1 |
606 |
jeremybenn |
/**
|
2 |
|
|
* @file
|
3 |
|
|
* Dynamic memory manager
|
4 |
|
|
*
|
5 |
|
|
* This is a lightweight replacement for the standard C library malloc().
|
6 |
|
|
*
|
7 |
|
|
* If you want to use the standard C library malloc() instead, define
|
8 |
|
|
* MEM_LIBC_MALLOC to 1 in your lwipopts.h
|
9 |
|
|
*
|
10 |
|
|
* To let mem_malloc() use pools (prevents fragmentation and is much faster than
|
11 |
|
|
* a heap but might waste some memory), define MEM_USE_POOLS to 1, define
|
12 |
|
|
* MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list
|
13 |
|
|
* of pools like this (more pools can be added between _START and _END):
|
14 |
|
|
*
|
15 |
|
|
* Define three pools with sizes 256, 512, and 1512 bytes
|
16 |
|
|
* LWIP_MALLOC_MEMPOOL_START
|
17 |
|
|
* LWIP_MALLOC_MEMPOOL(20, 256)
|
18 |
|
|
* LWIP_MALLOC_MEMPOOL(10, 512)
|
19 |
|
|
* LWIP_MALLOC_MEMPOOL(5, 1512)
|
20 |
|
|
* LWIP_MALLOC_MEMPOOL_END
|
21 |
|
|
*/
|
22 |
|
|
|
23 |
|
|
/*
|
24 |
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
25 |
|
|
* All rights reserved.
|
26 |
|
|
*
|
27 |
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
28 |
|
|
* are permitted provided that the following conditions are met:
|
29 |
|
|
*
|
30 |
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
31 |
|
|
* this list of conditions and the following disclaimer.
|
32 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
33 |
|
|
* this list of conditions and the following disclaimer in the documentation
|
34 |
|
|
* and/or other materials provided with the distribution.
|
35 |
|
|
* 3. The name of the author may not be used to endorse or promote products
|
36 |
|
|
* derived from this software without specific prior written permission.
|
37 |
|
|
*
|
38 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
39 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
40 |
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
41 |
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
42 |
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
43 |
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
44 |
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
45 |
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
46 |
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
47 |
|
|
* OF SUCH DAMAGE.
|
48 |
|
|
*
|
49 |
|
|
* This file is part of the lwIP TCP/IP stack.
|
50 |
|
|
*
|
51 |
|
|
* Author: Adam Dunkels <adam@sics.se>
|
52 |
|
|
* Simon Goldschmidt
|
53 |
|
|
*
|
54 |
|
|
*/
|
55 |
|
|
|
56 |
|
|
#include "lwip/opt.h"
|
57 |
|
|
|
58 |
|
|
#if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */
|
59 |
|
|
|
60 |
|
|
#include "lwip/def.h"
|
61 |
|
|
#include "lwip/mem.h"
|
62 |
|
|
#include "lwip/sys.h"
|
63 |
|
|
#include "lwip/stats.h"
|
64 |
|
|
|
65 |
|
|
#include <string.h>
|
66 |
|
|
|
67 |
|
|
#if MEM_USE_POOLS
|
68 |
|
|
/* lwIP head implemented with different sized pools */
|
69 |
|
|
|
70 |
|
|
/**
|
71 |
|
|
* This structure is used to save the pool one element came from.
|
72 |
|
|
*/
|
73 |
|
|
struct mem_helper
|
74 |
|
|
{
|
75 |
|
|
memp_t poolnr;
|
76 |
|
|
};
|
77 |
|
|
|
78 |
|
|
/**
|
79 |
|
|
* Allocate memory: determine the smallest pool that is big enough
|
80 |
|
|
* to contain an element of 'size' and get an element from that pool.
|
81 |
|
|
*
|
82 |
|
|
* @param size the size in bytes of the memory needed
|
83 |
|
|
* @return a pointer to the allocated memory or NULL if the pool is empty
|
84 |
|
|
*/
|
85 |
|
|
void *
|
86 |
|
|
mem_malloc(mem_size_t size)
|
87 |
|
|
{
|
88 |
|
|
struct mem_helper *element;
|
89 |
|
|
memp_t poolnr;
|
90 |
|
|
|
91 |
|
|
for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr++) {
|
92 |
|
|
/* is this pool big enough to hold an element of the required size
|
93 |
|
|
plus a struct mem_helper that saves the pool this element came from? */
|
94 |
|
|
if ((size + sizeof(struct mem_helper)) <= memp_sizes[poolnr]) {
|
95 |
|
|
break;
|
96 |
|
|
}
|
97 |
|
|
}
|
98 |
|
|
if (poolnr > MEMP_POOL_LAST) {
|
99 |
|
|
LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
|
100 |
|
|
return NULL;
|
101 |
|
|
}
|
102 |
|
|
element = (struct mem_helper*)memp_malloc(poolnr);
|
103 |
|
|
if (element == NULL) {
|
104 |
|
|
/* No need to DEBUGF or ASSERT: This error is already
|
105 |
|
|
taken care of in memp.c */
|
106 |
|
|
/** @todo: we could try a bigger pool if this one is empty! */
|
107 |
|
|
return NULL;
|
108 |
|
|
}
|
109 |
|
|
|
110 |
|
|
/* save the pool number this element came from */
|
111 |
|
|
element->poolnr = poolnr;
|
112 |
|
|
/* and return a pointer to the memory directly after the struct mem_helper */
|
113 |
|
|
element++;
|
114 |
|
|
|
115 |
|
|
return element;
|
116 |
|
|
}
|
117 |
|
|
|
118 |
|
|
/**
|
119 |
|
|
* Free memory previously allocated by mem_malloc. Loads the pool number
|
120 |
|
|
* and calls memp_free with that pool number to put the element back into
|
121 |
|
|
* its pool
|
122 |
|
|
*
|
123 |
|
|
* @param rmem the memory element to free
|
124 |
|
|
*/
|
125 |
|
|
void
|
126 |
|
|
mem_free(void *rmem)
|
127 |
|
|
{
|
128 |
|
|
struct mem_helper *hmem = (struct mem_helper*)rmem;
|
129 |
|
|
|
130 |
|
|
LWIP_ASSERT("rmem != NULL", (rmem != NULL));
|
131 |
|
|
LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
|
132 |
|
|
|
133 |
|
|
/* get the original struct mem_helper */
|
134 |
|
|
hmem--;
|
135 |
|
|
|
136 |
|
|
LWIP_ASSERT("hmem != NULL", (hmem != NULL));
|
137 |
|
|
LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem)));
|
138 |
|
|
LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX));
|
139 |
|
|
|
140 |
|
|
/* and put it in the pool we saved earlier */
|
141 |
|
|
memp_free(hmem->poolnr, hmem);
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
#else /* MEM_USE_POOLS */
|
145 |
|
|
/* lwIP replacement for your libc malloc() */
|
146 |
|
|
|
147 |
|
|
/**
|
148 |
|
|
* The heap is made up as a list of structs of this type.
|
149 |
|
|
* This does not have to be aligned since for getting its size,
|
150 |
|
|
* we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes.
|
151 |
|
|
*/
|
152 |
|
|
struct mem {
|
153 |
|
|
/** index (-> ram[next]) of the next struct */
|
154 |
|
|
mem_size_t next;
|
155 |
|
|
/** index (-> ram[next]) of the next struct */
|
156 |
|
|
mem_size_t prev;
|
157 |
|
|
/** 1: this area is used; 0: this area is unused */
|
158 |
|
|
u8_t used;
|
159 |
|
|
};
|
160 |
|
|
|
161 |
|
|
/** All allocated blocks will be MIN_SIZE bytes big, at least!
|
162 |
|
|
* MIN_SIZE can be overridden to suit your needs. Smaller values save space,
|
163 |
|
|
* larger values could prevent too small blocks to fragment the RAM too much. */
|
164 |
|
|
#ifndef MIN_SIZE
|
165 |
|
|
#define MIN_SIZE 12
|
166 |
|
|
#endif /* MIN_SIZE */
|
167 |
|
|
/* some alignment macros: we define them here for better source code layout */
|
168 |
|
|
#define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE)
|
169 |
|
|
#define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem))
|
170 |
|
|
#define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE)
|
171 |
|
|
|
172 |
|
|
/** the heap. we need one struct mem at the end and some room for alignment */
|
173 |
|
|
static u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT];
|
174 |
|
|
/** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */
|
175 |
|
|
static u8_t *ram;
|
176 |
|
|
/** the last entry, always unused! */
|
177 |
|
|
static struct mem *ram_end;
|
178 |
|
|
/** pointer to the lowest free block, this is used for faster search */
|
179 |
|
|
static struct mem *lfree;
|
180 |
|
|
/** concurrent access protection */
|
181 |
|
|
static sys_sem_t mem_sem;
|
182 |
|
|
|
183 |
|
|
/**
|
184 |
|
|
* "Plug holes" by combining adjacent empty struct mems.
|
185 |
|
|
* After this function is through, there should not exist
|
186 |
|
|
* one empty struct mem pointing to another empty struct mem.
|
187 |
|
|
*
|
188 |
|
|
* @param mem this points to a struct mem which just has been freed
|
189 |
|
|
* @internal this function is only called by mem_free() and mem_realloc()
|
190 |
|
|
*
|
191 |
|
|
* This assumes access to the heap is protected by the calling function
|
192 |
|
|
* already.
|
193 |
|
|
*/
|
194 |
|
|
static void
|
195 |
|
|
plug_holes(struct mem *mem)
|
196 |
|
|
{
|
197 |
|
|
struct mem *nmem;
|
198 |
|
|
struct mem *pmem;
|
199 |
|
|
|
200 |
|
|
LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram);
|
201 |
|
|
LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end);
|
202 |
|
|
LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0);
|
203 |
|
|
|
204 |
|
|
/* plug hole forward */
|
205 |
|
|
LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED);
|
206 |
|
|
|
207 |
|
|
nmem = (struct mem *)&ram[mem->next];
|
208 |
|
|
if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) {
|
209 |
|
|
/* if mem->next is unused and not end of ram, combine mem and mem->next */
|
210 |
|
|
if (lfree == nmem) {
|
211 |
|
|
lfree = mem;
|
212 |
|
|
}
|
213 |
|
|
mem->next = nmem->next;
|
214 |
|
|
((struct mem *)&ram[nmem->next])->prev = (u8_t *)mem - ram;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
/* plug hole backward */
|
218 |
|
|
pmem = (struct mem *)&ram[mem->prev];
|
219 |
|
|
if (pmem != mem && pmem->used == 0) {
|
220 |
|
|
/* if mem->prev is unused, combine mem and mem->prev */
|
221 |
|
|
if (lfree == mem) {
|
222 |
|
|
lfree = pmem;
|
223 |
|
|
}
|
224 |
|
|
pmem->next = mem->next;
|
225 |
|
|
((struct mem *)&ram[mem->next])->prev = (u8_t *)pmem - ram;
|
226 |
|
|
}
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
/**
|
230 |
|
|
* Zero the heap and initialize start, end and lowest-free
|
231 |
|
|
*/
|
232 |
|
|
void
|
233 |
|
|
mem_init(void)
|
234 |
|
|
{
|
235 |
|
|
struct mem *mem;
|
236 |
|
|
|
237 |
|
|
LWIP_ASSERT("Sanity check alignment",
|
238 |
|
|
(SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0);
|
239 |
|
|
|
240 |
|
|
/* align the heap */
|
241 |
|
|
ram = LWIP_MEM_ALIGN(ram_heap);
|
242 |
|
|
/* initialize the start of the heap */
|
243 |
|
|
mem = (struct mem *)ram;
|
244 |
|
|
mem->next = MEM_SIZE_ALIGNED;
|
245 |
|
|
mem->prev = 0;
|
246 |
|
|
mem->used = 0;
|
247 |
|
|
/* initialize the end of the heap */
|
248 |
|
|
ram_end = (struct mem *)&ram[MEM_SIZE_ALIGNED];
|
249 |
|
|
ram_end->used = 1;
|
250 |
|
|
ram_end->next = MEM_SIZE_ALIGNED;
|
251 |
|
|
ram_end->prev = MEM_SIZE_ALIGNED;
|
252 |
|
|
|
253 |
|
|
mem_sem = sys_sem_new(1);
|
254 |
|
|
|
255 |
|
|
/* initialize the lowest-free pointer to the start of the heap */
|
256 |
|
|
lfree = (struct mem *)ram;
|
257 |
|
|
|
258 |
|
|
#if MEM_STATS
|
259 |
|
|
lwip_stats.mem.avail = MEM_SIZE_ALIGNED;
|
260 |
|
|
#endif /* MEM_STATS */
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
/**
|
264 |
|
|
* Put a struct mem back on the heap
|
265 |
|
|
*
|
266 |
|
|
* @param rmem is the data portion of a struct mem as returned by a previous
|
267 |
|
|
* call to mem_malloc()
|
268 |
|
|
*/
|
269 |
|
|
void
|
270 |
|
|
mem_free(void *rmem)
|
271 |
|
|
{
|
272 |
|
|
struct mem *mem;
|
273 |
|
|
|
274 |
|
|
if (rmem == NULL) {
|
275 |
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | 2, ("mem_free(p == NULL) was called.\n"));
|
276 |
|
|
return;
|
277 |
|
|
}
|
278 |
|
|
LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0);
|
279 |
|
|
|
280 |
|
|
/* protect the heap from concurrent access */
|
281 |
|
|
sys_arch_sem_wait(mem_sem, 0);
|
282 |
|
|
|
283 |
|
|
LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
|
284 |
|
|
(u8_t *)rmem < (u8_t *)ram_end);
|
285 |
|
|
|
286 |
|
|
if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
|
287 |
|
|
LWIP_DEBUGF(MEM_DEBUG | 3, ("mem_free: illegal memory\n"));
|
288 |
|
|
#if MEM_STATS
|
289 |
|
|
++lwip_stats.mem.err;
|
290 |
|
|
#endif /* MEM_STATS */
|
291 |
|
|
sys_sem_signal(mem_sem);
|
292 |
|
|
return;
|
293 |
|
|
}
|
294 |
|
|
/* Get the corresponding struct mem ... */
|
295 |
|
|
mem = (struct mem *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
|
296 |
|
|
/* ... which has to be in a used state ... */
|
297 |
|
|
LWIP_ASSERT("mem_free: mem->used", mem->used);
|
298 |
|
|
/* ... and is now unused. */
|
299 |
|
|
mem->used = 0;
|
300 |
|
|
|
301 |
|
|
if (mem < lfree) {
|
302 |
|
|
/* the newly freed struct is now the lowest */
|
303 |
|
|
lfree = mem;
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
#if MEM_STATS
|
307 |
|
|
lwip_stats.mem.used -= mem->next - ((u8_t *)mem - ram);
|
308 |
|
|
#endif /* MEM_STATS */
|
309 |
|
|
|
310 |
|
|
/* finally, see if prev or next are free also */
|
311 |
|
|
plug_holes(mem);
|
312 |
|
|
sys_sem_signal(mem_sem);
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
/**
|
316 |
|
|
* In contrast to its name, mem_realloc can only shrink memory, not expand it.
|
317 |
|
|
* Since the only use (for now) is in pbuf_realloc (which also can only shrink),
|
318 |
|
|
* this shouldn't be a problem!
|
319 |
|
|
*
|
320 |
|
|
* @param rmem pointer to memory allocated by mem_malloc the is to be shrinked
|
321 |
|
|
* @param newsize required size after shrinking (needs to be smaller than or
|
322 |
|
|
* equal to the previous size)
|
323 |
|
|
* @return for compatibility reasons: is always == rmem, at the moment
|
324 |
|
|
*/
|
325 |
|
|
void *
|
326 |
|
|
mem_realloc(void *rmem, mem_size_t newsize)
|
327 |
|
|
{
|
328 |
|
|
mem_size_t size;
|
329 |
|
|
mem_size_t ptr, ptr2;
|
330 |
|
|
struct mem *mem, *mem2;
|
331 |
|
|
|
332 |
|
|
/* Expand the size of the allocated memory region so that we can
|
333 |
|
|
adjust for alignment. */
|
334 |
|
|
newsize = LWIP_MEM_ALIGN_SIZE(newsize);
|
335 |
|
|
|
336 |
|
|
if(newsize < MIN_SIZE_ALIGNED) {
|
337 |
|
|
/* every data block must be at least MIN_SIZE_ALIGNED long */
|
338 |
|
|
newsize = MIN_SIZE_ALIGNED;
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
if (newsize > MEM_SIZE_ALIGNED) {
|
342 |
|
|
return NULL;
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
LWIP_ASSERT("mem_realloc: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
|
346 |
|
|
(u8_t *)rmem < (u8_t *)ram_end);
|
347 |
|
|
|
348 |
|
|
if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
|
349 |
|
|
LWIP_DEBUGF(MEM_DEBUG | 3, ("mem_realloc: illegal memory\n"));
|
350 |
|
|
return rmem;
|
351 |
|
|
}
|
352 |
|
|
/* Get the corresponding struct mem ... */
|
353 |
|
|
mem = (struct mem *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
|
354 |
|
|
/* ... and its offset pointer */
|
355 |
|
|
ptr = (u8_t *)mem - ram;
|
356 |
|
|
|
357 |
|
|
size = mem->next - ptr - SIZEOF_STRUCT_MEM;
|
358 |
|
|
LWIP_ASSERT("mem_realloc can only shrink memory", newsize <= size);
|
359 |
|
|
if (newsize > size) {
|
360 |
|
|
/* not supported */
|
361 |
|
|
return NULL;
|
362 |
|
|
}
|
363 |
|
|
if (newsize == size) {
|
364 |
|
|
/* No change in size, simply return */
|
365 |
|
|
return rmem;
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
/* protect the heap from concurrent access */
|
369 |
|
|
sys_arch_sem_wait(mem_sem, 0);
|
370 |
|
|
|
371 |
|
|
#if MEM_STATS
|
372 |
|
|
lwip_stats.mem.used -= (size - newsize);
|
373 |
|
|
#endif /* MEM_STATS */
|
374 |
|
|
|
375 |
|
|
mem2 = (struct mem *)&ram[mem->next];
|
376 |
|
|
if(mem2->used == 0) {
|
377 |
|
|
/* The next struct is unused, we can simply move it at little */
|
378 |
|
|
mem_size_t next;
|
379 |
|
|
/* remember the old next pointer */
|
380 |
|
|
next = mem2->next;
|
381 |
|
|
/* create new struct mem which is moved directly after the shrinked mem */
|
382 |
|
|
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
|
383 |
|
|
if (lfree == mem2) {
|
384 |
|
|
lfree = (struct mem *)&ram[ptr2];
|
385 |
|
|
}
|
386 |
|
|
mem2 = (struct mem *)&ram[ptr2];
|
387 |
|
|
mem2->used = 0;
|
388 |
|
|
/* restore the next pointer */
|
389 |
|
|
mem2->next = next;
|
390 |
|
|
/* link it back to mem */
|
391 |
|
|
mem2->prev = ptr;
|
392 |
|
|
/* link mem to it */
|
393 |
|
|
mem->next = ptr2;
|
394 |
|
|
/* last thing to restore linked list: as we have moved mem2,
|
395 |
|
|
* let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
|
396 |
|
|
* the end of the heap */
|
397 |
|
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
398 |
|
|
((struct mem *)&ram[mem2->next])->prev = ptr2;
|
399 |
|
|
}
|
400 |
|
|
/* no need to plug holes, we've already done that */
|
401 |
|
|
} else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
|
402 |
|
|
/* Next struct is used but there's room for another struct mem with
|
403 |
|
|
* at least MIN_SIZE_ALIGNED of data.
|
404 |
|
|
* Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
|
405 |
|
|
* ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
|
406 |
|
|
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
|
407 |
|
|
* region that couldn't hold data, but when mem->next gets freed,
|
408 |
|
|
* the 2 regions would be combined, resulting in more free memory */
|
409 |
|
|
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
|
410 |
|
|
mem2 = (struct mem *)&ram[ptr2];
|
411 |
|
|
if (mem2 < lfree) {
|
412 |
|
|
lfree = mem2;
|
413 |
|
|
}
|
414 |
|
|
mem2->used = 0;
|
415 |
|
|
mem2->next = mem->next;
|
416 |
|
|
mem2->prev = ptr;
|
417 |
|
|
mem->next = ptr2;
|
418 |
|
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
419 |
|
|
((struct mem *)&ram[mem2->next])->prev = ptr2;
|
420 |
|
|
}
|
421 |
|
|
/* the original mem->next is used, so no need to plug holes! */
|
422 |
|
|
}
|
423 |
|
|
/* else {
|
424 |
|
|
next struct mem is used but size between mem and mem2 is not big enough
|
425 |
|
|
to create another struct mem
|
426 |
|
|
-> don't do anyhting.
|
427 |
|
|
-> the remaining space stays unused since it is too small
|
428 |
|
|
} */
|
429 |
|
|
sys_sem_signal(mem_sem);
|
430 |
|
|
return rmem;
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
/**
|
434 |
|
|
* Adam's mem_malloc() plus solution for bug #17922
|
435 |
|
|
* Allocate a block of memory with a minimum of 'size' bytes.
|
436 |
|
|
*
|
437 |
|
|
* @param size is the minimum size of the requested block in bytes.
|
438 |
|
|
* @return pointer to allocated memory or NULL if no free memory was found.
|
439 |
|
|
*
|
440 |
|
|
* Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
|
441 |
|
|
*/
|
442 |
|
|
void *
|
443 |
|
|
mem_malloc(mem_size_t size)
|
444 |
|
|
{
|
445 |
|
|
mem_size_t ptr, ptr2;
|
446 |
|
|
struct mem *mem, *mem2;
|
447 |
|
|
|
448 |
|
|
if (size == 0) {
|
449 |
|
|
return NULL;
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
/* Expand the size of the allocated memory region so that we can
|
453 |
|
|
adjust for alignment. */
|
454 |
|
|
size = LWIP_MEM_ALIGN_SIZE(size);
|
455 |
|
|
|
456 |
|
|
if(size < MIN_SIZE_ALIGNED) {
|
457 |
|
|
/* every data block must be at least MIN_SIZE_ALIGNED long */
|
458 |
|
|
size = MIN_SIZE_ALIGNED;
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
if (size > MEM_SIZE_ALIGNED) {
|
462 |
|
|
return NULL;
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
/* protect the heap from concurrent access */
|
466 |
|
|
sys_arch_sem_wait(mem_sem, 0);
|
467 |
|
|
|
468 |
|
|
/* Scan through the heap searching for a free block that is big enough,
|
469 |
|
|
* beginning with the lowest free block.
|
470 |
|
|
*/
|
471 |
|
|
for (ptr = (u8_t *)lfree - ram; ptr < MEM_SIZE_ALIGNED - size;
|
472 |
|
|
ptr = ((struct mem *)&ram[ptr])->next) {
|
473 |
|
|
mem = (struct mem *)&ram[ptr];
|
474 |
|
|
|
475 |
|
|
if ((!mem->used) &&
|
476 |
|
|
(mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
|
477 |
|
|
/* mem is not used and at least perfect fit is possible:
|
478 |
|
|
* mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
|
479 |
|
|
|
480 |
|
|
if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
|
481 |
|
|
/* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
|
482 |
|
|
* at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
|
483 |
|
|
* -> split large block, create empty remainder,
|
484 |
|
|
* remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
|
485 |
|
|
* mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
|
486 |
|
|
* struct mem would fit in but no data between mem2 and mem2->next
|
487 |
|
|
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
|
488 |
|
|
* region that couldn't hold data, but when mem->next gets freed,
|
489 |
|
|
* the 2 regions would be combined, resulting in more free memory
|
490 |
|
|
*/
|
491 |
|
|
ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
|
492 |
|
|
/* create mem2 struct */
|
493 |
|
|
mem2 = (struct mem *)&ram[ptr2];
|
494 |
|
|
mem2->used = 0;
|
495 |
|
|
mem2->next = mem->next;
|
496 |
|
|
mem2->prev = ptr;
|
497 |
|
|
/* and insert it between mem and mem->next */
|
498 |
|
|
mem->next = ptr2;
|
499 |
|
|
mem->used = 1;
|
500 |
|
|
|
501 |
|
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
502 |
|
|
((struct mem *)&ram[mem2->next])->prev = ptr2;
|
503 |
|
|
}
|
504 |
|
|
#if MEM_STATS
|
505 |
|
|
lwip_stats.mem.used += (size + SIZEOF_STRUCT_MEM);
|
506 |
|
|
if (lwip_stats.mem.max < lwip_stats.mem.used) {
|
507 |
|
|
lwip_stats.mem.max = lwip_stats.mem.used;
|
508 |
|
|
}
|
509 |
|
|
#endif /* MEM_STATS */
|
510 |
|
|
} else {
|
511 |
|
|
/* (a mem2 struct does no fit into the user data space of mem and mem->next will always
|
512 |
|
|
* be used at this point: if not we have 2 unused structs in a row, plug_holes should have
|
513 |
|
|
* take care of this).
|
514 |
|
|
* -> near fit or excact fit: do not split, no mem2 creation
|
515 |
|
|
* also can't move mem->next directly behind mem, since mem->next
|
516 |
|
|
* will always be used at this point!
|
517 |
|
|
*/
|
518 |
|
|
mem->used = 1;
|
519 |
|
|
#if MEM_STATS
|
520 |
|
|
lwip_stats.mem.used += mem->next - ((u8_t *)mem - ram);
|
521 |
|
|
if (lwip_stats.mem.max < lwip_stats.mem.used) {
|
522 |
|
|
lwip_stats.mem.max = lwip_stats.mem.used;
|
523 |
|
|
}
|
524 |
|
|
#endif /* MEM_STATS */
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
if (mem == lfree) {
|
528 |
|
|
/* Find next free block after mem and update lowest free pointer */
|
529 |
|
|
while (lfree->used && lfree != ram_end) {
|
530 |
|
|
lfree = (struct mem *)&ram[lfree->next];
|
531 |
|
|
}
|
532 |
|
|
LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
|
533 |
|
|
}
|
534 |
|
|
sys_sem_signal(mem_sem);
|
535 |
|
|
LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
|
536 |
|
|
(mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
|
537 |
|
|
LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
|
538 |
|
|
(unsigned long)((u8_t *)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
|
539 |
|
|
LWIP_ASSERT("mem_malloc: sanity check alignment",
|
540 |
|
|
(((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0);
|
541 |
|
|
|
542 |
|
|
return (u8_t *)mem + SIZEOF_STRUCT_MEM;
|
543 |
|
|
}
|
544 |
|
|
}
|
545 |
|
|
LWIP_DEBUGF(MEM_DEBUG | 2, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
|
546 |
|
|
#if MEM_STATS
|
547 |
|
|
++lwip_stats.mem.err;
|
548 |
|
|
#endif /* MEM_STATS */
|
549 |
|
|
sys_sem_signal(mem_sem);
|
550 |
|
|
return NULL;
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
#endif /* MEM_USE_POOLS */
|
554 |
|
|
/**
|
555 |
|
|
* Contiguously allocates enough space for count objects that are size bytes
|
556 |
|
|
* of memory each and returns a pointer to the allocated memory.
|
557 |
|
|
*
|
558 |
|
|
* The allocated memory is filled with bytes of value zero.
|
559 |
|
|
*
|
560 |
|
|
* @param count number of objects to allocate
|
561 |
|
|
* @param size size of the objects to allocate
|
562 |
|
|
* @return pointer to allocated memory / NULL pointer if there is an error
|
563 |
|
|
*/
|
564 |
|
|
void *mem_calloc(mem_size_t count, mem_size_t size)
|
565 |
|
|
{
|
566 |
|
|
void *p;
|
567 |
|
|
|
568 |
|
|
/* allocate 'count' objects of size 'size' */
|
569 |
|
|
p = mem_malloc(count * size);
|
570 |
|
|
if (p) {
|
571 |
|
|
/* zero the memory */
|
572 |
|
|
memset(p, 0, count * size);
|
573 |
|
|
}
|
574 |
|
|
return p;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
#endif /* !MEM_LIBC_MALLOC */
|