1 |
606 |
jeremybenn |
/**
|
2 |
|
|
* @file
|
3 |
|
|
* Transmission Control Protocol, outgoing traffic
|
4 |
|
|
*
|
5 |
|
|
* The output functions of TCP.
|
6 |
|
|
*
|
7 |
|
|
*/
|
8 |
|
|
|
9 |
|
|
/*
|
10 |
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
11 |
|
|
* All rights reserved.
|
12 |
|
|
*
|
13 |
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
14 |
|
|
* are permitted provided that the following conditions are met:
|
15 |
|
|
*
|
16 |
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
17 |
|
|
* this list of conditions and the following disclaimer.
|
18 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
19 |
|
|
* this list of conditions and the following disclaimer in the documentation
|
20 |
|
|
* and/or other materials provided with the distribution.
|
21 |
|
|
* 3. The name of the author may not be used to endorse or promote products
|
22 |
|
|
* derived from this software without specific prior written permission.
|
23 |
|
|
*
|
24 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
25 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
26 |
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
27 |
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
28 |
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
29 |
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
30 |
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
31 |
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
32 |
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
33 |
|
|
* OF SUCH DAMAGE.
|
34 |
|
|
*
|
35 |
|
|
* This file is part of the lwIP TCP/IP stack.
|
36 |
|
|
*
|
37 |
|
|
* Author: Adam Dunkels <adam@sics.se>
|
38 |
|
|
*
|
39 |
|
|
*/
|
40 |
|
|
|
41 |
|
|
#include "lwip/opt.h"
|
42 |
|
|
|
43 |
|
|
#if LWIP_TCP /* don't build if not configured for use in lwipopts.h */
|
44 |
|
|
|
45 |
|
|
#include "lwip/tcp.h"
|
46 |
|
|
#include "lwip/def.h"
|
47 |
|
|
#include "lwip/mem.h"
|
48 |
|
|
#include "lwip/memp.h"
|
49 |
|
|
#include "lwip/sys.h"
|
50 |
|
|
#include "lwip/ip_addr.h"
|
51 |
|
|
#include "lwip/netif.h"
|
52 |
|
|
#include "lwip/inet.h"
|
53 |
|
|
#include "lwip/inet_chksum.h"
|
54 |
|
|
#include "lwip/stats.h"
|
55 |
|
|
#include "lwip/snmp.h"
|
56 |
|
|
|
57 |
|
|
#include <string.h>
|
58 |
|
|
|
59 |
|
|
/* Forward declarations.*/
|
60 |
|
|
static void tcp_output_segment(struct tcp_seg *seg, struct tcp_pcb *pcb);
|
61 |
|
|
|
62 |
|
|
/**
|
63 |
|
|
* Called by tcp_close() to send a segment including flags but not data.
|
64 |
|
|
*
|
65 |
|
|
* @param pcb the tcp_pcb over which to send a segment
|
66 |
|
|
* @param flags the flags to set in the segment header
|
67 |
|
|
* @return ERR_OK if sent, another err_t otherwise
|
68 |
|
|
*/
|
69 |
|
|
err_t
|
70 |
|
|
tcp_send_ctrl(struct tcp_pcb *pcb, u8_t flags)
|
71 |
|
|
{
|
72 |
|
|
/* no data, no length, flags, copy=1, no optdata, no optdatalen */
|
73 |
|
|
return tcp_enqueue(pcb, NULL, 0, flags, TCP_WRITE_FLAG_COPY, NULL, 0);
|
74 |
|
|
}
|
75 |
|
|
|
76 |
|
|
/**
|
77 |
|
|
* Write data for sending (but does not send it immediately).
|
78 |
|
|
*
|
79 |
|
|
* It waits in the expectation of more data being sent soon (as
|
80 |
|
|
* it can send them more efficiently by combining them together).
|
81 |
|
|
* To prompt the system to send data now, call tcp_output() after
|
82 |
|
|
* calling tcp_write().
|
83 |
|
|
*
|
84 |
|
|
* @param pcb Protocol control block of the TCP connection to enqueue data for.
|
85 |
|
|
* @param data pointer to the data to send
|
86 |
|
|
* @param len length (in bytes) of the data to send
|
87 |
|
|
* @param apiflags combination of following flags :
|
88 |
|
|
* - TCP_WRITE_FLAG_COPY (0x01) data will be copied into memory belonging to the stack
|
89 |
|
|
* - TCP_WRITE_FLAG_MORE (0x02) for TCP connection, PSH flag will be set on last segment sent,
|
90 |
|
|
* @return ERR_OK if enqueued, another err_t on error
|
91 |
|
|
*
|
92 |
|
|
* @see tcp_write()
|
93 |
|
|
*/
|
94 |
|
|
err_t
|
95 |
|
|
tcp_write(struct tcp_pcb *pcb, const void *data, u16_t len, u8_t apiflags)
|
96 |
|
|
{
|
97 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_write(pcb=%p, data=%p, len=%"U16_F", apiflags=%"U16_F")\n", (void *)pcb,
|
98 |
|
|
data, len, (u16_t)apiflags));
|
99 |
|
|
/* connection is in valid state for data transmission? */
|
100 |
|
|
if (pcb->state == ESTABLISHED ||
|
101 |
|
|
pcb->state == CLOSE_WAIT ||
|
102 |
|
|
pcb->state == SYN_SENT ||
|
103 |
|
|
pcb->state == SYN_RCVD) {
|
104 |
|
|
if (len > 0) {
|
105 |
|
|
return tcp_enqueue(pcb, (void *)data, len, 0, apiflags, NULL, 0);
|
106 |
|
|
}
|
107 |
|
|
return ERR_OK;
|
108 |
|
|
} else {
|
109 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | LWIP_DBG_STATE | 3, ("tcp_write() called in invalid state\n"));
|
110 |
|
|
return ERR_CONN;
|
111 |
|
|
}
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
/**
|
115 |
|
|
* Enqueue either data or TCP options (but not both) for tranmission
|
116 |
|
|
*
|
117 |
|
|
* Called by tcp_connect(), tcp_listen_input(), tcp_send_ctrl() and tcp_write().
|
118 |
|
|
*
|
119 |
|
|
* @param pcb Protocol control block for the TCP connection to enqueue data for.
|
120 |
|
|
* @param arg Pointer to the data to be enqueued for sending.
|
121 |
|
|
* @param len Data length in bytes
|
122 |
|
|
* @param flags tcp header flags to set in the outgoing segment
|
123 |
|
|
* @param apiflags combination of following flags :
|
124 |
|
|
* - TCP_WRITE_FLAG_COPY (0x01) data will be copied into memory belonging to the stack
|
125 |
|
|
* - TCP_WRITE_FLAG_MORE (0x02) for TCP connection, PSH flag will be set on last segment sent,
|
126 |
|
|
* @param optdata
|
127 |
|
|
* @param optlen
|
128 |
|
|
*/
|
129 |
|
|
err_t
|
130 |
|
|
tcp_enqueue(struct tcp_pcb *pcb, void *arg, u16_t len,
|
131 |
|
|
u8_t flags, u8_t apiflags,
|
132 |
|
|
u8_t *optdata, u8_t optlen)
|
133 |
|
|
{
|
134 |
|
|
struct pbuf *p;
|
135 |
|
|
struct tcp_seg *seg, *useg, *queue;
|
136 |
|
|
u32_t seqno;
|
137 |
|
|
u16_t left, seglen;
|
138 |
|
|
void *ptr;
|
139 |
|
|
u16_t queuelen;
|
140 |
|
|
|
141 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_enqueue(pcb=%p, arg=%p, len=%"U16_F", flags=%"X16_F", apiflags=%"U16_F")\n",
|
142 |
|
|
(void *)pcb, arg, len, (u16_t)flags, (u16_t)apiflags));
|
143 |
|
|
LWIP_ERROR("tcp_enqueue: len == 0 || optlen == 0 (programmer violates API)",
|
144 |
|
|
((len == 0) || (optlen == 0)), return ERR_ARG;);
|
145 |
|
|
LWIP_ERROR("tcp_enqueue: arg == NULL || optdata == NULL (programmer violates API)",
|
146 |
|
|
((arg == NULL) || (optdata == NULL)), return ERR_ARG;);
|
147 |
|
|
/* fail on too much data */
|
148 |
|
|
if (len > pcb->snd_buf) {
|
149 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 3, ("tcp_enqueue: too much data (len=%"U16_F" > snd_buf=%"U16_F")\n", len, pcb->snd_buf));
|
150 |
|
|
pcb->flags |= TF_NAGLEMEMERR;
|
151 |
|
|
return ERR_MEM;
|
152 |
|
|
}
|
153 |
|
|
left = len;
|
154 |
|
|
ptr = arg;
|
155 |
|
|
|
156 |
|
|
/* seqno will be the sequence number of the first segment enqueued
|
157 |
|
|
* by the call to this function. */
|
158 |
|
|
seqno = pcb->snd_lbb;
|
159 |
|
|
|
160 |
|
|
LWIP_DEBUGF(TCP_QLEN_DEBUG, ("tcp_enqueue: queuelen: %"U16_F"\n", (u16_t)pcb->snd_queuelen));
|
161 |
|
|
|
162 |
|
|
/* If total number of pbufs on the unsent/unacked queues exceeds the
|
163 |
|
|
* configured maximum, return an error */
|
164 |
|
|
queuelen = pcb->snd_queuelen;
|
165 |
|
|
/* check for configured max queuelen and possible overflow */
|
166 |
|
|
if ((queuelen >= TCP_SND_QUEUELEN) || (queuelen > TCP_SNDQUEUELEN_OVERFLOW)) {
|
167 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 3, ("tcp_enqueue: too long queue %"U16_F" (max %"U16_F")\n", queuelen, TCP_SND_QUEUELEN));
|
168 |
|
|
TCP_STATS_INC(tcp.memerr);
|
169 |
|
|
pcb->flags |= TF_NAGLEMEMERR;
|
170 |
|
|
return ERR_MEM;
|
171 |
|
|
}
|
172 |
|
|
if (queuelen != 0) {
|
173 |
|
|
LWIP_ASSERT("tcp_enqueue: pbufs on queue => at least one queue non-empty",
|
174 |
|
|
pcb->unacked != NULL || pcb->unsent != NULL);
|
175 |
|
|
} else {
|
176 |
|
|
LWIP_ASSERT("tcp_enqueue: no pbufs on queue => both queues empty",
|
177 |
|
|
pcb->unacked == NULL && pcb->unsent == NULL);
|
178 |
|
|
}
|
179 |
|
|
|
180 |
|
|
/* First, break up the data into segments and tuck them together in
|
181 |
|
|
* the local "queue" variable. */
|
182 |
|
|
useg = queue = seg = NULL;
|
183 |
|
|
seglen = 0;
|
184 |
|
|
while (queue == NULL || left > 0) {
|
185 |
|
|
|
186 |
|
|
/* The segment length should be the MSS if the data to be enqueued
|
187 |
|
|
* is larger than the MSS. */
|
188 |
|
|
seglen = left > pcb->mss? pcb->mss: left;
|
189 |
|
|
|
190 |
|
|
/* Allocate memory for tcp_seg, and fill in fields. */
|
191 |
|
|
seg = memp_malloc(MEMP_TCP_SEG);
|
192 |
|
|
if (seg == NULL) {
|
193 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: could not allocate memory for tcp_seg\n"));
|
194 |
|
|
goto memerr;
|
195 |
|
|
}
|
196 |
|
|
seg->next = NULL;
|
197 |
|
|
seg->p = NULL;
|
198 |
|
|
|
199 |
|
|
/* first segment of to-be-queued data? */
|
200 |
|
|
if (queue == NULL) {
|
201 |
|
|
queue = seg;
|
202 |
|
|
}
|
203 |
|
|
/* subsequent segments of to-be-queued data */
|
204 |
|
|
else {
|
205 |
|
|
/* Attach the segment to the end of the queued segments */
|
206 |
|
|
LWIP_ASSERT("useg != NULL", useg != NULL);
|
207 |
|
|
useg->next = seg;
|
208 |
|
|
}
|
209 |
|
|
/* remember last segment of to-be-queued data for next iteration */
|
210 |
|
|
useg = seg;
|
211 |
|
|
|
212 |
|
|
/* If copy is set, memory should be allocated
|
213 |
|
|
* and data copied into pbuf, otherwise data comes from
|
214 |
|
|
* ROM or other static memory, and need not be copied. If
|
215 |
|
|
* optdata is != NULL, we have options instead of data. */
|
216 |
|
|
|
217 |
|
|
/* options? */
|
218 |
|
|
if (optdata != NULL) {
|
219 |
|
|
if ((seg->p = pbuf_alloc(PBUF_TRANSPORT, optlen, PBUF_RAM)) == NULL) {
|
220 |
|
|
goto memerr;
|
221 |
|
|
}
|
222 |
|
|
LWIP_ASSERT("check that first pbuf can hold optlen",
|
223 |
|
|
(seg->p->len >= optlen));
|
224 |
|
|
queuelen += pbuf_clen(seg->p);
|
225 |
|
|
seg->dataptr = seg->p->payload;
|
226 |
|
|
}
|
227 |
|
|
/* copy from volatile memory? */
|
228 |
|
|
else if (apiflags & TCP_WRITE_FLAG_COPY) {
|
229 |
|
|
if ((seg->p = pbuf_alloc(PBUF_TRANSPORT, seglen, PBUF_RAM)) == NULL) {
|
230 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue : could not allocate memory for pbuf copy size %"U16_F"\n", seglen));
|
231 |
|
|
goto memerr;
|
232 |
|
|
}
|
233 |
|
|
LWIP_ASSERT("check that first pbuf can hold the complete seglen",
|
234 |
|
|
(seg->p->len >= seglen));
|
235 |
|
|
queuelen += pbuf_clen(seg->p);
|
236 |
|
|
if (arg != NULL) {
|
237 |
|
|
MEMCPY(seg->p->payload, ptr, seglen);
|
238 |
|
|
}
|
239 |
|
|
seg->dataptr = seg->p->payload;
|
240 |
|
|
}
|
241 |
|
|
/* do not copy data */
|
242 |
|
|
else {
|
243 |
|
|
/* First, allocate a pbuf for holding the data.
|
244 |
|
|
* since the referenced data is available at least until it is sent out on the
|
245 |
|
|
* link (as it has to be ACKed by the remote party) we can safely use PBUF_ROM
|
246 |
|
|
* instead of PBUF_REF here.
|
247 |
|
|
*/
|
248 |
|
|
if ((p = pbuf_alloc(PBUF_TRANSPORT, seglen, PBUF_ROM)) == NULL) {
|
249 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: could not allocate memory for zero-copy pbuf\n"));
|
250 |
|
|
goto memerr;
|
251 |
|
|
}
|
252 |
|
|
++queuelen;
|
253 |
|
|
/* reference the non-volatile payload data */
|
254 |
|
|
p->payload = ptr;
|
255 |
|
|
seg->dataptr = ptr;
|
256 |
|
|
|
257 |
|
|
/* Second, allocate a pbuf for the headers. */
|
258 |
|
|
if ((seg->p = pbuf_alloc(PBUF_TRANSPORT, 0, PBUF_RAM)) == NULL) {
|
259 |
|
|
/* If allocation fails, we have to deallocate the data pbuf as
|
260 |
|
|
* well. */
|
261 |
|
|
pbuf_free(p);
|
262 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: could not allocate memory for header pbuf\n"));
|
263 |
|
|
goto memerr;
|
264 |
|
|
}
|
265 |
|
|
queuelen += pbuf_clen(seg->p);
|
266 |
|
|
|
267 |
|
|
/* Concatenate the headers and data pbufs together. */
|
268 |
|
|
pbuf_cat(seg->p/*header*/, p/*data*/);
|
269 |
|
|
p = NULL;
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
/* Now that there are more segments queued, we check again if the
|
273 |
|
|
length of the queue exceeds the configured maximum or overflows. */
|
274 |
|
|
if ((queuelen > TCP_SND_QUEUELEN) || (queuelen > TCP_SNDQUEUELEN_OVERFLOW)) {
|
275 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: queue too long %"U16_F" (%"U16_F")\n", queuelen, TCP_SND_QUEUELEN));
|
276 |
|
|
goto memerr;
|
277 |
|
|
}
|
278 |
|
|
|
279 |
|
|
seg->len = seglen;
|
280 |
|
|
|
281 |
|
|
/* build TCP header */
|
282 |
|
|
if (pbuf_header(seg->p, TCP_HLEN)) {
|
283 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: no room for TCP header in pbuf.\n"));
|
284 |
|
|
TCP_STATS_INC(tcp.err);
|
285 |
|
|
goto memerr;
|
286 |
|
|
}
|
287 |
|
|
seg->tcphdr = seg->p->payload;
|
288 |
|
|
seg->tcphdr->src = htons(pcb->local_port);
|
289 |
|
|
seg->tcphdr->dest = htons(pcb->remote_port);
|
290 |
|
|
seg->tcphdr->seqno = htonl(seqno);
|
291 |
|
|
seg->tcphdr->urgp = 0;
|
292 |
|
|
TCPH_FLAGS_SET(seg->tcphdr, flags);
|
293 |
|
|
/* don't fill in tcphdr->ackno and tcphdr->wnd until later */
|
294 |
|
|
|
295 |
|
|
/* Copy the options into the header, if they are present. */
|
296 |
|
|
if (optdata == NULL) {
|
297 |
|
|
TCPH_HDRLEN_SET(seg->tcphdr, 5);
|
298 |
|
|
}
|
299 |
|
|
else {
|
300 |
|
|
TCPH_HDRLEN_SET(seg->tcphdr, (5 + optlen / 4));
|
301 |
|
|
/* Copy options into data portion of segment.
|
302 |
|
|
Options can thus only be sent in non data carrying
|
303 |
|
|
segments such as SYN|ACK. */
|
304 |
|
|
SMEMCPY(seg->dataptr, optdata, optlen);
|
305 |
|
|
}
|
306 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | LWIP_DBG_TRACE, ("tcp_enqueue: queueing %"U32_F":%"U32_F" (0x%"X16_F")\n",
|
307 |
|
|
ntohl(seg->tcphdr->seqno),
|
308 |
|
|
ntohl(seg->tcphdr->seqno) + TCP_TCPLEN(seg),
|
309 |
|
|
(u16_t)flags));
|
310 |
|
|
|
311 |
|
|
left -= seglen;
|
312 |
|
|
seqno += seglen;
|
313 |
|
|
ptr = (void *)((u8_t *)ptr + seglen);
|
314 |
|
|
}
|
315 |
|
|
|
316 |
|
|
/* Now that the data to be enqueued has been broken up into TCP
|
317 |
|
|
segments in the queue variable, we add them to the end of the
|
318 |
|
|
pcb->unsent queue. */
|
319 |
|
|
if (pcb->unsent == NULL) {
|
320 |
|
|
useg = NULL;
|
321 |
|
|
}
|
322 |
|
|
else {
|
323 |
|
|
for (useg = pcb->unsent; useg->next != NULL; useg = useg->next){}
|
324 |
|
|
}
|
325 |
|
|
/* { useg is last segment on the unsent queue, NULL if list is empty } */
|
326 |
|
|
|
327 |
|
|
/* If there is room in the last pbuf on the unsent queue,
|
328 |
|
|
chain the first pbuf on the queue together with that. */
|
329 |
|
|
if (useg != NULL &&
|
330 |
|
|
TCP_TCPLEN(useg) != 0 &&
|
331 |
|
|
!(TCPH_FLAGS(useg->tcphdr) & (TCP_SYN | TCP_FIN)) &&
|
332 |
|
|
!(flags & (TCP_SYN | TCP_FIN)) &&
|
333 |
|
|
/* fit within max seg size */
|
334 |
|
|
useg->len + queue->len <= pcb->mss) {
|
335 |
|
|
/* Remove TCP header from first segment of our to-be-queued list */
|
336 |
|
|
if(pbuf_header(queue->p, -TCP_HLEN)) {
|
337 |
|
|
/* Can we cope with this failing? Just assert for now */
|
338 |
|
|
LWIP_ASSERT("pbuf_header failed\n", 0);
|
339 |
|
|
TCP_STATS_INC(tcp.err);
|
340 |
|
|
goto memerr;
|
341 |
|
|
}
|
342 |
|
|
pbuf_cat(useg->p, queue->p);
|
343 |
|
|
useg->len += queue->len;
|
344 |
|
|
useg->next = queue->next;
|
345 |
|
|
|
346 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_STATE, ("tcp_enqueue: chaining segments, new len %"U16_F"\n", useg->len));
|
347 |
|
|
if (seg == queue) {
|
348 |
|
|
seg = NULL;
|
349 |
|
|
}
|
350 |
|
|
memp_free(MEMP_TCP_SEG, queue);
|
351 |
|
|
}
|
352 |
|
|
else {
|
353 |
|
|
/* empty list */
|
354 |
|
|
if (useg == NULL) {
|
355 |
|
|
/* initialize list with this segment */
|
356 |
|
|
pcb->unsent = queue;
|
357 |
|
|
}
|
358 |
|
|
/* enqueue segment */
|
359 |
|
|
else {
|
360 |
|
|
useg->next = queue;
|
361 |
|
|
}
|
362 |
|
|
}
|
363 |
|
|
if ((flags & TCP_SYN) || (flags & TCP_FIN)) {
|
364 |
|
|
++len;
|
365 |
|
|
}
|
366 |
|
|
if (flags & TCP_FIN) {
|
367 |
|
|
pcb->flags |= TF_FIN;
|
368 |
|
|
}
|
369 |
|
|
pcb->snd_lbb += len;
|
370 |
|
|
|
371 |
|
|
pcb->snd_buf -= len;
|
372 |
|
|
|
373 |
|
|
/* update number of segments on the queues */
|
374 |
|
|
pcb->snd_queuelen = queuelen;
|
375 |
|
|
LWIP_DEBUGF(TCP_QLEN_DEBUG, ("tcp_enqueue: %"S16_F" (after enqueued)\n", pcb->snd_queuelen));
|
376 |
|
|
if (pcb->snd_queuelen != 0) {
|
377 |
|
|
LWIP_ASSERT("tcp_enqueue: valid queue length",
|
378 |
|
|
pcb->unacked != NULL || pcb->unsent != NULL);
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* Set the PSH flag in the last segment that we enqueued, but only
|
382 |
|
|
if the segment has data (indicated by seglen > 0). */
|
383 |
|
|
if (seg != NULL && seglen > 0 && seg->tcphdr != NULL && ((apiflags & TCP_WRITE_FLAG_MORE)==0)) {
|
384 |
|
|
TCPH_SET_FLAG(seg->tcphdr, TCP_PSH);
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
return ERR_OK;
|
388 |
|
|
memerr:
|
389 |
|
|
pcb->flags |= TF_NAGLEMEMERR;
|
390 |
|
|
TCP_STATS_INC(tcp.memerr);
|
391 |
|
|
|
392 |
|
|
if (queue != NULL) {
|
393 |
|
|
tcp_segs_free(queue);
|
394 |
|
|
}
|
395 |
|
|
if (pcb->snd_queuelen != 0) {
|
396 |
|
|
LWIP_ASSERT("tcp_enqueue: valid queue length", pcb->unacked != NULL ||
|
397 |
|
|
pcb->unsent != NULL);
|
398 |
|
|
}
|
399 |
|
|
LWIP_DEBUGF(TCP_QLEN_DEBUG | LWIP_DBG_STATE, ("tcp_enqueue: %"S16_F" (with mem err)\n", pcb->snd_queuelen));
|
400 |
|
|
return ERR_MEM;
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
/**
|
404 |
|
|
* Find out what we can send and send it
|
405 |
|
|
*
|
406 |
|
|
* @param pcb Protocol control block for the TCP connection to send data
|
407 |
|
|
* @return ERR_OK if data has been sent or nothing to send
|
408 |
|
|
* another err_t on error
|
409 |
|
|
*/
|
410 |
|
|
err_t
|
411 |
|
|
tcp_output(struct tcp_pcb *pcb)
|
412 |
|
|
{
|
413 |
|
|
struct pbuf *p;
|
414 |
|
|
struct tcp_hdr *tcphdr;
|
415 |
|
|
struct tcp_seg *seg, *useg;
|
416 |
|
|
u32_t wnd;
|
417 |
|
|
#if TCP_CWND_DEBUG
|
418 |
|
|
s16_t i = 0;
|
419 |
|
|
#endif /* TCP_CWND_DEBUG */
|
420 |
|
|
|
421 |
|
|
/* First, check if we are invoked by the TCP input processing
|
422 |
|
|
code. If so, we do not output anything. Instead, we rely on the
|
423 |
|
|
input processing code to call us when input processing is done
|
424 |
|
|
with. */
|
425 |
|
|
if (tcp_input_pcb == pcb) {
|
426 |
|
|
return ERR_OK;
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
wnd = LWIP_MIN(pcb->snd_wnd, pcb->cwnd);
|
430 |
|
|
|
431 |
|
|
seg = pcb->unsent;
|
432 |
|
|
|
433 |
|
|
/* useg should point to last segment on unacked queue */
|
434 |
|
|
useg = pcb->unacked;
|
435 |
|
|
if (useg != NULL) {
|
436 |
|
|
for (; useg->next != NULL; useg = useg->next){}
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
/* If the TF_ACK_NOW flag is set and no data will be sent (either
|
440 |
|
|
* because the ->unsent queue is empty or because the window does
|
441 |
|
|
* not allow it), construct an empty ACK segment and send it.
|
442 |
|
|
*
|
443 |
|
|
* If data is to be sent, we will just piggyback the ACK (see below).
|
444 |
|
|
*/
|
445 |
|
|
if (pcb->flags & TF_ACK_NOW &&
|
446 |
|
|
(seg == NULL ||
|
447 |
|
|
ntohl(seg->tcphdr->seqno) - pcb->lastack + seg->len > wnd)) {
|
448 |
|
|
p = pbuf_alloc(PBUF_IP, TCP_HLEN, PBUF_RAM);
|
449 |
|
|
if (p == NULL) {
|
450 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_output: (ACK) could not allocate pbuf\n"));
|
451 |
|
|
return ERR_BUF;
|
452 |
|
|
}
|
453 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_output: sending ACK for %"U32_F"\n", pcb->rcv_nxt));
|
454 |
|
|
/* remove ACK flags from the PCB, as we send an empty ACK now */
|
455 |
|
|
pcb->flags &= ~(TF_ACK_DELAY | TF_ACK_NOW);
|
456 |
|
|
|
457 |
|
|
tcphdr = p->payload;
|
458 |
|
|
tcphdr->src = htons(pcb->local_port);
|
459 |
|
|
tcphdr->dest = htons(pcb->remote_port);
|
460 |
|
|
tcphdr->seqno = htonl(pcb->snd_nxt);
|
461 |
|
|
tcphdr->ackno = htonl(pcb->rcv_nxt);
|
462 |
|
|
TCPH_FLAGS_SET(tcphdr, TCP_ACK);
|
463 |
|
|
tcphdr->wnd = htons(pcb->rcv_ann_wnd);
|
464 |
|
|
tcphdr->urgp = 0;
|
465 |
|
|
TCPH_HDRLEN_SET(tcphdr, 5);
|
466 |
|
|
|
467 |
|
|
tcphdr->chksum = 0;
|
468 |
|
|
#if CHECKSUM_GEN_TCP
|
469 |
|
|
tcphdr->chksum = inet_chksum_pseudo(p, &(pcb->local_ip), &(pcb->remote_ip),
|
470 |
|
|
IP_PROTO_TCP, p->tot_len);
|
471 |
|
|
#endif
|
472 |
|
|
#if LWIP_NETIF_HWADDRHINT
|
473 |
|
|
{
|
474 |
|
|
struct netif *netif;
|
475 |
|
|
netif = ip_route(&pcb->remote_ip);
|
476 |
|
|
if(netif != NULL){
|
477 |
|
|
netif->addr_hint = &(pcb->addr_hint);
|
478 |
|
|
ip_output_if(p, &(pcb->local_ip), &(pcb->remote_ip), pcb->ttl,
|
479 |
|
|
pcb->tos, IP_PROTO_TCP, netif);
|
480 |
|
|
netif->addr_hint = NULL;
|
481 |
|
|
}
|
482 |
|
|
}
|
483 |
|
|
#else /* LWIP_NETIF_HWADDRHINT*/
|
484 |
|
|
ip_output(p, &(pcb->local_ip), &(pcb->remote_ip), pcb->ttl, pcb->tos,
|
485 |
|
|
IP_PROTO_TCP);
|
486 |
|
|
#endif /* LWIP_NETIF_HWADDRHINT*/
|
487 |
|
|
pbuf_free(p);
|
488 |
|
|
|
489 |
|
|
return ERR_OK;
|
490 |
|
|
}
|
491 |
|
|
|
492 |
|
|
#if TCP_OUTPUT_DEBUG
|
493 |
|
|
if (seg == NULL) {
|
494 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_output: nothing to send (%p)\n",
|
495 |
|
|
(void*)pcb->unsent));
|
496 |
|
|
}
|
497 |
|
|
#endif /* TCP_OUTPUT_DEBUG */
|
498 |
|
|
#if TCP_CWND_DEBUG
|
499 |
|
|
if (seg == NULL) {
|
500 |
|
|
LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_output: snd_wnd %"U16_F
|
501 |
|
|
", cwnd %"U16_F", wnd %"U32_F
|
502 |
|
|
", seg == NULL, ack %"U32_F"\n",
|
503 |
|
|
pcb->snd_wnd, pcb->cwnd, wnd, pcb->lastack));
|
504 |
|
|
} else {
|
505 |
|
|
LWIP_DEBUGF(TCP_CWND_DEBUG,
|
506 |
|
|
("tcp_output: snd_wnd %"U16_F", cwnd %"U16_F", wnd %"U32_F
|
507 |
|
|
", effwnd %"U32_F", seq %"U32_F", ack %"U32_F"\n",
|
508 |
|
|
pcb->snd_wnd, pcb->cwnd, wnd,
|
509 |
|
|
ntohl(seg->tcphdr->seqno) - pcb->lastack + seg->len,
|
510 |
|
|
ntohl(seg->tcphdr->seqno), pcb->lastack));
|
511 |
|
|
}
|
512 |
|
|
#endif /* TCP_CWND_DEBUG */
|
513 |
|
|
/* data available and window allows it to be sent? */
|
514 |
|
|
while (seg != NULL &&
|
515 |
|
|
ntohl(seg->tcphdr->seqno) - pcb->lastack + seg->len <= wnd) {
|
516 |
|
|
LWIP_ASSERT("RST not expected here!",
|
517 |
|
|
(TCPH_FLAGS(seg->tcphdr) & TCP_RST) == 0);
|
518 |
|
|
/* Stop sending if the nagle algorithm would prevent it
|
519 |
|
|
* Don't stop:
|
520 |
|
|
* - if tcp_enqueue had a memory error before (prevent delayed ACK timeout) or
|
521 |
|
|
* - if FIN was already enqueued for this PCB (SYN is always alone in a segment -
|
522 |
|
|
* either seg->next != NULL or pcb->unacked == NULL;
|
523 |
|
|
* RST is no sent using tcp_enqueue/tcp_output.
|
524 |
|
|
*/
|
525 |
|
|
if((tcp_do_output_nagle(pcb) == 0) &&
|
526 |
|
|
((pcb->flags & (TF_NAGLEMEMERR | TF_FIN)) == 0)){
|
527 |
|
|
break;
|
528 |
|
|
}
|
529 |
|
|
#if TCP_CWND_DEBUG
|
530 |
|
|
LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_output: snd_wnd %"U16_F", cwnd %"U16_F", wnd %"U32_F", effwnd %"U32_F", seq %"U32_F", ack %"U32_F", i %"S16_F"\n",
|
531 |
|
|
pcb->snd_wnd, pcb->cwnd, wnd,
|
532 |
|
|
ntohl(seg->tcphdr->seqno) + seg->len -
|
533 |
|
|
pcb->lastack,
|
534 |
|
|
ntohl(seg->tcphdr->seqno), pcb->lastack, i));
|
535 |
|
|
++i;
|
536 |
|
|
#endif /* TCP_CWND_DEBUG */
|
537 |
|
|
|
538 |
|
|
pcb->unsent = seg->next;
|
539 |
|
|
|
540 |
|
|
if (pcb->state != SYN_SENT) {
|
541 |
|
|
TCPH_SET_FLAG(seg->tcphdr, TCP_ACK);
|
542 |
|
|
pcb->flags &= ~(TF_ACK_DELAY | TF_ACK_NOW);
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
tcp_output_segment(seg, pcb);
|
546 |
|
|
pcb->snd_nxt = ntohl(seg->tcphdr->seqno) + TCP_TCPLEN(seg);
|
547 |
|
|
if (TCP_SEQ_LT(pcb->snd_max, pcb->snd_nxt)) {
|
548 |
|
|
pcb->snd_max = pcb->snd_nxt;
|
549 |
|
|
}
|
550 |
|
|
/* put segment on unacknowledged list if length > 0 */
|
551 |
|
|
if (TCP_TCPLEN(seg) > 0) {
|
552 |
|
|
seg->next = NULL;
|
553 |
|
|
/* unacked list is empty? */
|
554 |
|
|
if (pcb->unacked == NULL) {
|
555 |
|
|
pcb->unacked = seg;
|
556 |
|
|
useg = seg;
|
557 |
|
|
/* unacked list is not empty? */
|
558 |
|
|
} else {
|
559 |
|
|
/* In the case of fast retransmit, the packet should not go to the tail
|
560 |
|
|
* of the unacked queue, but rather at the head. We need to check for
|
561 |
|
|
* this case. -STJ Jul 27, 2004 */
|
562 |
|
|
if (TCP_SEQ_LT(ntohl(seg->tcphdr->seqno), ntohl(useg->tcphdr->seqno))){
|
563 |
|
|
/* add segment to head of unacked list */
|
564 |
|
|
seg->next = pcb->unacked;
|
565 |
|
|
pcb->unacked = seg;
|
566 |
|
|
} else {
|
567 |
|
|
/* add segment to tail of unacked list */
|
568 |
|
|
useg->next = seg;
|
569 |
|
|
useg = useg->next;
|
570 |
|
|
}
|
571 |
|
|
}
|
572 |
|
|
/* do not queue empty segments on the unacked list */
|
573 |
|
|
} else {
|
574 |
|
|
tcp_seg_free(seg);
|
575 |
|
|
}
|
576 |
|
|
seg = pcb->unsent;
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
if (seg != NULL && pcb->persist_backoff == 0 &&
|
580 |
|
|
ntohl(seg->tcphdr->seqno) - pcb->lastack + seg->len > pcb->snd_wnd) {
|
581 |
|
|
/* prepare for persist timer */
|
582 |
|
|
pcb->persist_cnt = 0;
|
583 |
|
|
pcb->persist_backoff = 1;
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
pcb->flags &= ~TF_NAGLEMEMERR;
|
587 |
|
|
return ERR_OK;
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
/**
|
591 |
|
|
* Called by tcp_output() to actually send a TCP segment over IP.
|
592 |
|
|
*
|
593 |
|
|
* @param seg the tcp_seg to send
|
594 |
|
|
* @param pcb the tcp_pcb for the TCP connection used to send the segment
|
595 |
|
|
*/
|
596 |
|
|
static void
|
597 |
|
|
tcp_output_segment(struct tcp_seg *seg, struct tcp_pcb *pcb)
|
598 |
|
|
{
|
599 |
|
|
u16_t len;
|
600 |
|
|
struct netif *netif;
|
601 |
|
|
|
602 |
|
|
/** @bug Exclude retransmitted segments from this count. */
|
603 |
|
|
snmp_inc_tcpoutsegs();
|
604 |
|
|
|
605 |
|
|
/* The TCP header has already been constructed, but the ackno and
|
606 |
|
|
wnd fields remain. */
|
607 |
|
|
seg->tcphdr->ackno = htonl(pcb->rcv_nxt);
|
608 |
|
|
|
609 |
|
|
/* advertise our receive window size in this TCP segment */
|
610 |
|
|
seg->tcphdr->wnd = htons(pcb->rcv_ann_wnd);
|
611 |
|
|
|
612 |
|
|
/* If we don't have a local IP address, we get one by
|
613 |
|
|
calling ip_route(). */
|
614 |
|
|
if (ip_addr_isany(&(pcb->local_ip))) {
|
615 |
|
|
netif = ip_route(&(pcb->remote_ip));
|
616 |
|
|
if (netif == NULL) {
|
617 |
|
|
return;
|
618 |
|
|
}
|
619 |
|
|
ip_addr_set(&(pcb->local_ip), &(netif->ip_addr));
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
/* Set retransmission timer running if it is not currently enabled */
|
623 |
|
|
if(pcb->rtime == -1)
|
624 |
|
|
pcb->rtime = 0;
|
625 |
|
|
|
626 |
|
|
if (pcb->rttest == 0) {
|
627 |
|
|
pcb->rttest = tcp_ticks;
|
628 |
|
|
pcb->rtseq = ntohl(seg->tcphdr->seqno);
|
629 |
|
|
|
630 |
|
|
LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_output_segment: rtseq %"U32_F"\n", pcb->rtseq));
|
631 |
|
|
}
|
632 |
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_output_segment: %"U32_F":%"U32_F"\n",
|
633 |
|
|
htonl(seg->tcphdr->seqno), htonl(seg->tcphdr->seqno) +
|
634 |
|
|
seg->len));
|
635 |
|
|
|
636 |
|
|
len = (u16_t)((u8_t *)seg->tcphdr - (u8_t *)seg->p->payload);
|
637 |
|
|
|
638 |
|
|
seg->p->len -= len;
|
639 |
|
|
seg->p->tot_len -= len;
|
640 |
|
|
|
641 |
|
|
seg->p->payload = seg->tcphdr;
|
642 |
|
|
|
643 |
|
|
seg->tcphdr->chksum = 0;
|
644 |
|
|
#if CHECKSUM_GEN_TCP
|
645 |
|
|
seg->tcphdr->chksum = inet_chksum_pseudo(seg->p,
|
646 |
|
|
&(pcb->local_ip),
|
647 |
|
|
&(pcb->remote_ip),
|
648 |
|
|
IP_PROTO_TCP, seg->p->tot_len);
|
649 |
|
|
#endif
|
650 |
|
|
TCP_STATS_INC(tcp.xmit);
|
651 |
|
|
|
652 |
|
|
#if LWIP_NETIF_HWADDRHINT
|
653 |
|
|
{
|
654 |
|
|
struct netif *netif;
|
655 |
|
|
netif = ip_route(&pcb->remote_ip);
|
656 |
|
|
if(netif != NULL){
|
657 |
|
|
netif->addr_hint = &(pcb->addr_hint);
|
658 |
|
|
ip_output_if(seg->p, &(pcb->local_ip), &(pcb->remote_ip), pcb->ttl,
|
659 |
|
|
pcb->tos, IP_PROTO_TCP, netif);
|
660 |
|
|
netif->addr_hint = NULL;
|
661 |
|
|
}
|
662 |
|
|
}
|
663 |
|
|
#else /* LWIP_NETIF_HWADDRHINT*/
|
664 |
|
|
ip_output(seg->p, &(pcb->local_ip), &(pcb->remote_ip), pcb->ttl, pcb->tos,
|
665 |
|
|
IP_PROTO_TCP);
|
666 |
|
|
#endif /* LWIP_NETIF_HWADDRHINT*/
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
/**
|
670 |
|
|
* Send a TCP RESET packet (empty segment with RST flag set) either to
|
671 |
|
|
* abort a connection or to show that there is no matching local connection
|
672 |
|
|
* for a received segment.
|
673 |
|
|
*
|
674 |
|
|
* Called by tcp_abort() (to abort a local connection), tcp_input() (if no
|
675 |
|
|
* matching local pcb was found), tcp_listen_input() (if incoming segment
|
676 |
|
|
* has ACK flag set) and tcp_process() (received segment in the wrong state)
|
677 |
|
|
*
|
678 |
|
|
* Since a RST segment is in most cases not sent for an active connection,
|
679 |
|
|
* tcp_rst() has a number of arguments that are taken from a tcp_pcb for
|
680 |
|
|
* most other segment output functions.
|
681 |
|
|
*
|
682 |
|
|
* @param seqno the sequence number to use for the outgoing segment
|
683 |
|
|
* @param ackno the acknowledge number to use for the outgoing segment
|
684 |
|
|
* @param local_ip the local IP address to send the segment from
|
685 |
|
|
* @param remote_ip the remote IP address to send the segment to
|
686 |
|
|
* @param local_port the local TCP port to send the segment from
|
687 |
|
|
* @param remote_port the remote TCP port to send the segment to
|
688 |
|
|
*/
|
689 |
|
|
void
|
690 |
|
|
tcp_rst(u32_t seqno, u32_t ackno,
|
691 |
|
|
struct ip_addr *local_ip, struct ip_addr *remote_ip,
|
692 |
|
|
u16_t local_port, u16_t remote_port)
|
693 |
|
|
{
|
694 |
|
|
struct pbuf *p;
|
695 |
|
|
struct tcp_hdr *tcphdr;
|
696 |
|
|
p = pbuf_alloc(PBUF_IP, TCP_HLEN, PBUF_RAM);
|
697 |
|
|
if (p == NULL) {
|
698 |
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_rst: could not allocate memory for pbuf\n"));
|
699 |
|
|
return;
|
700 |
|
|
}
|
701 |
|
|
LWIP_ASSERT("check that first pbuf can hold struct tcp_hdr",
|
702 |
|
|
(p->len >= sizeof(struct tcp_hdr)));
|
703 |
|
|
|
704 |
|
|
tcphdr = p->payload;
|
705 |
|
|
tcphdr->src = htons(local_port);
|
706 |
|
|
tcphdr->dest = htons(remote_port);
|
707 |
|
|
tcphdr->seqno = htonl(seqno);
|
708 |
|
|
tcphdr->ackno = htonl(ackno);
|
709 |
|
|
TCPH_FLAGS_SET(tcphdr, TCP_RST | TCP_ACK);
|
710 |
|
|
tcphdr->wnd = htons(TCP_WND);
|
711 |
|
|
tcphdr->urgp = 0;
|
712 |
|
|
TCPH_HDRLEN_SET(tcphdr, 5);
|
713 |
|
|
|
714 |
|
|
tcphdr->chksum = 0;
|
715 |
|
|
#if CHECKSUM_GEN_TCP
|
716 |
|
|
tcphdr->chksum = inet_chksum_pseudo(p, local_ip, remote_ip,
|
717 |
|
|
IP_PROTO_TCP, p->tot_len);
|
718 |
|
|
#endif
|
719 |
|
|
TCP_STATS_INC(tcp.xmit);
|
720 |
|
|
snmp_inc_tcpoutrsts();
|
721 |
|
|
/* Send output with hardcoded TTL since we have no access to the pcb */
|
722 |
|
|
ip_output(p, local_ip, remote_ip, TCP_TTL, 0, IP_PROTO_TCP);
|
723 |
|
|
pbuf_free(p);
|
724 |
|
|
LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_rst: seqno %"U32_F" ackno %"U32_F".\n", seqno, ackno));
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
/**
|
728 |
|
|
* Requeue all unacked segments for retransmission
|
729 |
|
|
*
|
730 |
|
|
* Called by tcp_slowtmr() for slow retransmission.
|
731 |
|
|
*
|
732 |
|
|
* @param pcb the tcp_pcb for which to re-enqueue all unacked segments
|
733 |
|
|
*/
|
734 |
|
|
void
|
735 |
|
|
tcp_rexmit_rto(struct tcp_pcb *pcb)
|
736 |
|
|
{
|
737 |
|
|
struct tcp_seg *seg;
|
738 |
|
|
|
739 |
|
|
if (pcb->unacked == NULL) {
|
740 |
|
|
return;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
/* Move all unacked segments to the head of the unsent queue */
|
744 |
|
|
for (seg = pcb->unacked; seg->next != NULL; seg = seg->next){}
|
745 |
|
|
/* concatenate unsent queue after unacked queue */
|
746 |
|
|
seg->next = pcb->unsent;
|
747 |
|
|
/* unsent queue is the concatenated queue (of unacked, unsent) */
|
748 |
|
|
pcb->unsent = pcb->unacked;
|
749 |
|
|
/* unacked queue is now empty */
|
750 |
|
|
pcb->unacked = NULL;
|
751 |
|
|
|
752 |
|
|
pcb->snd_nxt = ntohl(pcb->unsent->tcphdr->seqno);
|
753 |
|
|
/* increment number of retransmissions */
|
754 |
|
|
++pcb->nrtx;
|
755 |
|
|
|
756 |
|
|
/* Don't take any RTT measurements after retransmitting. */
|
757 |
|
|
pcb->rttest = 0;
|
758 |
|
|
|
759 |
|
|
/* Do the actual retransmission */
|
760 |
|
|
tcp_output(pcb);
|
761 |
|
|
}
|
762 |
|
|
|
763 |
|
|
/**
|
764 |
|
|
* Requeue the first unacked segment for retransmission
|
765 |
|
|
*
|
766 |
|
|
* Called by tcp_receive() for fast retramsmit.
|
767 |
|
|
*
|
768 |
|
|
* @param pcb the tcp_pcb for which to retransmit the first unacked segment
|
769 |
|
|
*/
|
770 |
|
|
void
|
771 |
|
|
tcp_rexmit(struct tcp_pcb *pcb)
|
772 |
|
|
{
|
773 |
|
|
struct tcp_seg *seg;
|
774 |
|
|
|
775 |
|
|
if (pcb->unacked == NULL) {
|
776 |
|
|
return;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
/* Move the first unacked segment to the unsent queue */
|
780 |
|
|
seg = pcb->unacked->next;
|
781 |
|
|
pcb->unacked->next = pcb->unsent;
|
782 |
|
|
pcb->unsent = pcb->unacked;
|
783 |
|
|
pcb->unacked = seg;
|
784 |
|
|
|
785 |
|
|
pcb->snd_nxt = ntohl(pcb->unsent->tcphdr->seqno);
|
786 |
|
|
|
787 |
|
|
++pcb->nrtx;
|
788 |
|
|
|
789 |
|
|
/* Don't take any rtt measurements after retransmitting. */
|
790 |
|
|
pcb->rttest = 0;
|
791 |
|
|
|
792 |
|
|
/* Do the actual retransmission. */
|
793 |
|
|
snmp_inc_tcpretranssegs();
|
794 |
|
|
tcp_output(pcb);
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
/**
|
798 |
|
|
* Send keepalive packets to keep a connection active although
|
799 |
|
|
* no data is sent over it.
|
800 |
|
|
*
|
801 |
|
|
* Called by tcp_slowtmr()
|
802 |
|
|
*
|
803 |
|
|
* @param pcb the tcp_pcb for which to send a keepalive packet
|
804 |
|
|
*/
|
805 |
|
|
void
|
806 |
|
|
tcp_keepalive(struct tcp_pcb *pcb)
|
807 |
|
|
{
|
808 |
|
|
struct pbuf *p;
|
809 |
|
|
struct tcp_hdr *tcphdr;
|
810 |
|
|
|
811 |
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_keepalive: sending KEEPALIVE probe to %"U16_F".%"U16_F".%"U16_F".%"U16_F"\n",
|
812 |
|
|
ip4_addr1(&pcb->remote_ip), ip4_addr2(&pcb->remote_ip),
|
813 |
|
|
ip4_addr3(&pcb->remote_ip), ip4_addr4(&pcb->remote_ip)));
|
814 |
|
|
|
815 |
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_keepalive: tcp_ticks %"U32_F" pcb->tmr %"U32_F" pcb->keep_cnt_sent %"U16_F"\n",
|
816 |
|
|
tcp_ticks, pcb->tmr, pcb->keep_cnt_sent));
|
817 |
|
|
|
818 |
|
|
p = pbuf_alloc(PBUF_IP, TCP_HLEN, PBUF_RAM);
|
819 |
|
|
|
820 |
|
|
if(p == NULL) {
|
821 |
|
|
LWIP_DEBUGF(TCP_DEBUG,
|
822 |
|
|
("tcp_keepalive: could not allocate memory for pbuf\n"));
|
823 |
|
|
return;
|
824 |
|
|
}
|
825 |
|
|
LWIP_ASSERT("check that first pbuf can hold struct tcp_hdr",
|
826 |
|
|
(p->len >= sizeof(struct tcp_hdr)));
|
827 |
|
|
|
828 |
|
|
tcphdr = p->payload;
|
829 |
|
|
tcphdr->src = htons(pcb->local_port);
|
830 |
|
|
tcphdr->dest = htons(pcb->remote_port);
|
831 |
|
|
tcphdr->seqno = htonl(pcb->snd_nxt - 1);
|
832 |
|
|
tcphdr->ackno = htonl(pcb->rcv_nxt);
|
833 |
|
|
TCPH_FLAGS_SET(tcphdr, 0);
|
834 |
|
|
tcphdr->wnd = htons(pcb->rcv_ann_wnd);
|
835 |
|
|
tcphdr->urgp = 0;
|
836 |
|
|
TCPH_HDRLEN_SET(tcphdr, 5);
|
837 |
|
|
|
838 |
|
|
tcphdr->chksum = 0;
|
839 |
|
|
#if CHECKSUM_GEN_TCP
|
840 |
|
|
tcphdr->chksum = inet_chksum_pseudo(p, &pcb->local_ip, &pcb->remote_ip,
|
841 |
|
|
IP_PROTO_TCP, p->tot_len);
|
842 |
|
|
#endif
|
843 |
|
|
TCP_STATS_INC(tcp.xmit);
|
844 |
|
|
|
845 |
|
|
/* Send output to IP */
|
846 |
|
|
#if LWIP_NETIF_HWADDRHINT
|
847 |
|
|
{
|
848 |
|
|
struct netif *netif;
|
849 |
|
|
netif = ip_route(&pcb->remote_ip);
|
850 |
|
|
if(netif != NULL){
|
851 |
|
|
netif->addr_hint = &(pcb->addr_hint);
|
852 |
|
|
ip_output_if(p, &(pcb->local_ip), &(pcb->remote_ip), pcb->ttl,
|
853 |
|
|
0, IP_PROTO_TCP, netif);
|
854 |
|
|
netif->addr_hint = NULL;
|
855 |
|
|
}
|
856 |
|
|
}
|
857 |
|
|
#else /* LWIP_NETIF_HWADDRHINT*/
|
858 |
|
|
ip_output(p, &pcb->local_ip, &pcb->remote_ip, pcb->ttl, 0, IP_PROTO_TCP);
|
859 |
|
|
#endif /* LWIP_NETIF_HWADDRHINT*/
|
860 |
|
|
|
861 |
|
|
pbuf_free(p);
|
862 |
|
|
|
863 |
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_keepalive: seqno %"U32_F" ackno %"U32_F".\n",
|
864 |
|
|
pcb->snd_nxt - 1, pcb->rcv_nxt));
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
|
868 |
|
|
/**
|
869 |
|
|
* Send persist timer zero-window probes to keep a connection active
|
870 |
|
|
* when a window update is lost.
|
871 |
|
|
*
|
872 |
|
|
* Called by tcp_slowtmr()
|
873 |
|
|
*
|
874 |
|
|
* @param pcb the tcp_pcb for which to send a zero-window probe packet
|
875 |
|
|
*/
|
876 |
|
|
void
|
877 |
|
|
tcp_zero_window_probe(struct tcp_pcb *pcb)
|
878 |
|
|
{
|
879 |
|
|
struct pbuf *p;
|
880 |
|
|
struct tcp_hdr *tcphdr;
|
881 |
|
|
struct tcp_seg *seg;
|
882 |
|
|
|
883 |
|
|
LWIP_DEBUGF(TCP_DEBUG,
|
884 |
|
|
("tcp_zero_window_probe: sending ZERO WINDOW probe to %"
|
885 |
|
|
U16_F".%"U16_F".%"U16_F".%"U16_F"\n",
|
886 |
|
|
ip4_addr1(&pcb->remote_ip), ip4_addr2(&pcb->remote_ip),
|
887 |
|
|
ip4_addr3(&pcb->remote_ip), ip4_addr4(&pcb->remote_ip)));
|
888 |
|
|
|
889 |
|
|
LWIP_DEBUGF(TCP_DEBUG,
|
890 |
|
|
("tcp_zero_window_probe: tcp_ticks %"U32_F
|
891 |
|
|
" pcb->tmr %"U32_F" pcb->keep_cnt_sent %"U16_F"\n",
|
892 |
|
|
tcp_ticks, pcb->tmr, pcb->keep_cnt_sent));
|
893 |
|
|
|
894 |
|
|
seg = pcb->unacked;
|
895 |
|
|
|
896 |
|
|
if(seg == NULL)
|
897 |
|
|
seg = pcb->unsent;
|
898 |
|
|
|
899 |
|
|
if(seg == NULL)
|
900 |
|
|
return;
|
901 |
|
|
|
902 |
|
|
p = pbuf_alloc(PBUF_IP, TCP_HLEN + 1, PBUF_RAM);
|
903 |
|
|
|
904 |
|
|
if(p == NULL) {
|
905 |
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_zero_window_probe: no memory for pbuf\n"));
|
906 |
|
|
return;
|
907 |
|
|
}
|
908 |
|
|
LWIP_ASSERT("check that first pbuf can hold struct tcp_hdr",
|
909 |
|
|
(p->len >= sizeof(struct tcp_hdr)));
|
910 |
|
|
|
911 |
|
|
tcphdr = p->payload;
|
912 |
|
|
tcphdr->src = htons(pcb->local_port);
|
913 |
|
|
tcphdr->dest = htons(pcb->remote_port);
|
914 |
|
|
tcphdr->seqno = seg->tcphdr->seqno;
|
915 |
|
|
tcphdr->ackno = htonl(pcb->rcv_nxt);
|
916 |
|
|
TCPH_FLAGS_SET(tcphdr, 0);
|
917 |
|
|
tcphdr->wnd = htons(pcb->rcv_ann_wnd);
|
918 |
|
|
tcphdr->urgp = 0;
|
919 |
|
|
TCPH_HDRLEN_SET(tcphdr, 5);
|
920 |
|
|
|
921 |
|
|
/* Copy in one byte from the head of the unacked queue */
|
922 |
|
|
*((char *)p->payload + sizeof(struct tcp_hdr)) = *(char *)seg->dataptr;
|
923 |
|
|
|
924 |
|
|
tcphdr->chksum = 0;
|
925 |
|
|
#if CHECKSUM_GEN_TCP
|
926 |
|
|
tcphdr->chksum = inet_chksum_pseudo(p, &pcb->local_ip, &pcb->remote_ip,
|
927 |
|
|
IP_PROTO_TCP, p->tot_len);
|
928 |
|
|
#endif
|
929 |
|
|
TCP_STATS_INC(tcp.xmit);
|
930 |
|
|
|
931 |
|
|
/* Send output to IP */
|
932 |
|
|
#if LWIP_NETIF_HWADDRHINT
|
933 |
|
|
{
|
934 |
|
|
struct netif *netif;
|
935 |
|
|
netif = ip_route(&pcb->remote_ip);
|
936 |
|
|
if(netif != NULL){
|
937 |
|
|
netif->addr_hint = &(pcb->addr_hint);
|
938 |
|
|
ip_output_if(p, &(pcb->local_ip), &(pcb->remote_ip), pcb->ttl,
|
939 |
|
|
0, IP_PROTO_TCP, netif);
|
940 |
|
|
netif->addr_hint = NULL;
|
941 |
|
|
}
|
942 |
|
|
}
|
943 |
|
|
#else /* LWIP_NETIF_HWADDRHINT*/
|
944 |
|
|
ip_output(p, &pcb->local_ip, &pcb->remote_ip, pcb->ttl, 0, IP_PROTO_TCP);
|
945 |
|
|
#endif /* LWIP_NETIF_HWADDRHINT*/
|
946 |
|
|
|
947 |
|
|
pbuf_free(p);
|
948 |
|
|
|
949 |
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_zero_window_probe: seqno %"U32_F
|
950 |
|
|
" ackno %"U32_F".\n",
|
951 |
|
|
pcb->snd_nxt - 1, pcb->rcv_nxt));
|
952 |
|
|
}
|
953 |
|
|
#endif /* LWIP_TCP */
|