inc_ipreasmreqds();
|
134 |
|
|
|
135 |
|
|
iphdr = (struct ip_hdr *) ip_reassbuf;
|
136 |
|
|
fraghdr = (struct ip_hdr *) p->payload;
|
137 |
|
|
/* If ip_reasstmr is zero, no packet is present in the buffer, so we
|
138 |
|
|
write the IP header of the fragment into the reassembly
|
139 |
|
|
buffer. The timer is updated with the maximum age. */
|
140 |
|
|
if (ip_reasstmr == 0) {
|
141 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: new packet\n"));
|
142 |
|
|
memcpy(iphdr, fraghdr, IP_HLEN);
|
143 |
|
|
ip_reasstmr = IP_REASS_MAXAGE;
|
144 |
|
|
ip_reassflags = 0;
|
145 |
|
|
/* Clear the bitmap. */
|
146 |
|
|
memset(ip_reassbitmap, 0, sizeof(ip_reassbitmap));
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
/* Check if the incoming fragment matches the one currently present
|
150 |
|
|
in the reasembly buffer. If so, we proceed with copying the
|
151 |
|
|
fragment into the buffer. */
|
152 |
|
|
if (ip_addr_cmp(&iphdr->src, &fraghdr->src) &&
|
153 |
|
|
ip_addr_cmp(&iphdr->dest, &fraghdr->dest) &&
|
154 |
|
|
IPH_ID(iphdr) == IPH_ID(fraghdr)) {
|
155 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: matching previous fragment ID=%"X16_F"\n",
|
156 |
|
|
ntohs(IPH_ID(fraghdr))));
|
157 |
|
|
IPFRAG_STATS_INC(ip_frag.cachehit);
|
158 |
|
|
/* Find out the offset in the reassembly buffer where we should
|
159 |
|
|
copy the fragment. */
|
160 |
|
|
len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
|
161 |
|
|
offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
|
162 |
|
|
|
163 |
|
|
/* If the offset or the offset + fragment length overflows the
|
164 |
|
|
reassembly buffer, we discard the entire packet. */
|
165 |
|
|
if ((offset > IP_REASS_BUFSIZE) || ((offset + len) > IP_REASS_BUFSIZE)) {
|
166 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
167 |
|
|
("ip_reass: fragment outside of buffer (%"S16_F":%"S16_F"/%"S16_F").\n", offset,
|
168 |
|
|
offset + len, IP_REASS_BUFSIZE));
|
169 |
|
|
ip_reasstmr = 0;
|
170 |
|
|
snmp_inc_ipreasmfails();
|
171 |
|
|
goto nullreturn;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
/* Copy the fragment into the reassembly buffer, at the right
|
175 |
|
|
offset. */
|
176 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
177 |
|
|
("ip_reass: copying with offset %"S16_F" into %"S16_F":%"S16_F"\n", offset,
|
178 |
|
|
IP_HLEN + offset, IP_HLEN + offset + len));
|
179 |
|
|
i = IPH_HL(fraghdr) * 4;
|
180 |
|
|
copy_from_pbuf(p, &i, &ip_reassbuf[IP_HLEN + offset], len);
|
181 |
|
|
|
182 |
|
|
/* Update the bitmap. */
|
183 |
|
|
if (offset / (8 * 8) == (offset + len) / (8 * 8)) {
|
184 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
185 |
|
|
("ip_reass: updating single byte in bitmap.\n"));
|
186 |
|
|
/* If the two endpoints are in the same byte, we only update that byte. */
|
187 |
|
|
LWIP_ASSERT("offset / (8 * 8) < sizeof(ip_reassbitmap)",
|
188 |
|
|
offset / (8 * 8) < sizeof(ip_reassbitmap));
|
189 |
|
|
ip_reassbitmap[offset / (8 * 8)] |=
|
190 |
|
|
bitmap_bits[(offset / 8) & 7] &
|
191 |
|
|
~bitmap_bits[((offset + len) / 8) & 7];
|
192 |
|
|
} else {
|
193 |
|
|
/* If the two endpoints are in different bytes, we update the
|
194 |
|
|
bytes in the endpoints and fill the stuff inbetween with
|
195 |
|
|
0xff. */
|
196 |
|
|
LWIP_ASSERT("offset / (8 * 8) < sizeof(ip_reassbitmap)",
|
197 |
|
|
offset / (8 * 8) < sizeof(ip_reassbitmap));
|
198 |
|
|
ip_reassbitmap[offset / (8 * 8)] |= bitmap_bits[(offset / 8) & 7];
|
199 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
200 |
|
|
("ip_reass: updating many bytes in bitmap (%"S16_F":%"S16_F").\n",
|
201 |
|
|
1 + offset / (8 * 8), (offset + len) / (8 * 8)));
|
202 |
|
|
for (i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) {
|
203 |
|
|
ip_reassbitmap[i] = 0xff;
|
204 |
|
|
}
|
205 |
|
|
LWIP_ASSERT("(offset + len) / (8 * 8) < sizeof(ip_reassbitmap)",
|
206 |
|
|
(offset + len) / (8 * 8) < sizeof(ip_reassbitmap));
|
207 |
|
|
ip_reassbitmap[(offset + len) / (8 * 8)] |=
|
208 |
|
|
~bitmap_bits[((offset + len) / 8) & 7];
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
/* If this fragment has the More Fragments flag set to zero, we
|
212 |
|
|
know that this is the last fragment, so we can calculate the
|
213 |
|
|
size of the entire packet. We also set the
|
214 |
|
|
IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
|
215 |
|
|
the final fragment. */
|
216 |
|
|
|
217 |
|
|
if ((ntohs(IPH_OFFSET(fraghdr)) & IP_MF) == 0) {
|
218 |
|
|
ip_reassflags |= IP_REASS_FLAG_LASTFRAG;
|
219 |
|
|
ip_reasslen = offset + len;
|
220 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
221 |
|
|
("ip_reass: last fragment seen, total len %"S16_F"\n",
|
222 |
|
|
ip_reasslen));
|
223 |
|
|
}
|
224 |
|
|
|
225 |
|
|
/* Finally, we check if we have a full packet in the buffer. We do
|
226 |
|
|
this by checking if we have the last fragment and if all bits
|
227 |
|
|
in the bitmap are set. */
|
228 |
|
|
if (ip_reassflags & IP_REASS_FLAG_LASTFRAG) {
|
229 |
|
|
/* Check all bytes up to and including all but the last byte in
|
230 |
|
|
the bitmap. */
|
231 |
|
|
LWIP_ASSERT("ip_reasslen / (8 * 8) - 1 < sizeof(ip_reassbitmap)",
|
232 |
|
|
ip_reasslen / (8 * 8) - 1 < ((u16_t) sizeof(ip_reassbitmap)));
|
233 |
|
|
for (i = 0; i < ip_reasslen / (8 * 8) - 1; ++i) {
|
234 |
|
|
if (ip_reassbitmap[i] != 0xff) {
|
235 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
236 |
|
|
("ip_reass: last fragment seen, bitmap %"S16_F"/%"S16_F" failed (%"X16_F")\n",
|
237 |
|
|
i, ip_reasslen / (8 * 8) - 1, ip_reassbitmap[i]));
|
238 |
|
|
goto nullreturn;
|
239 |
|
|
}
|
240 |
|
|
}
|
241 |
|
|
/* Check the last byte in the bitmap. It should contain just the
|
242 |
|
|
right amount of bits. */
|
243 |
|
|
LWIP_ASSERT("ip_reasslen / (8 * 8) < sizeof(ip_reassbitmap)",
|
244 |
|
|
ip_reasslen / (8 * 8) < sizeof(ip_reassbitmap));
|
245 |
|
|
if (ip_reassbitmap[ip_reasslen / (8 * 8)] !=
|
246 |
|
|
(u8_t) ~ bitmap_bits[ip_reasslen / 8 & 7]) {
|
247 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
248 |
|
|
("ip_reass: last fragment seen, bitmap %"S16_F" didn't contain %"X16_F" (%"X16_F")\n",
|
249 |
|
|
ip_reasslen / (8 * 8), ~bitmap_bits[ip_reasslen / 8 & 7],
|
250 |
|
|
ip_reassbitmap[ip_reasslen / (8 * 8)]));
|
251 |
|
|
goto nullreturn;
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
/* Pretend to be a "normal" (i.e., not fragmented) IP packet
|
255 |
|
|
from now on. */
|
256 |
|
|
ip_reasslen += IP_HLEN;
|
257 |
|
|
|
258 |
|
|
IPH_LEN_SET(iphdr, htons(ip_reasslen));
|
259 |
|
|
IPH_OFFSET_SET(iphdr, 0);
|
260 |
|
|
IPH_CHKSUM_SET(iphdr, 0);
|
261 |
|
|
IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
|
262 |
|
|
|
263 |
|
|
/* If we have come this far, we have a full packet in the
|
264 |
|
|
buffer, so we allocate a pbuf and copy the packet into it. We
|
265 |
|
|
also reset the timer. */
|
266 |
|
|
ip_reasstmr = 0;
|
267 |
|
|
pbuf_free(p);
|
268 |
|
|
p = pbuf_alloc(PBUF_LINK, ip_reasslen, PBUF_POOL);
|
269 |
|
|
if (p != NULL) {
|
270 |
|
|
i = 0;
|
271 |
|
|
for (q = p; q != NULL; q = q->next) {
|
272 |
|
|
/* Copy enough bytes to fill this pbuf in the chain. The
|
273 |
|
|
available data in the pbuf is given by the q->len variable. */
|
274 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
275 |
|
|
("ip_reass: memcpy from %p (%"S16_F") to %p, %"S16_F" bytes\n",
|
276 |
|
|
(void *)&ip_reassbuf[i], i, q->payload,
|
277 |
|
|
q->len > ip_reasslen - i ? ip_reasslen - i : q->len));
|
278 |
|
|
memcpy(q->payload, &ip_reassbuf[i],
|
279 |
|
|
q->len > ip_reasslen - i ? ip_reasslen - i : q->len);
|
280 |
|
|
i += q->len;
|
281 |
|
|
}
|
282 |
|
|
IPFRAG_STATS_INC(ip_frag.fw);
|
283 |
|
|
snmp_inc_ipreasmoks();
|
284 |
|
|
} else {
|
285 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG,
|
286 |
|
|
("ip_reass: pbuf_alloc(PBUF_LINK, ip_reasslen=%"U16_F", PBUF_POOL) failed\n", ip_reasslen));
|
287 |
|
|
IPFRAG_STATS_INC(ip_frag.memerr);
|
288 |
|
|
snmp_inc_ipreasmfails();
|
289 |
|
|
}
|
290 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: p %p\n", (void*)p));
|
291 |
|
|
return p;
|
292 |
|
|
}
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
nullreturn:
|
296 |
|
|
IPFRAG_STATS_INC(ip_frag.drop);
|
297 |
|
|
pbuf_free(p);
|
298 |
|
|
return NULL;
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
static u8_t buf[MEM_ALIGN_SIZE(IP_FRAG_MAX_MTU)];
|
302 |
|
|
|
303 |
|
|
/**
|
304 |
|
|
* Fragment an IP datagram if too large for the netif.
|
305 |
|
|
*
|
306 |
|
|
* Chop the datagram in MTU sized chunks and send them in order
|
307 |
|
|
* by using a fixed size static memory buffer (PBUF_ROM)
|
308 |
|
|
*/
|
309 |
|
|
err_t
|
310 |
|
|
ip_frag(struct pbuf *p, struct netif *netif, struct ip_addr *dest)
|
311 |
|
|
{
|
312 |
|
|
struct pbuf *rambuf;
|
313 |
|
|
struct pbuf *header;
|
314 |
|
|
struct ip_hdr *iphdr;
|
315 |
|
|
u16_t nfb = 0;
|
316 |
|
|
u16_t left, cop;
|
317 |
|
|
u16_t mtu = netif->mtu;
|
318 |
|
|
u16_t ofo, omf;
|
319 |
|
|
u16_t last;
|
320 |
|
|
u16_t poff = IP_HLEN;
|
321 |
|
|
u16_t tmp;
|
322 |
|
|
|
323 |
|
|
/* Get a RAM based MTU sized pbuf */
|
324 |
|
|
rambuf = pbuf_alloc(PBUF_LINK, 0, PBUF_REF);
|
325 |
|
|
if (rambuf == NULL) {
|
326 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc(PBUF_LINK, 0, PBUF_REF) failed\n"));
|
327 |
|
|
return ERR_MEM;
|
328 |
|
|
}
|
329 |
|
|
rambuf->tot_len = rambuf->len = mtu;
|
330 |
|
|
rambuf->payload = MEM_ALIGN((void *)buf);
|
331 |
|
|
|
332 |
|
|
/* Copy the IP header in it */
|
333 |
|
|
iphdr = rambuf->payload;
|
334 |
|
|
memcpy(iphdr, p->payload, IP_HLEN);
|
335 |
|
|
|
336 |
|
|
/* Save original offset */
|
337 |
|
|
tmp = ntohs(IPH_OFFSET(iphdr));
|
338 |
|
|
ofo = tmp & IP_OFFMASK;
|
339 |
|
|
omf = tmp & IP_MF;
|
340 |
|
|
|
341 |
|
|
left = p->tot_len - IP_HLEN;
|
342 |
|
|
|
343 |
|
|
while (left) {
|
344 |
|
|
last = (left <= mtu - IP_HLEN);
|
345 |
|
|
|
346 |
|
|
/* Set new offset and MF flag */
|
347 |
|
|
ofo += nfb;
|
348 |
|
|
tmp = omf | (IP_OFFMASK & (ofo));
|
349 |
|
|
if (!last)
|
350 |
|
|
tmp = tmp | IP_MF;
|
351 |
|
|
IPH_OFFSET_SET(iphdr, htons(tmp));
|
352 |
|
|
|
353 |
|
|
/* Fill this fragment */
|
354 |
|
|
nfb = (mtu - IP_HLEN) / 8;
|
355 |
|
|
cop = last ? left : nfb * 8;
|
356 |
|
|
|
357 |
|
|
p = copy_from_pbuf(p, &poff, (u8_t *) iphdr + IP_HLEN, cop);
|
358 |
|
|
|
359 |
|
|
/* Correct header */
|
360 |
|
|
IPH_LEN_SET(iphdr, htons(cop + IP_HLEN));
|
361 |
|
|
IPH_CHKSUM_SET(iphdr, 0);
|
362 |
|
|
IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
|
363 |
|
|
|
364 |
|
|
if (last)
|
365 |
|
|
pbuf_realloc(rambuf, left + IP_HLEN);
|
366 |
|
|
/* This part is ugly: we alloc a RAM based pbuf for
|
367 |
|
|
* the link level header for each chunk and then
|
368 |
|
|
* free it.A PBUF_ROM style pbuf for which pbuf_header
|
369 |
|
|
* worked would make things simpler.
|
370 |
|
|
*/
|
371 |
|
|
header = pbuf_alloc(PBUF_LINK, 0, PBUF_RAM);
|
372 |
|
|
if (header != NULL) {
|
373 |
|
|
pbuf_chain(header, rambuf);
|
374 |
|
|
netif->output(netif, header, dest);
|
375 |
|
|
IPFRAG_STATS_INC(ip_frag.xmit);
|
376 |
|
|
snmp_inc_ipfragcreates();
|
377 |
|
|
pbuf_free(header);
|
378 |
|
|
} else {
|
379 |
|
|
LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc() for header failed\n"));
|
380 |
|
|
pbuf_free(rambuf);
|
381 |
|
|
return ERR_MEM;
|
382 |
|
|
}
|
383 |
|
|
left -= cop;
|
384 |
|
|
}
|
385 |
|
|
pbuf_free(rambuf);
|
386 |
|
|
snmp_inc_ipfragoks();
|
387 |
|
|
return ERR_OK;
|
388 |
|
|
}
|