1 |
583 |
jeremybenn |
/**
|
2 |
|
|
* @file
|
3 |
|
|
* Address Resolution Protocol module for IP over Ethernet
|
4 |
|
|
*
|
5 |
|
|
* Functionally, ARP is divided into two parts. The first maps an IP address
|
6 |
|
|
* to a physical address when sending a packet, and the second part answers
|
7 |
|
|
* requests from other machines for our physical address.
|
8 |
|
|
*
|
9 |
|
|
* This implementation complies with RFC 826 (Ethernet ARP). It supports
|
10 |
|
|
* Gratuitious ARP from RFC3220 (IP Mobility Support for IPv4) section 4.6
|
11 |
|
|
* if an interface calls etharp_query(our_netif, its_ip_addr, NULL) upon
|
12 |
|
|
* address change.
|
13 |
|
|
*/
|
14 |
|
|
|
15 |
|
|
/*
|
16 |
|
|
* Copyright (c) 2001-2003 Swedish Institute of Computer Science.
|
17 |
|
|
* Copyright (c) 2003-2004 Leon Woestenberg <leon.woestenberg@axon.tv>
|
18 |
|
|
* Copyright (c) 2003-2004 Axon Digital Design B.V., The Netherlands.
|
19 |
|
|
* All rights reserved.
|
20 |
|
|
*
|
21 |
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
22 |
|
|
* are permitted provided that the following conditions are met:
|
23 |
|
|
*
|
24 |
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
25 |
|
|
* this list of conditions and the following disclaimer.
|
26 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
27 |
|
|
* this list of conditions and the following disclaimer in the documentation
|
28 |
|
|
* and/or other materials provided with the distribution.
|
29 |
|
|
* 3. The name of the author may not be used to endorse or promote products
|
30 |
|
|
* derived from this software without specific prior written permission.
|
31 |
|
|
*
|
32 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
33 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
34 |
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
35 |
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
36 |
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
37 |
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
38 |
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
39 |
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
40 |
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
41 |
|
|
* OF SUCH DAMAGE.
|
42 |
|
|
*
|
43 |
|
|
* This file is part of the lwIP TCP/IP stack.
|
44 |
|
|
*
|
45 |
|
|
*/
|
46 |
|
|
|
47 |
|
|
#include "lwip/opt.h"
|
48 |
|
|
#include "lwip/inet.h"
|
49 |
|
|
#include "netif/etharp.h"
|
50 |
|
|
#include "lwip/ip.h"
|
51 |
|
|
#include "lwip/stats.h"
|
52 |
|
|
|
53 |
|
|
/* ARP needs to inform DHCP of any ARP replies? */
|
54 |
|
|
#if (LWIP_DHCP && DHCP_DOES_ARP_CHECK)
|
55 |
|
|
# include "lwip/dhcp.h"
|
56 |
|
|
#endif
|
57 |
|
|
|
58 |
|
|
/** the time an ARP entry stays valid after its last update,
|
59 |
|
|
* (240 * 5) seconds = 20 minutes.
|
60 |
|
|
*/
|
61 |
|
|
#define ARP_MAXAGE 240
|
62 |
|
|
/** the time an ARP entry stays pending after first request,
|
63 |
|
|
* (2 * 5) seconds = 10 seconds.
|
64 |
|
|
*
|
65 |
|
|
* @internal Keep this number at least 2, otherwise it might
|
66 |
|
|
* run out instantly if the timeout occurs directly after a request.
|
67 |
|
|
*/
|
68 |
|
|
#define ARP_MAXPENDING 2
|
69 |
|
|
|
70 |
|
|
#define HWTYPE_ETHERNET 1
|
71 |
|
|
|
72 |
|
|
/** ARP message types */
|
73 |
|
|
#define ARP_REQUEST 1
|
74 |
|
|
#define ARP_REPLY 2
|
75 |
|
|
|
76 |
|
|
#define ARPH_HWLEN(hdr) (ntohs((hdr)->_hwlen_protolen) >> 8)
|
77 |
|
|
#define ARPH_PROTOLEN(hdr) (ntohs((hdr)->_hwlen_protolen) & 0xff)
|
78 |
|
|
|
79 |
|
|
#define ARPH_HWLEN_SET(hdr, len) (hdr)->_hwlen_protolen = htons(ARPH_PROTOLEN(hdr) | ((len) << 8))
|
80 |
|
|
#define ARPH_PROTOLEN_SET(hdr, len) (hdr)->_hwlen_protolen = htons((len) | (ARPH_HWLEN(hdr) << 8))
|
81 |
|
|
|
82 |
|
|
enum etharp_state {
|
83 |
|
|
ETHARP_STATE_EMPTY,
|
84 |
|
|
ETHARP_STATE_PENDING,
|
85 |
|
|
ETHARP_STATE_STABLE,
|
86 |
|
|
/** @internal transitional state used in etharp_tmr() for convenience*/
|
87 |
|
|
ETHARP_STATE_EXPIRED
|
88 |
|
|
};
|
89 |
|
|
|
90 |
|
|
struct etharp_entry {
|
91 |
|
|
#if ARP_QUEUEING
|
92 |
|
|
/**
|
93 |
|
|
* Pointer to queue of pending outgoing packets on this ARP entry.
|
94 |
|
|
*/
|
95 |
|
|
struct pbuf *p;
|
96 |
|
|
#endif
|
97 |
|
|
struct ip_addr ipaddr;
|
98 |
|
|
struct eth_addr ethaddr;
|
99 |
|
|
enum etharp_state state;
|
100 |
|
|
u8_t ctime;
|
101 |
|
|
};
|
102 |
|
|
|
103 |
|
|
static const struct eth_addr ethbroadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
|
104 |
|
|
static struct etharp_entry arp_table[ARP_TABLE_SIZE];
|
105 |
|
|
|
106 |
|
|
/**
|
107 |
|
|
* Try hard to create a new entry - we want the IP address to appear in
|
108 |
|
|
* the cache (even if this means removing an active entry or so). */
|
109 |
|
|
#define ETHARP_TRY_HARD 1
|
110 |
|
|
|
111 |
|
|
static s8_t find_entry(struct ip_addr *ipaddr, u8_t flags);
|
112 |
|
|
static err_t update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, struct eth_addr *ethaddr, u8_t flags);
|
113 |
|
|
/**
|
114 |
|
|
* Initializes ARP module.
|
115 |
|
|
*/
|
116 |
|
|
void
|
117 |
|
|
etharp_init(void)
|
118 |
|
|
{
|
119 |
|
|
u8_t i;
|
120 |
|
|
/* clear ARP entries */
|
121 |
|
|
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
|
122 |
|
|
arp_table[i].state = ETHARP_STATE_EMPTY;
|
123 |
|
|
#if ARP_QUEUEING
|
124 |
|
|
arp_table[i].p = NULL;
|
125 |
|
|
#endif
|
126 |
|
|
arp_table[i].ctime = 0;
|
127 |
|
|
}
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
/**
|
131 |
|
|
* Clears expired entries in the ARP table.
|
132 |
|
|
*
|
133 |
|
|
* This function should be called every ETHARP_TMR_INTERVAL microseconds (5 seconds),
|
134 |
|
|
* in order to expire entries in the ARP table.
|
135 |
|
|
*/
|
136 |
|
|
void
|
137 |
|
|
etharp_tmr(void)
|
138 |
|
|
{
|
139 |
|
|
u8_t i;
|
140 |
|
|
|
141 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer\n"));
|
142 |
|
|
/* remove expired entries from the ARP table */
|
143 |
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
144 |
|
|
arp_table[i].ctime++;
|
145 |
|
|
/* stable entry? */
|
146 |
|
|
if ((arp_table[i].state == ETHARP_STATE_STABLE) &&
|
147 |
|
|
/* entry has become old? */
|
148 |
|
|
(arp_table[i].ctime >= ARP_MAXAGE)) {
|
149 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired stable entry %"U16_F".\n", (u16_t)i));
|
150 |
|
|
arp_table[i].state = ETHARP_STATE_EXPIRED;
|
151 |
|
|
/* pending entry? */
|
152 |
|
|
} else if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
153 |
|
|
/* entry unresolved/pending for too long? */
|
154 |
|
|
if (arp_table[i].ctime >= ARP_MAXPENDING) {
|
155 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired pending entry %"U16_F".\n", (u16_t)i));
|
156 |
|
|
arp_table[i].state = ETHARP_STATE_EXPIRED;
|
157 |
|
|
#if ARP_QUEUEING
|
158 |
|
|
} else if (arp_table[i].p != NULL) {
|
159 |
|
|
/* resend an ARP query here */
|
160 |
|
|
#endif
|
161 |
|
|
}
|
162 |
|
|
}
|
163 |
|
|
/* clean up entries that have just been expired */
|
164 |
|
|
if (arp_table[i].state == ETHARP_STATE_EXPIRED) {
|
165 |
|
|
#if ARP_QUEUEING
|
166 |
|
|
/* and empty packet queue */
|
167 |
|
|
if (arp_table[i].p != NULL) {
|
168 |
|
|
/* remove all queued packets */
|
169 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: freeing entry %"U16_F", packet queue %p.\n", (u16_t)i, (void *)(arp_table[i].p)));
|
170 |
|
|
pbuf_free(arp_table[i].p);
|
171 |
|
|
arp_table[i].p = NULL;
|
172 |
|
|
}
|
173 |
|
|
#endif
|
174 |
|
|
/* recycle entry for re-use */
|
175 |
|
|
arp_table[i].state = ETHARP_STATE_EMPTY;
|
176 |
|
|
}
|
177 |
|
|
}
|
178 |
|
|
}
|
179 |
|
|
|
180 |
|
|
/**
|
181 |
|
|
* Search the ARP table for a matching or new entry.
|
182 |
|
|
*
|
183 |
|
|
* If an IP address is given, return a pending or stable ARP entry that matches
|
184 |
|
|
* the address. If no match is found, create a new entry with this address set,
|
185 |
|
|
* but in state ETHARP_EMPTY. The caller must check and possibly change the
|
186 |
|
|
* state of the returned entry.
|
187 |
|
|
*
|
188 |
|
|
* If ipaddr is NULL, return a initialized new entry in state ETHARP_EMPTY.
|
189 |
|
|
*
|
190 |
|
|
* In all cases, attempt to create new entries from an empty entry. If no
|
191 |
|
|
* empty entries are available and ETHARP_TRY_HARD flag is set, recycle
|
192 |
|
|
* old entries. Heuristic choose the least important entry for recycling.
|
193 |
|
|
*
|
194 |
|
|
* @param ipaddr IP address to find in ARP cache, or to add if not found.
|
195 |
|
|
* @param flags
|
196 |
|
|
* - ETHARP_TRY_HARD: Try hard to create a entry by allowing recycling of
|
197 |
|
|
* active (stable or pending) entries.
|
198 |
|
|
*
|
199 |
|
|
* @return The ARP entry index that matched or is created, ERR_MEM if no
|
200 |
|
|
* entry is found or could be recycled.
|
201 |
|
|
*/
|
202 |
|
|
static s8_t find_entry(struct ip_addr *ipaddr, u8_t flags)
|
203 |
|
|
{
|
204 |
|
|
s8_t old_pending = ARP_TABLE_SIZE, old_stable = ARP_TABLE_SIZE;
|
205 |
|
|
s8_t empty = ARP_TABLE_SIZE;
|
206 |
|
|
u8_t i = 0, age_pending = 0, age_stable = 0;
|
207 |
|
|
#if ARP_QUEUEING
|
208 |
|
|
/* oldest entry with packets on queue */
|
209 |
|
|
s8_t old_queue = ARP_TABLE_SIZE;
|
210 |
|
|
/* its age */
|
211 |
|
|
u8_t age_queue = 0;
|
212 |
|
|
#endif
|
213 |
|
|
|
214 |
|
|
/**
|
215 |
|
|
* a) do a search through the cache, remember candidates
|
216 |
|
|
* b) select candidate entry
|
217 |
|
|
* c) create new entry
|
218 |
|
|
*/
|
219 |
|
|
|
220 |
|
|
/* a) in a single search sweep, do all of this
|
221 |
|
|
* 1) remember the first empty entry (if any)
|
222 |
|
|
* 2) remember the oldest stable entry (if any)
|
223 |
|
|
* 3) remember the oldest pending entry without queued packets (if any)
|
224 |
|
|
* 4) remember the oldest pending entry with queued packets (if any)
|
225 |
|
|
* 5) search for a matching IP entry, either pending or stable
|
226 |
|
|
* until 5 matches, or all entries are searched for.
|
227 |
|
|
*/
|
228 |
|
|
|
229 |
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
230 |
|
|
/* no empty entry found yet and now we do find one? */
|
231 |
|
|
if ((empty == ARP_TABLE_SIZE) && (arp_table[i].state == ETHARP_STATE_EMPTY)) {
|
232 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("find_entry: found empty entry %"U16_F"\n", (u16_t)i));
|
233 |
|
|
/* remember first empty entry */
|
234 |
|
|
empty = i;
|
235 |
|
|
}
|
236 |
|
|
/* pending entry? */
|
237 |
|
|
else if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
238 |
|
|
/* if given, does IP address match IP address in ARP entry? */
|
239 |
|
|
if (ipaddr && ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
240 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: found matching pending entry %"U16_F"\n", (u16_t)i));
|
241 |
|
|
/* found exact IP address match, simply bail out */
|
242 |
|
|
return i;
|
243 |
|
|
#if ARP_QUEUEING
|
244 |
|
|
/* pending with queued packets? */
|
245 |
|
|
} else if (arp_table[i].p != NULL) {
|
246 |
|
|
if (arp_table[i].ctime >= age_queue) {
|
247 |
|
|
old_queue = i;
|
248 |
|
|
age_queue = arp_table[i].ctime;
|
249 |
|
|
}
|
250 |
|
|
#endif
|
251 |
|
|
/* pending without queued packets? */
|
252 |
|
|
} else {
|
253 |
|
|
if (arp_table[i].ctime >= age_pending) {
|
254 |
|
|
old_pending = i;
|
255 |
|
|
age_pending = arp_table[i].ctime;
|
256 |
|
|
}
|
257 |
|
|
}
|
258 |
|
|
}
|
259 |
|
|
/* stable entry? */
|
260 |
|
|
else if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
261 |
|
|
/* if given, does IP address match IP address in ARP entry? */
|
262 |
|
|
if (ipaddr && ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
263 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: found matching stable entry %"U16_F"\n", (u16_t)i));
|
264 |
|
|
/* found exact IP address match, simply bail out */
|
265 |
|
|
return i;
|
266 |
|
|
/* remember entry with oldest stable entry in oldest, its age in maxtime */
|
267 |
|
|
} else if (arp_table[i].ctime >= age_stable) {
|
268 |
|
|
old_stable = i;
|
269 |
|
|
age_stable = arp_table[i].ctime;
|
270 |
|
|
}
|
271 |
|
|
}
|
272 |
|
|
}
|
273 |
|
|
/* { we have no match } => try to create a new entry */
|
274 |
|
|
|
275 |
|
|
/* no empty entry found and not allowed to recycle? */
|
276 |
|
|
if ((empty == ARP_TABLE_SIZE) && ((flags & ETHARP_TRY_HARD) == 0))
|
277 |
|
|
{
|
278 |
|
|
return (s8_t)ERR_MEM;
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
/* b) choose the least destructive entry to recycle:
|
282 |
|
|
* 1) empty entry
|
283 |
|
|
* 2) oldest stable entry
|
284 |
|
|
* 3) oldest pending entry without queued packets
|
285 |
|
|
* 4) oldest pending entry without queued packets
|
286 |
|
|
*
|
287 |
|
|
* { ETHARP_TRY_HARD is set at this point }
|
288 |
|
|
*/
|
289 |
|
|
|
290 |
|
|
/* 1) empty entry available? */
|
291 |
|
|
if (empty < ARP_TABLE_SIZE) {
|
292 |
|
|
i = empty;
|
293 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: selecting empty entry %"U16_F"\n", (u16_t)i));
|
294 |
|
|
}
|
295 |
|
|
/* 2) found recyclable stable entry? */
|
296 |
|
|
else if (old_stable < ARP_TABLE_SIZE) {
|
297 |
|
|
/* recycle oldest stable*/
|
298 |
|
|
i = old_stable;
|
299 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: selecting oldest stable entry %"U16_F"\n", (u16_t)i));
|
300 |
|
|
#if ARP_QUEUEING
|
301 |
|
|
/* no queued packets should exist on stable entries */
|
302 |
|
|
LWIP_ASSERT("arp_table[i].p == NULL", arp_table[i].p == NULL);
|
303 |
|
|
#endif
|
304 |
|
|
/* 3) found recyclable pending entry without queued packets? */
|
305 |
|
|
} else if (old_pending < ARP_TABLE_SIZE) {
|
306 |
|
|
/* recycle oldest pending */
|
307 |
|
|
i = old_pending;
|
308 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: selecting oldest pending entry %"U16_F" (without queue)\n", (u16_t)i));
|
309 |
|
|
#if ARP_QUEUEING
|
310 |
|
|
/* 4) found recyclable pending entry with queued packets? */
|
311 |
|
|
} else if (old_queue < ARP_TABLE_SIZE) {
|
312 |
|
|
/* recycle oldest pending */
|
313 |
|
|
i = old_queue;
|
314 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: selecting oldest pending entry %"U16_F", freeing packet queue %p\n", (u16_t)i, (void *)(arp_table[i].p)));
|
315 |
|
|
pbuf_free(arp_table[i].p);
|
316 |
|
|
arp_table[i].p = NULL;
|
317 |
|
|
#endif
|
318 |
|
|
/* no empty or recyclable entries found */
|
319 |
|
|
} else {
|
320 |
|
|
return (s8_t)ERR_MEM;
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
/* { empty or recyclable entry found } */
|
324 |
|
|
LWIP_ASSERT("i < ARP_TABLE_SIZE", i < ARP_TABLE_SIZE);
|
325 |
|
|
|
326 |
|
|
/* recycle entry (no-op for an already empty entry) */
|
327 |
|
|
arp_table[i].state = ETHARP_STATE_EMPTY;
|
328 |
|
|
|
329 |
|
|
/* IP address given? */
|
330 |
|
|
if (ipaddr != NULL) {
|
331 |
|
|
/* set IP address */
|
332 |
|
|
ip_addr_set(&arp_table[i].ipaddr, ipaddr);
|
333 |
|
|
}
|
334 |
|
|
arp_table[i].ctime = 0;
|
335 |
|
|
return (err_t)i;
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
/**
|
339 |
|
|
* Update (or insert) a IP/MAC address pair in the ARP cache.
|
340 |
|
|
*
|
341 |
|
|
* If a pending entry is resolved, any queued packets will be sent
|
342 |
|
|
* at this point.
|
343 |
|
|
*
|
344 |
|
|
* @param ipaddr IP address of the inserted ARP entry.
|
345 |
|
|
* @param ethaddr Ethernet address of the inserted ARP entry.
|
346 |
|
|
* @param flags Defines behaviour:
|
347 |
|
|
* - ETHARP_TRY_HARD Allows ARP to insert this as a new item. If not specified,
|
348 |
|
|
* only existing ARP entries will be updated.
|
349 |
|
|
*
|
350 |
|
|
* @return
|
351 |
|
|
* - ERR_OK Succesfully updated ARP cache.
|
352 |
|
|
* - ERR_MEM If we could not add a new ARP entry when ETHARP_TRY_HARD was set.
|
353 |
|
|
* - ERR_ARG Non-unicast address given, those will not appear in ARP cache.
|
354 |
|
|
*
|
355 |
|
|
* @see pbuf_free()
|
356 |
|
|
*/
|
357 |
|
|
static err_t
|
358 |
|
|
update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, struct eth_addr *ethaddr, u8_t flags)
|
359 |
|
|
{
|
360 |
|
|
s8_t i, k;
|
361 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 3, ("update_arp_entry()\n"));
|
362 |
|
|
LWIP_ASSERT("netif->hwaddr_len != 0", netif->hwaddr_len != 0);
|
363 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: %"U16_F".%"U16_F".%"U16_F".%"U16_F" - %02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F"\n",
|
364 |
|
|
ip4_addr1(ipaddr), ip4_addr2(ipaddr), ip4_addr3(ipaddr), ip4_addr4(ipaddr),
|
365 |
|
|
ethaddr->addr[0], ethaddr->addr[1], ethaddr->addr[2],
|
366 |
|
|
ethaddr->addr[3], ethaddr->addr[4], ethaddr->addr[5]));
|
367 |
|
|
/* non-unicast address? */
|
368 |
|
|
if (ip_addr_isany(ipaddr) ||
|
369 |
|
|
ip_addr_isbroadcast(ipaddr, netif) ||
|
370 |
|
|
ip_addr_ismulticast(ipaddr)) {
|
371 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: will not add non-unicast IP address to ARP cache\n"));
|
372 |
|
|
return ERR_ARG;
|
373 |
|
|
}
|
374 |
|
|
/* find or create ARP entry */
|
375 |
|
|
i = find_entry(ipaddr, flags);
|
376 |
|
|
/* bail out if no entry could be found */
|
377 |
|
|
if (i < 0) return (err_t)i;
|
378 |
|
|
|
379 |
|
|
/* mark it stable */
|
380 |
|
|
arp_table[i].state = ETHARP_STATE_STABLE;
|
381 |
|
|
|
382 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: updating stable entry %"S16_F"\n", (s16_t)i));
|
383 |
|
|
/* update address */
|
384 |
|
|
for (k = 0; k < netif->hwaddr_len; ++k) {
|
385 |
|
|
arp_table[i].ethaddr.addr[k] = ethaddr->addr[k];
|
386 |
|
|
}
|
387 |
|
|
/* reset time stamp */
|
388 |
|
|
arp_table[i].ctime = 0;
|
389 |
|
|
/* this is where we will send out queued packets! */
|
390 |
|
|
#if ARP_QUEUEING
|
391 |
|
|
while (arp_table[i].p != NULL) {
|
392 |
|
|
/* get the first packet on the queue */
|
393 |
|
|
struct pbuf *p = arp_table[i].p;
|
394 |
|
|
/* Ethernet header */
|
395 |
|
|
struct eth_hdr *ethhdr = p->payload;
|
396 |
|
|
/* remember (and reference) remainder of queue */
|
397 |
|
|
/* note: this will also terminate the p pbuf chain */
|
398 |
|
|
arp_table[i].p = pbuf_dequeue(p);
|
399 |
|
|
/* fill-in Ethernet header */
|
400 |
|
|
for (k = 0; k < netif->hwaddr_len; ++k) {
|
401 |
|
|
ethhdr->dest.addr[k] = ethaddr->addr[k];
|
402 |
|
|
ethhdr->src.addr[k] = netif->hwaddr[k];
|
403 |
|
|
}
|
404 |
|
|
ethhdr->type = htons(ETHTYPE_IP);
|
405 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: sending queued IP packet %p.\n", (void *)p));
|
406 |
|
|
/* send the queued IP packet */
|
407 |
|
|
netif->linkoutput(netif, p);
|
408 |
|
|
/* free the queued IP packet */
|
409 |
|
|
pbuf_free(p);
|
410 |
|
|
}
|
411 |
|
|
#endif
|
412 |
|
|
return ERR_OK;
|
413 |
|
|
}
|
414 |
|
|
|
415 |
|
|
/**
|
416 |
|
|
* Updates the ARP table using the given IP packet.
|
417 |
|
|
*
|
418 |
|
|
* Uses the incoming IP packet's source address to update the
|
419 |
|
|
* ARP cache for the local network. The function does not alter
|
420 |
|
|
* or free the packet. This function must be called before the
|
421 |
|
|
* packet p is passed to the IP layer.
|
422 |
|
|
*
|
423 |
|
|
* @param netif The lwIP network interface on which the IP packet pbuf arrived.
|
424 |
|
|
* @param pbuf The IP packet that arrived on netif.
|
425 |
|
|
*
|
426 |
|
|
* @return NULL
|
427 |
|
|
*
|
428 |
|
|
* @see pbuf_free()
|
429 |
|
|
*/
|
430 |
|
|
void
|
431 |
|
|
etharp_ip_input(struct netif *netif, struct pbuf *p)
|
432 |
|
|
{
|
433 |
|
|
struct ethip_hdr *hdr;
|
434 |
|
|
LWIP_ASSERT("netif != NULL", netif != NULL);
|
435 |
|
|
/* Only insert an entry if the source IP address of the
|
436 |
|
|
incoming IP packet comes from a host on the local network. */
|
437 |
|
|
hdr = p->payload;
|
438 |
|
|
/* source is not on the local network? */
|
439 |
|
|
if (!ip_addr_netcmp(&(hdr->ip.src), &(netif->ip_addr), &(netif->netmask))) {
|
440 |
|
|
/* do nothing */
|
441 |
|
|
return;
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_ip_input: updating ETHARP table.\n"));
|
445 |
|
|
/* update ARP table */
|
446 |
|
|
/* @todo We could use ETHARP_TRY_HARD if we think we are going to talk
|
447 |
|
|
* back soon (for example, if the destination IP address is ours. */
|
448 |
|
|
update_arp_entry(netif, &(hdr->ip.src), &(hdr->eth.src), 0);
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
|
452 |
|
|
/**
|
453 |
|
|
* Responds to ARP requests to us. Upon ARP replies to us, add entry to cache
|
454 |
|
|
* send out queued IP packets. Updates cache with snooped address pairs.
|
455 |
|
|
*
|
456 |
|
|
* Should be called for incoming ARP packets. The pbuf in the argument
|
457 |
|
|
* is freed by this function.
|
458 |
|
|
*
|
459 |
|
|
* @param netif The lwIP network interface on which the ARP packet pbuf arrived.
|
460 |
|
|
* @param pbuf The ARP packet that arrived on netif. Is freed by this function.
|
461 |
|
|
* @param ethaddr Ethernet address of netif.
|
462 |
|
|
*
|
463 |
|
|
* @return NULL
|
464 |
|
|
*
|
465 |
|
|
* @see pbuf_free()
|
466 |
|
|
*/
|
467 |
|
|
void
|
468 |
|
|
etharp_arp_input(struct netif *netif, struct eth_addr *ethaddr, struct pbuf *p)
|
469 |
|
|
{
|
470 |
|
|
struct etharp_hdr *hdr;
|
471 |
|
|
/* these are aligned properly, whereas the ARP header fields might not be */
|
472 |
|
|
struct ip_addr sipaddr, dipaddr;
|
473 |
|
|
u8_t i;
|
474 |
|
|
u8_t for_us;
|
475 |
|
|
|
476 |
|
|
LWIP_ASSERT("netif != NULL", netif != NULL);
|
477 |
|
|
|
478 |
|
|
/* drop short ARP packets */
|
479 |
|
|
if (p->tot_len < sizeof(struct etharp_hdr)) {
|
480 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 1, ("etharp_arp_input: packet dropped, too short (%"S16_F"/%"S16_F")\n", p->tot_len, sizeof(struct etharp_hdr)));
|
481 |
|
|
pbuf_free(p);
|
482 |
|
|
return;
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
hdr = p->payload;
|
486 |
|
|
|
487 |
|
|
/* get aligned copies of addresses */
|
488 |
|
|
*(struct ip_addr2 *)&sipaddr = hdr->sipaddr;
|
489 |
|
|
*(struct ip_addr2 *)&dipaddr = hdr->dipaddr;
|
490 |
|
|
|
491 |
|
|
/* this interface is not configured? */
|
492 |
|
|
if (netif->ip_addr.addr == 0) {
|
493 |
|
|
for_us = 0;
|
494 |
|
|
} else {
|
495 |
|
|
/* ARP packet directed to us? */
|
496 |
|
|
for_us = ip_addr_cmp(&dipaddr, &(netif->ip_addr));
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
/* ARP message directed to us? */
|
500 |
|
|
if (for_us) {
|
501 |
|
|
/* add IP address in ARP cache; assume requester wants to talk to us.
|
502 |
|
|
* can result in directly sending the queued packets for this host. */
|
503 |
|
|
update_arp_entry(netif, &sipaddr, &(hdr->shwaddr), ETHARP_TRY_HARD);
|
504 |
|
|
/* ARP message not directed to us? */
|
505 |
|
|
} else {
|
506 |
|
|
/* update the source IP address in the cache, if present */
|
507 |
|
|
update_arp_entry(netif, &sipaddr, &(hdr->shwaddr), 0);
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
/* now act on the message itself */
|
511 |
|
|
switch (htons(hdr->opcode)) {
|
512 |
|
|
/* ARP request? */
|
513 |
|
|
case ARP_REQUEST:
|
514 |
|
|
/* ARP request. If it asked for our address, we send out a
|
515 |
|
|
* reply. In any case, we time-stamp any existing ARP entry,
|
516 |
|
|
* and possiby send out an IP packet that was queued on it. */
|
517 |
|
|
|
518 |
|
|
LWIP_DEBUGF (ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: incoming ARP request\n"));
|
519 |
|
|
/* ARP request for our address? */
|
520 |
|
|
if (for_us) {
|
521 |
|
|
|
522 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: replying to ARP request for our IP address\n"));
|
523 |
|
|
/* re-use pbuf to send ARP reply */
|
524 |
|
|
hdr->opcode = htons(ARP_REPLY);
|
525 |
|
|
|
526 |
|
|
hdr->dipaddr = hdr->sipaddr;
|
527 |
|
|
hdr->sipaddr = *(struct ip_addr2 *)&netif->ip_addr;
|
528 |
|
|
|
529 |
|
|
for(i = 0; i < netif->hwaddr_len; ++i) {
|
530 |
|
|
hdr->dhwaddr.addr[i] = hdr->shwaddr.addr[i];
|
531 |
|
|
hdr->shwaddr.addr[i] = ethaddr->addr[i];
|
532 |
|
|
hdr->ethhdr.dest.addr[i] = hdr->dhwaddr.addr[i];
|
533 |
|
|
hdr->ethhdr.src.addr[i] = ethaddr->addr[i];
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
hdr->hwtype = htons(HWTYPE_ETHERNET);
|
537 |
|
|
ARPH_HWLEN_SET(hdr, netif->hwaddr_len);
|
538 |
|
|
|
539 |
|
|
hdr->proto = htons(ETHTYPE_IP);
|
540 |
|
|
ARPH_PROTOLEN_SET(hdr, sizeof(struct ip_addr));
|
541 |
|
|
|
542 |
|
|
hdr->ethhdr.type = htons(ETHTYPE_ARP);
|
543 |
|
|
/* return ARP reply */
|
544 |
|
|
netif->linkoutput(netif, p);
|
545 |
|
|
/* we are not configured? */
|
546 |
|
|
} else if (netif->ip_addr.addr == 0) {
|
547 |
|
|
/* { for_us == 0 and netif->ip_addr.addr == 0 } */
|
548 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: we are unconfigured, ARP request ignored.\n"));
|
549 |
|
|
/* request was not directed to us */
|
550 |
|
|
} else {
|
551 |
|
|
/* { for_us == 0 and netif->ip_addr.addr != 0 } */
|
552 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: ARP request was not for us.\n"));
|
553 |
|
|
}
|
554 |
|
|
break;
|
555 |
|
|
case ARP_REPLY:
|
556 |
|
|
/* ARP reply. We already updated the ARP cache earlier. */
|
557 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: incoming ARP reply\n"));
|
558 |
|
|
#if (LWIP_DHCP && DHCP_DOES_ARP_CHECK)
|
559 |
|
|
/* DHCP wants to know about ARP replies from any host with an
|
560 |
|
|
* IP address also offered to us by the DHCP server. We do not
|
561 |
|
|
* want to take a duplicate IP address on a single network.
|
562 |
|
|
* @todo How should we handle redundant (fail-over) interfaces?
|
563 |
|
|
* */
|
564 |
|
|
dhcp_arp_reply(netif, &sipaddr);
|
565 |
|
|
#endif
|
566 |
|
|
break;
|
567 |
|
|
default:
|
568 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: ARP unknown opcode type %"S16_F"\n", htons(hdr->opcode)));
|
569 |
|
|
break;
|
570 |
|
|
}
|
571 |
|
|
/* free ARP packet */
|
572 |
|
|
pbuf_free(p);
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
/**
|
576 |
|
|
* Resolve and fill-in Ethernet address header for outgoing packet.
|
577 |
|
|
*
|
578 |
|
|
* For IP multicast and broadcast, corresponding Ethernet addresses
|
579 |
|
|
* are selected and the packet is transmitted on the link.
|
580 |
|
|
*
|
581 |
|
|
* For unicast addresses, the packet is submitted to etharp_query(). In
|
582 |
|
|
* case the IP address is outside the local network, the IP address of
|
583 |
|
|
* the gateway is used.
|
584 |
|
|
*
|
585 |
|
|
* @param netif The lwIP network interface which the IP packet will be sent on.
|
586 |
|
|
* @param ipaddr The IP address of the packet destination.
|
587 |
|
|
* @param pbuf The pbuf(s) containing the IP packet to be sent.
|
588 |
|
|
*
|
589 |
|
|
* @return
|
590 |
|
|
* - ERR_RTE No route to destination (no gateway to external networks),
|
591 |
|
|
* or the return type of either etharp_query() or netif->linkoutput().
|
592 |
|
|
*/
|
593 |
|
|
err_t
|
594 |
|
|
etharp_output(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q)
|
595 |
|
|
{
|
596 |
|
|
struct eth_addr *dest, *srcaddr, mcastaddr;
|
597 |
|
|
struct eth_hdr *ethhdr;
|
598 |
|
|
u8_t i;
|
599 |
|
|
|
600 |
|
|
/* make room for Ethernet header - should not fail */
|
601 |
|
|
if (pbuf_header(q, sizeof(struct eth_hdr)) != 0) {
|
602 |
|
|
/* bail out */
|
603 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 2, ("etharp_output: could not allocate room for header.\n"));
|
604 |
|
|
LINK_STATS_INC(link.lenerr);
|
605 |
|
|
return ERR_BUF;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* assume unresolved Ethernet address */
|
609 |
|
|
dest = NULL;
|
610 |
|
|
/* Determine on destination hardware address. Broadcasts and multicasts
|
611 |
|
|
* are special, other IP addresses are looked up in the ARP table. */
|
612 |
|
|
|
613 |
|
|
/* broadcast destination IP address? */
|
614 |
|
|
if (ip_addr_isbroadcast(ipaddr, netif)) {
|
615 |
|
|
/* broadcast on Ethernet also */
|
616 |
|
|
dest = (struct eth_addr *)ðbroadcast;
|
617 |
|
|
/* multicast destination IP address? */
|
618 |
|
|
} else if (ip_addr_ismulticast(ipaddr)) {
|
619 |
|
|
/* Hash IP multicast address to MAC address.*/
|
620 |
|
|
mcastaddr.addr[0] = 0x01;
|
621 |
|
|
mcastaddr.addr[1] = 0x00;
|
622 |
|
|
mcastaddr.addr[2] = 0x5e;
|
623 |
|
|
mcastaddr.addr[3] = ip4_addr2(ipaddr) & 0x7f;
|
624 |
|
|
mcastaddr.addr[4] = ip4_addr3(ipaddr);
|
625 |
|
|
mcastaddr.addr[5] = ip4_addr4(ipaddr);
|
626 |
|
|
/* destination Ethernet address is multicast */
|
627 |
|
|
dest = &mcastaddr;
|
628 |
|
|
/* unicast destination IP address? */
|
629 |
|
|
} else {
|
630 |
|
|
/* outside local network? */
|
631 |
|
|
if (!ip_addr_netcmp(ipaddr, &(netif->ip_addr), &(netif->netmask))) {
|
632 |
|
|
/* interface has default gateway? */
|
633 |
|
|
if (netif->gw.addr != 0) {
|
634 |
|
|
/* send to hardware address of default gateway IP address */
|
635 |
|
|
ipaddr = &(netif->gw);
|
636 |
|
|
/* no default gateway available */
|
637 |
|
|
} else {
|
638 |
|
|
/* no route to destination error (default gateway missing) */
|
639 |
|
|
return ERR_RTE;
|
640 |
|
|
}
|
641 |
|
|
}
|
642 |
|
|
/* queue on destination Ethernet address belonging to ipaddr */
|
643 |
|
|
return etharp_query(netif, ipaddr, q);
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
/* continuation for multicast/broadcast destinations */
|
647 |
|
|
/* obtain source Ethernet address of the given interface */
|
648 |
|
|
srcaddr = (struct eth_addr *)netif->hwaddr;
|
649 |
|
|
ethhdr = q->payload;
|
650 |
|
|
for (i = 0; i < netif->hwaddr_len; i++) {
|
651 |
|
|
ethhdr->dest.addr[i] = dest->addr[i];
|
652 |
|
|
ethhdr->src.addr[i] = srcaddr->addr[i];
|
653 |
|
|
}
|
654 |
|
|
ethhdr->type = htons(ETHTYPE_IP);
|
655 |
|
|
/* send packet directly on the link */
|
656 |
|
|
return netif->linkoutput(netif, q);
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/**
|
660 |
|
|
* Send an ARP request for the given IP address and/or queue a packet.
|
661 |
|
|
*
|
662 |
|
|
* If the IP address was not yet in the cache, a pending ARP cache entry
|
663 |
|
|
* is added and an ARP request is sent for the given address. The packet
|
664 |
|
|
* is queued on this entry.
|
665 |
|
|
*
|
666 |
|
|
* If the IP address was already pending in the cache, a new ARP request
|
667 |
|
|
* is sent for the given address. The packet is queued on this entry.
|
668 |
|
|
*
|
669 |
|
|
* If the IP address was already stable in the cache, and a packet is
|
670 |
|
|
* given, it is directly sent and no ARP request is sent out.
|
671 |
|
|
*
|
672 |
|
|
* If the IP address was already stable in the cache, and no packet is
|
673 |
|
|
* given, an ARP request is sent out.
|
674 |
|
|
*
|
675 |
|
|
* @param netif The lwIP network interface on which ipaddr
|
676 |
|
|
* must be queried for.
|
677 |
|
|
* @param ipaddr The IP address to be resolved.
|
678 |
|
|
* @param q If non-NULL, a pbuf that must be delivered to the IP address.
|
679 |
|
|
* q is not freed by this function.
|
680 |
|
|
*
|
681 |
|
|
* @return
|
682 |
|
|
* - ERR_BUF Could not make room for Ethernet header.
|
683 |
|
|
* - ERR_MEM Hardware address unknown, and no more ARP entries available
|
684 |
|
|
* to query for address or queue the packet.
|
685 |
|
|
* - ERR_MEM Could not queue packet due to memory shortage.
|
686 |
|
|
* - ERR_RTE No route to destination (no gateway to external networks).
|
687 |
|
|
* - ERR_ARG Non-unicast address given, those will not appear in ARP cache.
|
688 |
|
|
*
|
689 |
|
|
*/
|
690 |
|
|
err_t etharp_query(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q)
|
691 |
|
|
{
|
692 |
|
|
struct eth_addr * srcaddr = (struct eth_addr *)netif->hwaddr;
|
693 |
|
|
err_t result = ERR_MEM;
|
694 |
|
|
s8_t i; /* ARP entry index */
|
695 |
|
|
u8_t k; /* Ethernet address octet index */
|
696 |
|
|
|
697 |
|
|
/* non-unicast address? */
|
698 |
|
|
if (ip_addr_isbroadcast(ipaddr, netif) ||
|
699 |
|
|
ip_addr_ismulticast(ipaddr) ||
|
700 |
|
|
ip_addr_isany(ipaddr)) {
|
701 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: will not add non-unicast IP address to ARP cache\n"));
|
702 |
|
|
return ERR_ARG;
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
/* find entry in ARP cache, ask to create entry if queueing packet */
|
706 |
|
|
i = find_entry(ipaddr, ETHARP_TRY_HARD);
|
707 |
|
|
|
708 |
|
|
/* could not find or create entry? */
|
709 |
|
|
if (i < 0)
|
710 |
|
|
{
|
711 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: could not create ARP entry\n"));
|
712 |
|
|
if (q) LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: packet dropped\n"));
|
713 |
|
|
return (err_t)i;
|
714 |
|
|
}
|
715 |
|
|
|
716 |
|
|
/* mark a fresh entry as pending (we just sent a request) */
|
717 |
|
|
if (arp_table[i].state == ETHARP_STATE_EMPTY) {
|
718 |
|
|
arp_table[i].state = ETHARP_STATE_PENDING;
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
/* { i is either a STABLE or (new or existing) PENDING entry } */
|
722 |
|
|
LWIP_ASSERT("arp_table[i].state == PENDING or STABLE",
|
723 |
|
|
((arp_table[i].state == ETHARP_STATE_PENDING) ||
|
724 |
|
|
(arp_table[i].state == ETHARP_STATE_STABLE)));
|
725 |
|
|
|
726 |
|
|
/* do we have a pending entry? or an implicit query request? */
|
727 |
|
|
if ((arp_table[i].state == ETHARP_STATE_PENDING) || (q == NULL)) {
|
728 |
|
|
/* try to resolve it; send out ARP request */
|
729 |
|
|
result = etharp_request(netif, ipaddr);
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
/* packet given? */
|
733 |
|
|
if (q != NULL) {
|
734 |
|
|
/* stable entry? */
|
735 |
|
|
if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
736 |
|
|
/* we have a valid IP->Ethernet address mapping,
|
737 |
|
|
* fill in the Ethernet header for the outgoing packet */
|
738 |
|
|
struct eth_hdr *ethhdr = q->payload;
|
739 |
|
|
for(k = 0; k < netif->hwaddr_len; k++) {
|
740 |
|
|
ethhdr->dest.addr[k] = arp_table[i].ethaddr.addr[k];
|
741 |
|
|
ethhdr->src.addr[k] = srcaddr->addr[k];
|
742 |
|
|
}
|
743 |
|
|
ethhdr->type = htons(ETHTYPE_IP);
|
744 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: sending packet %p\n", (void *)q));
|
745 |
|
|
/* send the packet */
|
746 |
|
|
result = netif->linkoutput(netif, q);
|
747 |
|
|
/* pending entry? (either just created or already pending */
|
748 |
|
|
} else if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
749 |
|
|
#if ARP_QUEUEING /* queue the given q packet */
|
750 |
|
|
struct pbuf *p;
|
751 |
|
|
/* copy any PBUF_REF referenced payloads into PBUF_RAM */
|
752 |
|
|
/* (the caller of lwIP assumes the referenced payload can be
|
753 |
|
|
* freed after it returns from the lwIP call that brought us here) */
|
754 |
|
|
p = pbuf_take(q);
|
755 |
|
|
/* packet could be taken over? */
|
756 |
|
|
if (p != NULL) {
|
757 |
|
|
/* queue packet ... */
|
758 |
|
|
if (arp_table[i].p == NULL) {
|
759 |
|
|
/* ... in the empty queue */
|
760 |
|
|
pbuf_ref(p);
|
761 |
|
|
arp_table[i].p = p;
|
762 |
|
|
#if 0 /* multi-packet-queueing disabled, see bug #11400 */
|
763 |
|
|
} else {
|
764 |
|
|
/* ... at tail of non-empty queue */
|
765 |
|
|
pbuf_queue(arp_table[i].p, p);
|
766 |
|
|
#endif
|
767 |
|
|
}
|
768 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: queued packet %p on ARP entry %"S16_F"\n", (void *)q, (s16_t)i));
|
769 |
|
|
result = ERR_OK;
|
770 |
|
|
} else {
|
771 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: could not queue a copy of PBUF_REF packet %p (out of memory)\n", (void *)q));
|
772 |
|
|
/* { result == ERR_MEM } through initialization */
|
773 |
|
|
}
|
774 |
|
|
#else /* ARP_QUEUEING == 0 */
|
775 |
|
|
/* q && state == PENDING && ARP_QUEUEING == 0 => result = ERR_MEM */
|
776 |
|
|
/* { result == ERR_MEM } through initialization */
|
777 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: Ethernet destination address unknown, queueing disabled, packet %p dropped\n", (void *)q));
|
778 |
|
|
#endif
|
779 |
|
|
}
|
780 |
|
|
}
|
781 |
|
|
return result;
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
err_t etharp_request(struct netif *netif, struct ip_addr *ipaddr)
|
785 |
|
|
{
|
786 |
|
|
struct pbuf *p;
|
787 |
|
|
struct eth_addr * srcaddr = (struct eth_addr *)netif->hwaddr;
|
788 |
|
|
err_t result = ERR_OK;
|
789 |
|
|
u8_t k; /* ARP entry index */
|
790 |
|
|
|
791 |
|
|
/* allocate a pbuf for the outgoing ARP request packet */
|
792 |
|
|
p = pbuf_alloc(PBUF_LINK, sizeof(struct etharp_hdr), PBUF_RAM);
|
793 |
|
|
/* could allocate a pbuf for an ARP request? */
|
794 |
|
|
if (p != NULL) {
|
795 |
|
|
struct etharp_hdr *hdr = p->payload;
|
796 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_request: sending ARP request.\n"));
|
797 |
|
|
hdr->opcode = htons(ARP_REQUEST);
|
798 |
|
|
for (k = 0; k < netif->hwaddr_len; k++)
|
799 |
|
|
{
|
800 |
|
|
hdr->shwaddr.addr[k] = srcaddr->addr[k];
|
801 |
|
|
/* the hardware address is what we ask for, in
|
802 |
|
|
* a request it is a don't-care value, we use zeroes */
|
803 |
|
|
hdr->dhwaddr.addr[k] = 0x00;
|
804 |
|
|
}
|
805 |
|
|
hdr->dipaddr = *(struct ip_addr2 *)ipaddr;
|
806 |
|
|
hdr->sipaddr = *(struct ip_addr2 *)&netif->ip_addr;
|
807 |
|
|
|
808 |
|
|
hdr->hwtype = htons(HWTYPE_ETHERNET);
|
809 |
|
|
ARPH_HWLEN_SET(hdr, netif->hwaddr_len);
|
810 |
|
|
|
811 |
|
|
hdr->proto = htons(ETHTYPE_IP);
|
812 |
|
|
ARPH_PROTOLEN_SET(hdr, sizeof(struct ip_addr));
|
813 |
|
|
for (k = 0; k < netif->hwaddr_len; ++k)
|
814 |
|
|
{
|
815 |
|
|
/* broadcast to all network interfaces on the local network */
|
816 |
|
|
hdr->ethhdr.dest.addr[k] = 0xff;
|
817 |
|
|
hdr->ethhdr.src.addr[k] = srcaddr->addr[k];
|
818 |
|
|
}
|
819 |
|
|
hdr->ethhdr.type = htons(ETHTYPE_ARP);
|
820 |
|
|
/* send ARP query */
|
821 |
|
|
result = netif->linkoutput(netif, p);
|
822 |
|
|
/* free ARP query packet */
|
823 |
|
|
pbuf_free(p);
|
824 |
|
|
p = NULL;
|
825 |
|
|
/* could not allocate pbuf for ARP request */
|
826 |
|
|
} else {
|
827 |
|
|
result = ERR_MEM;
|
828 |
|
|
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 2, ("etharp_request: could not allocate pbuf for ARP request.\n"));
|
829 |
|
|
}
|
830 |
|
|
return result;
|
831 |
|
|
}
|