OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [freertos-6.1.1/] [Demo/] [Common/] [ethernet/] [lwIP_132/] [src/] [core/] [ipv4/] [ip_frag.c] - Blame information for rev 606

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 606 jeremybenn
/**
2
 * @file
3
 * This is the IPv4 packet segmentation and reassembly implementation.
4
 *
5
 */
6
 
7
/*
8
 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9
 * All rights reserved.
10
 *
11
 * Redistribution and use in source and binary forms, with or without modification,
12
 * are permitted provided that the following conditions are met:
13
 *
14
 * 1. Redistributions of source code must retain the above copyright notice,
15
 *    this list of conditions and the following disclaimer.
16
 * 2. Redistributions in binary form must reproduce the above copyright notice,
17
 *    this list of conditions and the following disclaimer in the documentation
18
 *    and/or other materials provided with the distribution.
19
 * 3. The name of the author may not be used to endorse or promote products
20
 *    derived from this software without specific prior written permission.
21
 *
22
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25
 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31
 * OF SUCH DAMAGE.
32
 *
33
 * This file is part of the lwIP TCP/IP stack.
34
 *
35
 * Author: Jani Monoses <jani@iv.ro>
36
 *         Simon Goldschmidt
37
 * original reassembly code by Adam Dunkels <adam@sics.se>
38
 *
39
 */
40
 
41
#include "lwip/opt.h"
42
#include "lwip/ip_frag.h"
43
#include "lwip/ip.h"
44
#include "lwip/inet.h"
45
#include "lwip/inet_chksum.h"
46
#include "lwip/netif.h"
47
#include "lwip/snmp.h"
48
#include "lwip/stats.h"
49
#include "lwip/icmp.h"
50
 
51
#include <string.h>
52
 
53
#if IP_REASSEMBLY
54
/**
55
 * The IP reassembly code currently has the following limitations:
56
 * - IP header options are not supported
57
 * - fragments must not overlap (e.g. due to different routes),
58
 *   currently, overlapping or duplicate fragments are thrown away
59
 *   if IP_REASS_CHECK_OVERLAP=1 (the default)!
60
 *
61
 * @todo: work with IP header options
62
 */
63
 
64
/** Setting this to 0, you can turn off checking the fragments for overlapping
65
 * regions. The code gets a little smaller. Only use this if you know that
66
 * overlapping won't occur on your network! */
67
#ifndef IP_REASS_CHECK_OVERLAP
68
#define IP_REASS_CHECK_OVERLAP 1
69
#endif /* IP_REASS_CHECK_OVERLAP */
70
 
71
/** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
72
 * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
73
 * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
74
 * is set to 1, so one datagram can be reassembled at a time, only. */
75
#ifndef IP_REASS_FREE_OLDEST
76
#define IP_REASS_FREE_OLDEST 1
77
#endif /* IP_REASS_FREE_OLDEST */
78
 
79
#define IP_REASS_FLAG_LASTFRAG 0x01
80
 
81
/** This is a helper struct which holds the starting
82
 * offset and the ending offset of this fragment to
83
 * easily chain the fragments.
84
 * It has to be packed since it has to fit inside the IP header.
85
 */
86
#ifdef PACK_STRUCT_USE_INCLUDES
87
#  include "arch/bpstruct.h"
88
#endif
89
PACK_STRUCT_BEGIN
90
struct ip_reass_helper {
91
  PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
92
  PACK_STRUCT_FIELD(u16_t start);
93
  PACK_STRUCT_FIELD(u16_t end);
94
} PACK_STRUCT_STRUCT;
95
PACK_STRUCT_END
96
#ifdef PACK_STRUCT_USE_INCLUDES
97
#  include "arch/epstruct.h"
98
#endif
99
 
100
#define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB)  \
101
  (ip_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
102
   ip_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
103
   IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
104
 
105
/* global variables */
106
static struct ip_reassdata *reassdatagrams;
107
static u16_t ip_reass_pbufcount;
108
 
109
/* function prototypes */
110
static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
111
static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
112
 
113
/**
114
 * Reassembly timer base function
115
 * for both NO_SYS == 0 and 1 (!).
116
 *
117
 * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
118
 */
119
void
120
ip_reass_tmr(void)
121
{
122
  struct ip_reassdata *r, *prev = NULL;
123
 
124
  r = reassdatagrams;
125
  while (r != NULL) {
126
    /* Decrement the timer. Once it reaches 0,
127
     * clean up the incomplete fragment assembly */
128
    if (r->timer > 0) {
129
      r->timer--;
130
      LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)r->timer));
131
      prev = r;
132
      r = r->next;
133
    } else {
134
      /* reassembly timed out */
135
      struct ip_reassdata *tmp;
136
      LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
137
      tmp = r;
138
      /* get the next pointer before freeing */
139
      r = r->next;
140
      /* free the helper struct and all enqueued pbufs */
141
      ip_reass_free_complete_datagram(tmp, prev);
142
     }
143
   }
144
}
145
 
146
/**
147
 * Free a datagram (struct ip_reassdata) and all its pbufs.
148
 * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
149
 * SNMP counters and sends an ICMP time exceeded packet.
150
 *
151
 * @param ipr datagram to free
152
 * @param prev the previous datagram in the linked list
153
 * @return the number of pbufs freed
154
 */
155
static int
156
ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
157
{
158
  int pbufs_freed = 0;
159
  struct pbuf *p;
160
  struct ip_reass_helper *iprh;
161
 
162
  LWIP_ASSERT("prev != ipr", prev != ipr);
163
  if (prev != NULL) {
164
    LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
165
  }
166
 
167
  snmp_inc_ipreasmfails();
168
#if LWIP_ICMP
169
  iprh = (struct ip_reass_helper *)ipr->p->payload;
170
  if (iprh->start == 0) {
171
    /* The first fragment was received, send ICMP time exceeded. */
172
    /* First, de-queue the first pbuf from r->p. */
173
    p = ipr->p;
174
    ipr->p = iprh->next_pbuf;
175
    /* Then, copy the original header into it. */
176
    SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
177
    icmp_time_exceeded(p, ICMP_TE_FRAG);
178
    pbufs_freed += pbuf_clen(p);
179
    pbuf_free(p);
180
  }
181
#endif /* LWIP_ICMP */
182
 
183
  /* First, free all received pbufs.  The individual pbufs need to be released
184
     separately as they have not yet been chained */
185
  p = ipr->p;
186
  while (p != NULL) {
187
    struct pbuf *pcur;
188
    iprh = (struct ip_reass_helper *)p->payload;
189
    pcur = p;
190
    /* get the next pointer before freeing */
191
    p = iprh->next_pbuf;
192
    pbufs_freed += pbuf_clen(pcur);
193
    pbuf_free(pcur);
194
  }
195
  /* Then, unchain the struct ip_reassdata from the list and free it. */
196
  ip_reass_dequeue_datagram(ipr, prev);
197
  LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= pbufs_freed);
198
  ip_reass_pbufcount -= pbufs_freed;
199
 
200
  return pbufs_freed;
201
}
202
 
203
#if IP_REASS_FREE_OLDEST
204
/**
205
 * Free the oldest datagram to make room for enqueueing new fragments.
206
 * The datagram 'fraghdr' belongs to is not freed!
207
 *
208
 * @param fraghdr IP header of the current fragment
209
 * @param pbufs_needed number of pbufs needed to enqueue
210
 *        (used for freeing other datagrams if not enough space)
211
 * @return the number of pbufs freed
212
 */
213
static int
214
ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
215
{
216
  /* @todo Can't we simply remove the last datagram in the
217
   *       linked list behind reassdatagrams?
218
   */
219
  struct ip_reassdata *r, *oldest, *prev;
220
  int pbufs_freed = 0, pbufs_freed_current;
221
  int other_datagrams;
222
 
223
  /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
224
   * but don't free the datagram that 'fraghdr' belongs to! */
225
  do {
226
    oldest = NULL;
227
    prev = NULL;
228
    other_datagrams = 0;
229
    r = reassdatagrams;
230
    while (r != NULL) {
231
      if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
232
        /* Not the same datagram as fraghdr */
233
        other_datagrams++;
234
        if (oldest == NULL) {
235
          oldest = r;
236
        } else if (r->timer <= oldest->timer) {
237
          /* older than the previous oldest */
238
          oldest = r;
239
        }
240
      }
241
      if (r->next != NULL) {
242
        prev = r;
243
      }
244
      r = r->next;
245
    }
246
    if (oldest != NULL) {
247
      pbufs_freed_current = ip_reass_free_complete_datagram(oldest, prev);
248
      pbufs_freed += pbufs_freed_current;
249
    }
250
  } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
251
  return pbufs_freed;
252
}
253
#endif /* IP_REASS_FREE_OLDEST */
254
 
255
/**
256
 * Enqueues a new fragment into the fragment queue
257
 * @param fraghdr points to the new fragments IP hdr
258
 * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
259
 * @return A pointer to the queue location into which the fragment was enqueued
260
 */
261
static struct ip_reassdata*
262
ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
263
{
264
  struct ip_reassdata* ipr;
265
  /* No matching previous fragment found, allocate a new reassdata struct */
266
  ipr = memp_malloc(MEMP_REASSDATA);
267
  if (ipr == NULL) {
268
#if IP_REASS_FREE_OLDEST
269
    if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
270
      ipr = memp_malloc(MEMP_REASSDATA);
271
    }
272
    if (ipr == NULL)
273
#endif /* IP_REASS_FREE_OLDEST */
274
    {
275
      IPFRAG_STATS_INC(ip_frag.memerr);
276
      LWIP_DEBUGF(IP_REASS_DEBUG,("Failed to alloc reassdata struct\n"));
277
      return NULL;
278
    }
279
  }
280
  memset(ipr, 0, sizeof(struct ip_reassdata));
281
  ipr->timer = IP_REASS_MAXAGE;
282
 
283
  /* enqueue the new structure to the front of the list */
284
  ipr->next = reassdatagrams;
285
  reassdatagrams = ipr;
286
  /* copy the ip header for later tests and input */
287
  /* @todo: no ip options supported? */
288
  SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
289
  return ipr;
290
}
291
 
292
/**
293
 * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
294
 * @param ipr points to the queue entry to dequeue
295
 */
296
static void
297
ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
298
{
299
 
300
  /* dequeue the reass struct  */
301
  if (reassdatagrams == ipr) {
302
    /* it was the first in the list */
303
    reassdatagrams = ipr->next;
304
  } else {
305
    /* it wasn't the first, so it must have a valid 'prev' */
306
    LWIP_ASSERT("sanity check linked list", prev != NULL);
307
    prev->next = ipr->next;
308
  }
309
 
310
  /* now we can free the ip_reass struct */
311
  memp_free(MEMP_REASSDATA, ipr);
312
}
313
 
314
/**
315
 * Chain a new pbuf into the pbuf list that composes the datagram.  The pbuf list
316
 * will grow over time as  new pbufs are rx.
317
 * Also checks that the datagram passes basic continuity checks (if the last
318
 * fragment was received at least once).
319
 * @param root_p points to the 'root' pbuf for the current datagram being assembled.
320
 * @param new_p points to the pbuf for the current fragment
321
 * @return 0 if invalid, >0 otherwise
322
 */
323
static int
324
ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p)
325
{
326
  struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
327
  struct pbuf *q;
328
  u16_t offset,len;
329
  struct ip_hdr *fraghdr;
330
  int valid = 1;
331
 
332
  /* Extract length and fragment offset from current fragment */
333
  fraghdr = (struct ip_hdr*)new_p->payload;
334
  len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
335
  offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
336
 
337
  /* overwrite the fragment's ip header from the pbuf with our helper struct,
338
   * and setup the embedded helper structure. */
339
  /* make sure the struct ip_reass_helper fits into the IP header */
340
  LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
341
              sizeof(struct ip_reass_helper) <= IP_HLEN);
342
  iprh = (struct ip_reass_helper*)new_p->payload;
343
  iprh->next_pbuf = NULL;
344
  iprh->start = offset;
345
  iprh->end = offset + len;
346
 
347
  /* Iterate through until we either get to the end of the list (append),
348
   * or we find on with a larger offset (insert). */
349
  for (q = ipr->p; q != NULL;) {
350
    iprh_tmp = (struct ip_reass_helper*)q->payload;
351
    if (iprh->start < iprh_tmp->start) {
352
      /* the new pbuf should be inserted before this */
353
      iprh->next_pbuf = q;
354
      if (iprh_prev != NULL) {
355
        /* not the fragment with the lowest offset */
356
#if IP_REASS_CHECK_OVERLAP
357
        if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
358
          /* fragment overlaps with previous or following, throw away */
359
          goto freepbuf;
360
        }
361
#endif /* IP_REASS_CHECK_OVERLAP */
362
        iprh_prev->next_pbuf = new_p;
363
      } else {
364
        /* fragment with the lowest offset */
365
        ipr->p = new_p;
366
      }
367
      break;
368
    } else if(iprh->start == iprh_tmp->start) {
369
      /* received the same datagram twice: no need to keep the datagram */
370
      goto freepbuf;
371
#if IP_REASS_CHECK_OVERLAP
372
    } else if(iprh->start < iprh_tmp->end) {
373
      /* overlap: no need to keep the new datagram */
374
      goto freepbuf;
375
#endif /* IP_REASS_CHECK_OVERLAP */
376
    } else {
377
      /* Check if the fragments received so far have no wholes. */
378
      if (iprh_prev != NULL) {
379
        if (iprh_prev->end != iprh_tmp->start) {
380
          /* There is a fragment missing between the current
381
           * and the previous fragment */
382
          valid = 0;
383
        }
384
      }
385
    }
386
    q = iprh_tmp->next_pbuf;
387
    iprh_prev = iprh_tmp;
388
  }
389
 
390
  /* If q is NULL, then we made it to the end of the list. Determine what to do now */
391
  if (q == NULL) {
392
    if (iprh_prev != NULL) {
393
      /* this is (for now), the fragment with the highest offset:
394
       * chain it to the last fragment */
395
#if IP_REASS_CHECK_OVERLAP
396
      LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
397
#endif /* IP_REASS_CHECK_OVERLAP */
398
      iprh_prev->next_pbuf = new_p;
399
      if (iprh_prev->end != iprh->start) {
400
        valid = 0;
401
      }
402
    } else {
403
#if IP_REASS_CHECK_OVERLAP
404
      LWIP_ASSERT("no previous fragment, this must be the first fragment!",
405
        ipr->p == NULL);
406
#endif /* IP_REASS_CHECK_OVERLAP */
407
      /* this is the first fragment we ever received for this ip datagram */
408
      ipr->p = new_p;
409
    }
410
  }
411
 
412
  /* At this point, the validation part begins: */
413
  /* If we already received the last fragment */
414
  if ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0) {
415
    /* and had no wholes so far */
416
    if (valid) {
417
      /* then check if the rest of the fragments is here */
418
      /* Check if the queue starts with the first datagram */
419
      if (((struct ip_reass_helper*)ipr->p->payload)->start != 0) {
420
        valid = 0;
421
      } else {
422
        /* and check that there are no wholes after this datagram */
423
        iprh_prev = iprh;
424
        q = iprh->next_pbuf;
425
        while (q != NULL) {
426
          iprh = (struct ip_reass_helper*)q->payload;
427
          if (iprh_prev->end != iprh->start) {
428
            valid = 0;
429
            break;
430
          }
431
          iprh_prev = iprh;
432
          q = iprh->next_pbuf;
433
        }
434
        /* if still valid, all fragments are received
435
         * (because to the MF==0 already arrived */
436
        if (valid) {
437
          LWIP_ASSERT("sanity check", ipr->p != NULL);
438
          LWIP_ASSERT("sanity check",
439
            ((struct ip_reass_helper*)ipr->p->payload) != iprh);
440
          LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
441
            iprh->next_pbuf == NULL);
442
          LWIP_ASSERT("validate_datagram:datagram end!=datagram len",
443
            iprh->end == ipr->datagram_len);
444
        }
445
      }
446
    }
447
    /* If valid is 0 here, there are some fragments missing in the middle
448
     * (since MF == 0 has already arrived). Such datagrams simply time out if
449
     * no more fragments are received... */
450
    return valid;
451
  }
452
  /* If we come here, not all fragments were received, yet! */
453
  return 0; /* not yet valid! */
454
#if IP_REASS_CHECK_OVERLAP
455
freepbuf:
456
  ip_reass_pbufcount -= pbuf_clen(new_p);
457
  pbuf_free(new_p);
458
  return 0;
459
#endif /* IP_REASS_CHECK_OVERLAP */
460
}
461
 
462
/**
463
 * Reassembles incoming IP fragments into an IP datagram.
464
 *
465
 * @param p points to a pbuf chain of the fragment
466
 * @return NULL if reassembly is incomplete, ? otherwise
467
 */
468
struct pbuf *
469
ip_reass(struct pbuf *p)
470
{
471
  struct pbuf *r;
472
  struct ip_hdr *fraghdr;
473
  struct ip_reassdata *ipr;
474
  struct ip_reass_helper *iprh;
475
  u16_t offset, len;
476
  u8_t clen;
477
  struct ip_reassdata *ipr_prev = NULL;
478
 
479
  IPFRAG_STATS_INC(ip_frag.recv);
480
  snmp_inc_ipreasmreqds();
481
 
482
  fraghdr = (struct ip_hdr*)p->payload;
483
 
484
  if ((IPH_HL(fraghdr) * 4) != IP_HLEN) {
485
    LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: IP options currently not supported!\n"));
486
    IPFRAG_STATS_INC(ip_frag.err);
487
    goto nullreturn;
488
  }
489
 
490
  offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
491
  len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
492
 
493
  /* Check if we are allowed to enqueue more datagrams. */
494
  clen = pbuf_clen(p);
495
  if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
496
#if IP_REASS_FREE_OLDEST
497
    if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
498
        ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
499
#endif /* IP_REASS_FREE_OLDEST */
500
    {
501
      /* No datagram could be freed and still too many pbufs enqueued */
502
      LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
503
        ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
504
      IPFRAG_STATS_INC(ip_frag.memerr);
505
      /* @todo: send ICMP time exceeded here? */
506
      /* drop this pbuf */
507
      goto nullreturn;
508
    }
509
  }
510
 
511
  /* Look for the datagram the fragment belongs to in the current datagram queue,
512
   * remembering the previous in the queue for later dequeueing. */
513
  for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
514
    /* Check if the incoming fragment matches the one currently present
515
       in the reassembly buffer. If so, we proceed with copying the
516
       fragment into the buffer. */
517
    if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
518
      LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: matching previous fragment ID=%"X16_F"\n",
519
        ntohs(IPH_ID(fraghdr))));
520
      IPFRAG_STATS_INC(ip_frag.cachehit);
521
      break;
522
    }
523
    ipr_prev = ipr;
524
  }
525
 
526
  if (ipr == NULL) {
527
  /* Enqueue a new datagram into the datagram queue */
528
    ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
529
    /* Bail if unable to enqueue */
530
    if(ipr == NULL) {
531
      goto nullreturn;
532
    }
533
  } else {
534
    if (((ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
535
      ((ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
536
      /* ipr->iphdr is not the header from the first fragment, but fraghdr is
537
       * -> copy fraghdr into ipr->iphdr since we want to have the header
538
       * of the first fragment (for ICMP time exceeded and later, for copying
539
       * all options, if supported)*/
540
      SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
541
    }
542
  }
543
  /* Track the current number of pbufs current 'in-flight', in order to limit
544
  the number of fragments that may be enqueued at any one time */
545
  ip_reass_pbufcount += clen;
546
 
547
  /* At this point, we have either created a new entry or pointing
548
   * to an existing one */
549
 
550
  /* check for 'no more fragments', and update queue entry*/
551
  if ((ntohs(IPH_OFFSET(fraghdr)) & IP_MF) == 0) {
552
    ipr->flags |= IP_REASS_FLAG_LASTFRAG;
553
    ipr->datagram_len = offset + len;
554
    LWIP_DEBUGF(IP_REASS_DEBUG,
555
     ("ip_reass: last fragment seen, total len %"S16_F"\n",
556
      ipr->datagram_len));
557
  }
558
  /* find the right place to insert this pbuf */
559
  /* @todo: trim pbufs if fragments are overlapping */
560
  if (ip_reass_chain_frag_into_datagram_and_validate(ipr, p)) {
561
    /* the totally last fragment (flag more fragments = 0) was received at least
562
     * once AND all fragments are received */
563
    ipr->datagram_len += IP_HLEN;
564
 
565
    /* save the second pbuf before copying the header over the pointer */
566
    r = ((struct ip_reass_helper*)ipr->p->payload)->next_pbuf;
567
 
568
    /* copy the original ip header back to the first pbuf */
569
    fraghdr = (struct ip_hdr*)(ipr->p->payload);
570
    SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
571
    IPH_LEN_SET(fraghdr, htons(ipr->datagram_len));
572
    IPH_OFFSET_SET(fraghdr, 0);
573
    IPH_CHKSUM_SET(fraghdr, 0);
574
    /* @todo: do we need to set calculate the correct checksum? */
575
    IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
576
 
577
    p = ipr->p;
578
 
579
    /* chain together the pbufs contained within the reass_data list. */
580
    while(r != NULL) {
581
      iprh = (struct ip_reass_helper*)r->payload;
582
 
583
      /* hide the ip header for every succeding fragment */
584
      pbuf_header(r, -IP_HLEN);
585
      pbuf_cat(p, r);
586
      r = iprh->next_pbuf;
587
    }
588
    /* release the sources allocate for the fragment queue entry */
589
    ip_reass_dequeue_datagram(ipr, ipr_prev);
590
 
591
    /* and adjust the number of pbufs currently queued for reassembly. */
592
    ip_reass_pbufcount -= pbuf_clen(p);
593
 
594
    /* Return the pbuf chain */
595
    return p;
596
  }
597
  /* the datagram is not (yet?) reassembled completely */
598
  LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
599
  return NULL;
600
 
601
nullreturn:
602
  LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: nullreturn\n"));
603
  IPFRAG_STATS_INC(ip_frag.drop);
604
  pbuf_free(p);
605
  return NULL;
606
}
607
#endif /* IP_REASSEMBLY */
608
 
609
#if IP_FRAG
610
#if IP_FRAG_USES_STATIC_BUF
611
static u8_t buf[LWIP_MEM_ALIGN_SIZE(IP_FRAG_MAX_MTU + MEM_ALIGNMENT - 1)];
612
#endif /* IP_FRAG_USES_STATIC_BUF */
613
 
614
/**
615
 * Fragment an IP datagram if too large for the netif.
616
 *
617
 * Chop the datagram in MTU sized chunks and send them in order
618
 * by using a fixed size static memory buffer (PBUF_REF) or
619
 * point PBUF_REFs into p (depending on IP_FRAG_USES_STATIC_BUF).
620
 *
621
 * @param p ip packet to send
622
 * @param netif the netif on which to send
623
 * @param dest destination ip address to which to send
624
 *
625
 * @return ERR_OK if sent successfully, err_t otherwise
626
 */
627
err_t
628
ip_frag(struct pbuf *p, struct netif *netif, struct ip_addr *dest)
629
{
630
  struct pbuf *rambuf;
631
#if IP_FRAG_USES_STATIC_BUF
632
  struct pbuf *header;
633
#else
634
  struct pbuf *newpbuf;
635
  struct ip_hdr *original_iphdr;
636
#endif
637
  struct ip_hdr *iphdr;
638
  u16_t nfb;
639
  u16_t left, cop;
640
  u16_t mtu = netif->mtu;
641
  u16_t ofo, omf;
642
  u16_t last;
643
  u16_t poff = IP_HLEN;
644
  u16_t tmp;
645
#if !IP_FRAG_USES_STATIC_BUF
646
  u16_t newpbuflen = 0;
647
  u16_t left_to_copy;
648
#endif
649
 
650
  /* Get a RAM based MTU sized pbuf */
651
#if IP_FRAG_USES_STATIC_BUF
652
  /* When using a static buffer, we use a PBUF_REF, which we will
653
   * use to reference the packet (without link header).
654
   * Layer and length is irrelevant.
655
   */
656
  rambuf = pbuf_alloc(PBUF_LINK, 0, PBUF_REF);
657
  if (rambuf == NULL) {
658
    LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc(PBUF_LINK, 0, PBUF_REF) failed\n"));
659
    return ERR_MEM;
660
  }
661
  rambuf->tot_len = rambuf->len = mtu;
662
  rambuf->payload = LWIP_MEM_ALIGN((void *)buf);
663
 
664
  /* Copy the IP header in it */
665
  iphdr = rambuf->payload;
666
  SMEMCPY(iphdr, p->payload, IP_HLEN);
667
#else /* IP_FRAG_USES_STATIC_BUF */
668
  original_iphdr = p->payload;
669
  iphdr = original_iphdr;
670
#endif /* IP_FRAG_USES_STATIC_BUF */
671
 
672
  /* Save original offset */
673
  tmp = ntohs(IPH_OFFSET(iphdr));
674
  ofo = tmp & IP_OFFMASK;
675
  omf = tmp & IP_MF;
676
 
677
  left = p->tot_len - IP_HLEN;
678
 
679
  nfb = (mtu - IP_HLEN) / 8;
680
 
681
  while (left) {
682
    last = (left <= mtu - IP_HLEN);
683
 
684
    /* Set new offset and MF flag */
685
    tmp = omf | (IP_OFFMASK & (ofo));
686
    if (!last)
687
      tmp = tmp | IP_MF;
688
 
689
    /* Fill this fragment */
690
    cop = last ? left : nfb * 8;
691
 
692
#if IP_FRAG_USES_STATIC_BUF
693
    poff += pbuf_copy_partial(p, (u8_t*)iphdr + IP_HLEN, cop, poff);
694
#else /* IP_FRAG_USES_STATIC_BUF */
695
    /* When not using a static buffer, create a chain of pbufs.
696
     * The first will be a PBUF_RAM holding the link and IP header.
697
     * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
698
     * but limited to the size of an mtu.
699
     */
700
    rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
701
    if (rambuf == NULL) {
702
      return ERR_MEM;
703
    }
704
    LWIP_ASSERT("this needs a pbuf in one piece!",
705
                (p->len >= (IP_HLEN)));
706
    SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
707
    iphdr = rambuf->payload;
708
 
709
    /* Can just adjust p directly for needed offset. */
710
    p->payload = (u8_t *)p->payload + poff;
711
    p->len -= poff;
712
 
713
    left_to_copy = cop;
714
    while (left_to_copy) {
715
      newpbuflen = (left_to_copy < p->len) ? left_to_copy : p->len;
716
      /* Is this pbuf already empty? */
717
      if (!newpbuflen) {
718
        p = p->next;
719
        continue;
720
      }
721
      newpbuf = pbuf_alloc(PBUF_RAW, 0, PBUF_REF);
722
      if (newpbuf == NULL) {
723
        pbuf_free(rambuf);
724
        return ERR_MEM;
725
      }
726
      /* Mirror this pbuf, although we might not need all of it. */
727
      newpbuf->payload = p->payload;
728
      newpbuf->len = newpbuf->tot_len = newpbuflen;
729
      /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
730
       * so that it is removed when pbuf_dechain is later called on rambuf.
731
       */
732
      pbuf_cat(rambuf, newpbuf);
733
      left_to_copy -= newpbuflen;
734
      if (left_to_copy)
735
        p = p->next;
736
    }
737
    poff = newpbuflen;
738
#endif /* IP_FRAG_USES_STATIC_BUF */
739
 
740
    /* Correct header */
741
    IPH_OFFSET_SET(iphdr, htons(tmp));
742
    IPH_LEN_SET(iphdr, htons(cop + IP_HLEN));
743
    IPH_CHKSUM_SET(iphdr, 0);
744
    IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
745
 
746
#if IP_FRAG_USES_STATIC_BUF
747
    if (last)
748
      pbuf_realloc(rambuf, left + IP_HLEN);
749
 
750
    /* This part is ugly: we alloc a RAM based pbuf for
751
     * the link level header for each chunk and then
752
     * free it.A PBUF_ROM style pbuf for which pbuf_header
753
     * worked would make things simpler.
754
     */
755
    header = pbuf_alloc(PBUF_LINK, 0, PBUF_RAM);
756
    if (header != NULL) {
757
      pbuf_chain(header, rambuf);
758
      netif->output(netif, header, dest);
759
      IPFRAG_STATS_INC(ip_frag.xmit);
760
      snmp_inc_ipfragcreates();
761
      pbuf_free(header);
762
    } else {
763
      LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc() for header failed\n"));
764
      pbuf_free(rambuf);
765
      return ERR_MEM;
766
    }
767
#else /* IP_FRAG_USES_STATIC_BUF */
768
    /* No need for separate header pbuf - we allowed room for it in rambuf
769
     * when allocated.
770
     */
771
    netif->output(netif, rambuf, dest);
772
    IPFRAG_STATS_INC(ip_frag.xmit);
773
 
774
    /* Unfortunately we can't reuse rambuf - the hardware may still be
775
     * using the buffer. Instead we free it (and the ensuing chain) and
776
     * recreate it next time round the loop. If we're lucky the hardware
777
     * will have already sent the packet, the free will really free, and
778
     * there will be zero memory penalty.
779
     */
780
 
781
    pbuf_free(rambuf);
782
#endif /* IP_FRAG_USES_STATIC_BUF */
783
    left -= cop;
784
    ofo += nfb;
785
  }
786
#if IP_FRAG_USES_STATIC_BUF
787
  pbuf_free(rambuf);
788
#endif /* IP_FRAG_USES_STATIC_BUF */
789
  snmp_inc_ipfragoks();
790
  return ERR_OK;
791
}
792
#endif /* IP_FRAG */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.