| 1 |
606 |
jeremybenn |
/**
|
| 2 |
|
|
* @file
|
| 3 |
|
|
* lwIP Operating System abstraction
|
| 4 |
|
|
*
|
| 5 |
|
|
*/
|
| 6 |
|
|
|
| 7 |
|
|
/*
|
| 8 |
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
| 9 |
|
|
* All rights reserved.
|
| 10 |
|
|
*
|
| 11 |
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
| 12 |
|
|
* are permitted provided that the following conditions are met:
|
| 13 |
|
|
*
|
| 14 |
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
| 15 |
|
|
* this list of conditions and the following disclaimer.
|
| 16 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
| 17 |
|
|
* this list of conditions and the following disclaimer in the documentation
|
| 18 |
|
|
* and/or other materials provided with the distribution.
|
| 19 |
|
|
* 3. The name of the author may not be used to endorse or promote products
|
| 20 |
|
|
* derived from this software without specific prior written permission.
|
| 21 |
|
|
*
|
| 22 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
| 23 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
| 24 |
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
| 25 |
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| 26 |
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
| 27 |
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
| 28 |
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
| 29 |
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
| 30 |
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
| 31 |
|
|
* OF SUCH DAMAGE.
|
| 32 |
|
|
*
|
| 33 |
|
|
* This file is part of the lwIP TCP/IP stack.
|
| 34 |
|
|
*
|
| 35 |
|
|
* Author: Adam Dunkels <adam@sics.se>
|
| 36 |
|
|
*
|
| 37 |
|
|
*/
|
| 38 |
|
|
|
| 39 |
|
|
#include "lwip/opt.h"
|
| 40 |
|
|
|
| 41 |
|
|
#if (NO_SYS == 0) /* don't build if not configured for use in lwipopts.h */
|
| 42 |
|
|
|
| 43 |
|
|
#include "lwip/sys.h"
|
| 44 |
|
|
#include "lwip/def.h"
|
| 45 |
|
|
#include "lwip/memp.h"
|
| 46 |
|
|
#include "lwip/tcpip.h"
|
| 47 |
|
|
|
| 48 |
|
|
/**
|
| 49 |
|
|
* Struct used for sys_sem_wait_timeout() to tell wether the time
|
| 50 |
|
|
* has run out or the semaphore has really become available.
|
| 51 |
|
|
*/
|
| 52 |
|
|
struct sswt_cb
|
| 53 |
|
|
{
|
| 54 |
|
|
s16_t timeflag;
|
| 55 |
|
|
sys_sem_t *psem;
|
| 56 |
|
|
};
|
| 57 |
|
|
|
| 58 |
|
|
/**
|
| 59 |
|
|
* Wait (forever) for a message to arrive in an mbox.
|
| 60 |
|
|
* While waiting, timeouts (for this thread) are processed.
|
| 61 |
|
|
*
|
| 62 |
|
|
* @param mbox the mbox to fetch the message from
|
| 63 |
|
|
* @param msg the place to store the message
|
| 64 |
|
|
*/
|
| 65 |
|
|
void
|
| 66 |
|
|
sys_mbox_fetch(sys_mbox_t mbox, void **msg)
|
| 67 |
|
|
{
|
| 68 |
|
|
u32_t time_needed;
|
| 69 |
|
|
struct sys_timeouts *timeouts;
|
| 70 |
|
|
struct sys_timeo *tmptimeout;
|
| 71 |
|
|
sys_timeout_handler h;
|
| 72 |
|
|
void *arg;
|
| 73 |
|
|
|
| 74 |
|
|
again:
|
| 75 |
|
|
timeouts = sys_arch_timeouts();
|
| 76 |
|
|
|
| 77 |
|
|
if (!timeouts || !timeouts->next) {
|
| 78 |
|
|
UNLOCK_TCPIP_CORE();
|
| 79 |
|
|
time_needed = sys_arch_mbox_fetch(mbox, msg, 0);
|
| 80 |
|
|
LOCK_TCPIP_CORE();
|
| 81 |
|
|
} else {
|
| 82 |
|
|
if (timeouts->next->time > 0) {
|
| 83 |
|
|
UNLOCK_TCPIP_CORE();
|
| 84 |
|
|
time_needed = sys_arch_mbox_fetch(mbox, msg, timeouts->next->time);
|
| 85 |
|
|
LOCK_TCPIP_CORE();
|
| 86 |
|
|
} else {
|
| 87 |
|
|
time_needed = SYS_ARCH_TIMEOUT;
|
| 88 |
|
|
}
|
| 89 |
|
|
|
| 90 |
|
|
if (time_needed == SYS_ARCH_TIMEOUT) {
|
| 91 |
|
|
/* If time == SYS_ARCH_TIMEOUT, a timeout occured before a message
|
| 92 |
|
|
could be fetched. We should now call the timeout handler and
|
| 93 |
|
|
deallocate the memory allocated for the timeout. */
|
| 94 |
|
|
tmptimeout = timeouts->next;
|
| 95 |
|
|
timeouts->next = tmptimeout->next;
|
| 96 |
|
|
h = tmptimeout->h;
|
| 97 |
|
|
arg = tmptimeout->arg;
|
| 98 |
|
|
memp_free(MEMP_SYS_TIMEOUT, tmptimeout);
|
| 99 |
|
|
if (h != NULL) {
|
| 100 |
|
|
LWIP_DEBUGF(SYS_DEBUG, ("smf calling h=%p(%p)\n", *(void**)&h, arg));
|
| 101 |
|
|
h(arg);
|
| 102 |
|
|
}
|
| 103 |
|
|
|
| 104 |
|
|
/* We try again to fetch a message from the mbox. */
|
| 105 |
|
|
goto again;
|
| 106 |
|
|
} else {
|
| 107 |
|
|
/* If time != SYS_ARCH_TIMEOUT, a message was received before the timeout
|
| 108 |
|
|
occured. The time variable is set to the number of
|
| 109 |
|
|
milliseconds we waited for the message. */
|
| 110 |
|
|
if (time_needed < timeouts->next->time) {
|
| 111 |
|
|
timeouts->next->time -= time_needed;
|
| 112 |
|
|
} else {
|
| 113 |
|
|
timeouts->next->time = 0;
|
| 114 |
|
|
}
|
| 115 |
|
|
}
|
| 116 |
|
|
}
|
| 117 |
|
|
}
|
| 118 |
|
|
|
| 119 |
|
|
/**
|
| 120 |
|
|
* Wait (forever) for a semaphore to become available.
|
| 121 |
|
|
* While waiting, timeouts (for this thread) are processed.
|
| 122 |
|
|
*
|
| 123 |
|
|
* @param sem semaphore to wait for
|
| 124 |
|
|
*/
|
| 125 |
|
|
void
|
| 126 |
|
|
sys_sem_wait(sys_sem_t sem)
|
| 127 |
|
|
{
|
| 128 |
|
|
u32_t time_needed;
|
| 129 |
|
|
struct sys_timeouts *timeouts;
|
| 130 |
|
|
struct sys_timeo *tmptimeout;
|
| 131 |
|
|
sys_timeout_handler h;
|
| 132 |
|
|
void *arg;
|
| 133 |
|
|
|
| 134 |
|
|
again:
|
| 135 |
|
|
|
| 136 |
|
|
timeouts = sys_arch_timeouts();
|
| 137 |
|
|
|
| 138 |
|
|
if (!timeouts || !timeouts->next) {
|
| 139 |
|
|
sys_arch_sem_wait(sem, 0);
|
| 140 |
|
|
} else {
|
| 141 |
|
|
if (timeouts->next->time > 0) {
|
| 142 |
|
|
time_needed = sys_arch_sem_wait(sem, timeouts->next->time);
|
| 143 |
|
|
} else {
|
| 144 |
|
|
time_needed = SYS_ARCH_TIMEOUT;
|
| 145 |
|
|
}
|
| 146 |
|
|
|
| 147 |
|
|
if (time_needed == SYS_ARCH_TIMEOUT) {
|
| 148 |
|
|
/* If time == SYS_ARCH_TIMEOUT, a timeout occured before a message
|
| 149 |
|
|
could be fetched. We should now call the timeout handler and
|
| 150 |
|
|
deallocate the memory allocated for the timeout. */
|
| 151 |
|
|
tmptimeout = timeouts->next;
|
| 152 |
|
|
timeouts->next = tmptimeout->next;
|
| 153 |
|
|
h = tmptimeout->h;
|
| 154 |
|
|
arg = tmptimeout->arg;
|
| 155 |
|
|
memp_free(MEMP_SYS_TIMEOUT, tmptimeout);
|
| 156 |
|
|
if (h != NULL) {
|
| 157 |
|
|
LWIP_DEBUGF(SYS_DEBUG, ("ssw h=%p(%p)\n", *(void**)&h, (void *)arg));
|
| 158 |
|
|
h(arg);
|
| 159 |
|
|
}
|
| 160 |
|
|
|
| 161 |
|
|
/* We try again to fetch a message from the mbox. */
|
| 162 |
|
|
goto again;
|
| 163 |
|
|
} else {
|
| 164 |
|
|
/* If time != SYS_ARCH_TIMEOUT, a message was received before the timeout
|
| 165 |
|
|
occured. The time variable is set to the number of
|
| 166 |
|
|
milliseconds we waited for the message. */
|
| 167 |
|
|
if (time_needed < timeouts->next->time) {
|
| 168 |
|
|
timeouts->next->time -= time_needed;
|
| 169 |
|
|
} else {
|
| 170 |
|
|
timeouts->next->time = 0;
|
| 171 |
|
|
}
|
| 172 |
|
|
}
|
| 173 |
|
|
}
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
/**
|
| 177 |
|
|
* Create a one-shot timer (aka timeout). Timeouts are processed in the
|
| 178 |
|
|
* following cases:
|
| 179 |
|
|
* - while waiting for a message using sys_mbox_fetch()
|
| 180 |
|
|
* - while waiting for a semaphore using sys_sem_wait() or sys_sem_wait_timeout()
|
| 181 |
|
|
* - while sleeping using the inbuilt sys_msleep()
|
| 182 |
|
|
*
|
| 183 |
|
|
* @param msecs time in milliseconds after that the timer should expire
|
| 184 |
|
|
* @param h callback function to call when msecs have elapsed
|
| 185 |
|
|
* @param arg argument to pass to the callback function
|
| 186 |
|
|
*/
|
| 187 |
|
|
void
|
| 188 |
|
|
sys_timeout(u32_t msecs, sys_timeout_handler h, void *arg)
|
| 189 |
|
|
{
|
| 190 |
|
|
struct sys_timeouts *timeouts;
|
| 191 |
|
|
struct sys_timeo *timeout, *t;
|
| 192 |
|
|
|
| 193 |
|
|
timeout = memp_malloc(MEMP_SYS_TIMEOUT);
|
| 194 |
|
|
if (timeout == NULL) {
|
| 195 |
|
|
LWIP_ASSERT("sys_timeout: timeout != NULL", timeout != NULL);
|
| 196 |
|
|
return;
|
| 197 |
|
|
}
|
| 198 |
|
|
timeout->next = NULL;
|
| 199 |
|
|
timeout->h = h;
|
| 200 |
|
|
timeout->arg = arg;
|
| 201 |
|
|
timeout->time = msecs;
|
| 202 |
|
|
|
| 203 |
|
|
timeouts = sys_arch_timeouts();
|
| 204 |
|
|
|
| 205 |
|
|
LWIP_DEBUGF(SYS_DEBUG, ("sys_timeout: %p msecs=%"U32_F" h=%p arg=%p\n",
|
| 206 |
|
|
(void *)timeout, msecs, *(void**)&h, (void *)arg));
|
| 207 |
|
|
|
| 208 |
|
|
if (timeouts == NULL) {
|
| 209 |
|
|
LWIP_ASSERT("sys_timeout: timeouts != NULL", timeouts != NULL);
|
| 210 |
|
|
return;
|
| 211 |
|
|
}
|
| 212 |
|
|
|
| 213 |
|
|
if (timeouts->next == NULL) {
|
| 214 |
|
|
timeouts->next = timeout;
|
| 215 |
|
|
return;
|
| 216 |
|
|
}
|
| 217 |
|
|
|
| 218 |
|
|
if (timeouts->next->time > msecs) {
|
| 219 |
|
|
timeouts->next->time -= msecs;
|
| 220 |
|
|
timeout->next = timeouts->next;
|
| 221 |
|
|
timeouts->next = timeout;
|
| 222 |
|
|
} else {
|
| 223 |
|
|
for(t = timeouts->next; t != NULL; t = t->next) {
|
| 224 |
|
|
timeout->time -= t->time;
|
| 225 |
|
|
if (t->next == NULL || t->next->time > timeout->time) {
|
| 226 |
|
|
if (t->next != NULL) {
|
| 227 |
|
|
t->next->time -= timeout->time;
|
| 228 |
|
|
}
|
| 229 |
|
|
timeout->next = t->next;
|
| 230 |
|
|
t->next = timeout;
|
| 231 |
|
|
break;
|
| 232 |
|
|
}
|
| 233 |
|
|
}
|
| 234 |
|
|
}
|
| 235 |
|
|
}
|
| 236 |
|
|
|
| 237 |
|
|
/**
|
| 238 |
|
|
* Go through timeout list (for this task only) and remove the first matching
|
| 239 |
|
|
* entry, even though the timeout has not triggered yet.
|
| 240 |
|
|
*
|
| 241 |
|
|
* @note This function only works as expected if there is only one timeout
|
| 242 |
|
|
* calling 'h' in the list of timeouts.
|
| 243 |
|
|
*
|
| 244 |
|
|
* @param h callback function that would be called by the timeout
|
| 245 |
|
|
* @param arg callback argument that would be passed to h
|
| 246 |
|
|
*/
|
| 247 |
|
|
void
|
| 248 |
|
|
sys_untimeout(sys_timeout_handler h, void *arg)
|
| 249 |
|
|
{
|
| 250 |
|
|
struct sys_timeouts *timeouts;
|
| 251 |
|
|
struct sys_timeo *prev_t, *t;
|
| 252 |
|
|
|
| 253 |
|
|
timeouts = sys_arch_timeouts();
|
| 254 |
|
|
|
| 255 |
|
|
if (timeouts == NULL) {
|
| 256 |
|
|
LWIP_ASSERT("sys_untimeout: timeouts != NULL", timeouts != NULL);
|
| 257 |
|
|
return;
|
| 258 |
|
|
}
|
| 259 |
|
|
if (timeouts->next == NULL) {
|
| 260 |
|
|
return;
|
| 261 |
|
|
}
|
| 262 |
|
|
|
| 263 |
|
|
for (t = timeouts->next, prev_t = NULL; t != NULL; prev_t = t, t = t->next) {
|
| 264 |
|
|
if ((t->h == h) && (t->arg == arg)) {
|
| 265 |
|
|
/* We have a match */
|
| 266 |
|
|
/* Unlink from previous in list */
|
| 267 |
|
|
if (prev_t == NULL) {
|
| 268 |
|
|
timeouts->next = t->next;
|
| 269 |
|
|
} else {
|
| 270 |
|
|
prev_t->next = t->next;
|
| 271 |
|
|
}
|
| 272 |
|
|
/* If not the last one, add time of this one back to next */
|
| 273 |
|
|
if (t->next != NULL) {
|
| 274 |
|
|
t->next->time += t->time;
|
| 275 |
|
|
}
|
| 276 |
|
|
memp_free(MEMP_SYS_TIMEOUT, t);
|
| 277 |
|
|
return;
|
| 278 |
|
|
}
|
| 279 |
|
|
}
|
| 280 |
|
|
return;
|
| 281 |
|
|
}
|
| 282 |
|
|
|
| 283 |
|
|
/**
|
| 284 |
|
|
* Timeout handler function for sys_sem_wait_timeout()
|
| 285 |
|
|
*
|
| 286 |
|
|
* @param arg struct sswt_cb* used to signal a semaphore and end waiting.
|
| 287 |
|
|
*/
|
| 288 |
|
|
static void
|
| 289 |
|
|
sswt_handler(void *arg)
|
| 290 |
|
|
{
|
| 291 |
|
|
struct sswt_cb *sswt_cb = (struct sswt_cb *) arg;
|
| 292 |
|
|
|
| 293 |
|
|
/* Timeout. Set flag to TRUE and signal semaphore */
|
| 294 |
|
|
sswt_cb->timeflag = 1;
|
| 295 |
|
|
sys_sem_signal(*(sswt_cb->psem));
|
| 296 |
|
|
}
|
| 297 |
|
|
|
| 298 |
|
|
/**
|
| 299 |
|
|
* Wait for a semaphore with timeout (specified in ms)
|
| 300 |
|
|
*
|
| 301 |
|
|
* @param sem semaphore to wait
|
| 302 |
|
|
* @param timeout timeout in ms (0: wait forever)
|
| 303 |
|
|
* @return 0 on timeout, 1 otherwise
|
| 304 |
|
|
*/
|
| 305 |
|
|
int
|
| 306 |
|
|
sys_sem_wait_timeout(sys_sem_t sem, u32_t timeout)
|
| 307 |
|
|
{
|
| 308 |
|
|
struct sswt_cb sswt_cb;
|
| 309 |
|
|
|
| 310 |
|
|
sswt_cb.psem = &sem;
|
| 311 |
|
|
sswt_cb.timeflag = 0;
|
| 312 |
|
|
|
| 313 |
|
|
/* If timeout is zero, then just wait forever */
|
| 314 |
|
|
if (timeout > 0) {
|
| 315 |
|
|
/* Create a timer and pass it the address of our flag */
|
| 316 |
|
|
sys_timeout(timeout, sswt_handler, &sswt_cb);
|
| 317 |
|
|
}
|
| 318 |
|
|
sys_sem_wait(sem);
|
| 319 |
|
|
/* Was it a timeout? */
|
| 320 |
|
|
if (sswt_cb.timeflag) {
|
| 321 |
|
|
/* timeout */
|
| 322 |
|
|
return 0;
|
| 323 |
|
|
} else {
|
| 324 |
|
|
/* Not a timeout. Remove timeout entry */
|
| 325 |
|
|
sys_untimeout(sswt_handler, &sswt_cb);
|
| 326 |
|
|
return 1;
|
| 327 |
|
|
}
|
| 328 |
|
|
}
|
| 329 |
|
|
|
| 330 |
|
|
/**
|
| 331 |
|
|
* Sleep for some ms. Timeouts are processed while sleeping.
|
| 332 |
|
|
*
|
| 333 |
|
|
* @param ms number of milliseconds to sleep
|
| 334 |
|
|
*/
|
| 335 |
|
|
void
|
| 336 |
|
|
sys_msleep(u32_t ms)
|
| 337 |
|
|
{
|
| 338 |
|
|
sys_sem_t delaysem = sys_sem_new(0);
|
| 339 |
|
|
|
| 340 |
|
|
sys_sem_wait_timeout(delaysem, ms);
|
| 341 |
|
|
|
| 342 |
|
|
sys_sem_free(delaysem);
|
| 343 |
|
|
}
|
| 344 |
|
|
|
| 345 |
|
|
|
| 346 |
|
|
#endif /* NO_SYS */
|