1 |
583 |
jeremybenn |
/**
|
2 |
|
|
* \addtogroup uip
|
3 |
|
|
* @{
|
4 |
|
|
*/
|
5 |
|
|
|
6 |
|
|
/**
|
7 |
|
|
* \defgroup uiparp uIP Address Resolution Protocol
|
8 |
|
|
* @{
|
9 |
|
|
*
|
10 |
|
|
* The Address Resolution Protocol ARP is used for mapping between IP
|
11 |
|
|
* addresses and link level addresses such as the Ethernet MAC
|
12 |
|
|
* addresses. ARP uses broadcast queries to ask for the link level
|
13 |
|
|
* address of a known IP address and the host which is configured with
|
14 |
|
|
* the IP address for which the query was meant, will respond with its
|
15 |
|
|
* link level address.
|
16 |
|
|
*
|
17 |
|
|
* \note This ARP implementation only supports Ethernet.
|
18 |
|
|
*/
|
19 |
|
|
|
20 |
|
|
/**
|
21 |
|
|
* \file
|
22 |
|
|
* Implementation of the ARP Address Resolution Protocol.
|
23 |
|
|
* \author Adam Dunkels <adam@dunkels.com>
|
24 |
|
|
*
|
25 |
|
|
*/
|
26 |
|
|
|
27 |
|
|
/*
|
28 |
|
|
* Copyright (c) 2001-2003, Adam Dunkels.
|
29 |
|
|
* All rights reserved.
|
30 |
|
|
*
|
31 |
|
|
* Redistribution and use in source and binary forms, with or without
|
32 |
|
|
* modification, are permitted provided that the following conditions
|
33 |
|
|
* are met:
|
34 |
|
|
* 1. Redistributions of source code must retain the above copyright
|
35 |
|
|
* notice, this list of conditions and the following disclaimer.
|
36 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
37 |
|
|
* notice, this list of conditions and the following disclaimer in the
|
38 |
|
|
* documentation and/or other materials provided with the distribution.
|
39 |
|
|
* 3. The name of the author may not be used to endorse or promote
|
40 |
|
|
* products derived from this software without specific prior
|
41 |
|
|
* written permission.
|
42 |
|
|
*
|
43 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
44 |
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
45 |
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
46 |
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
47 |
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
48 |
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
49 |
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
50 |
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
51 |
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
52 |
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
53 |
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
54 |
|
|
*
|
55 |
|
|
* This file is part of the uIP TCP/IP stack.
|
56 |
|
|
*
|
57 |
|
|
* $Id: uip_arp.c 2 2011-07-17 20:13:17Z filepang@gmail.com $
|
58 |
|
|
*
|
59 |
|
|
*/
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
#include "uip_arp.h"
|
63 |
|
|
|
64 |
|
|
#include <string.h>
|
65 |
|
|
|
66 |
|
|
struct arp_hdr {
|
67 |
|
|
struct uip_eth_hdr ethhdr;
|
68 |
|
|
u16_t hwtype;
|
69 |
|
|
u16_t protocol;
|
70 |
|
|
u8_t hwlen;
|
71 |
|
|
u8_t protolen;
|
72 |
|
|
u16_t opcode;
|
73 |
|
|
struct uip_eth_addr shwaddr;
|
74 |
|
|
u16_t sipaddr[2];
|
75 |
|
|
struct uip_eth_addr dhwaddr;
|
76 |
|
|
u16_t dipaddr[2];
|
77 |
|
|
};
|
78 |
|
|
|
79 |
|
|
struct ethip_hdr {
|
80 |
|
|
struct uip_eth_hdr ethhdr;
|
81 |
|
|
/* IP header. */
|
82 |
|
|
u8_t vhl,
|
83 |
|
|
tos,
|
84 |
|
|
len[2],
|
85 |
|
|
ipid[2],
|
86 |
|
|
ipoffset[2],
|
87 |
|
|
ttl,
|
88 |
|
|
proto;
|
89 |
|
|
u16_t ipchksum;
|
90 |
|
|
u16_t srcipaddr[2],
|
91 |
|
|
destipaddr[2];
|
92 |
|
|
};
|
93 |
|
|
|
94 |
|
|
#define ARP_REQUEST 1
|
95 |
|
|
#define ARP_REPLY 2
|
96 |
|
|
|
97 |
|
|
#define ARP_HWTYPE_ETH 1
|
98 |
|
|
|
99 |
|
|
struct arp_entry {
|
100 |
|
|
u16_t ipaddr[2];
|
101 |
|
|
struct uip_eth_addr ethaddr;
|
102 |
|
|
u8_t time;
|
103 |
|
|
};
|
104 |
|
|
|
105 |
|
|
struct uip_eth_addr uip_ethaddr = {{UIP_ETHADDR0,
|
106 |
|
|
UIP_ETHADDR1,
|
107 |
|
|
UIP_ETHADDR2,
|
108 |
|
|
UIP_ETHADDR3,
|
109 |
|
|
UIP_ETHADDR4,
|
110 |
|
|
UIP_ETHADDR5}};
|
111 |
|
|
|
112 |
|
|
static struct arp_entry arp_table[UIP_ARPTAB_SIZE];
|
113 |
|
|
static u16_t ipaddr[2];
|
114 |
|
|
static u8_t i, c;
|
115 |
|
|
|
116 |
|
|
static u8_t arptime;
|
117 |
|
|
static u8_t tmpage;
|
118 |
|
|
|
119 |
|
|
#define BUF ((struct arp_hdr *)&uip_buf[0])
|
120 |
|
|
#define IPBUF ((struct ethip_hdr *)&uip_buf[0])
|
121 |
|
|
/*-----------------------------------------------------------------------------------*/
|
122 |
|
|
/**
|
123 |
|
|
* Initialize the ARP module.
|
124 |
|
|
*
|
125 |
|
|
*/
|
126 |
|
|
/*-----------------------------------------------------------------------------------*/
|
127 |
|
|
void
|
128 |
|
|
uip_arp_init(void)
|
129 |
|
|
{
|
130 |
|
|
for(i = 0; i < UIP_ARPTAB_SIZE; ++i) {
|
131 |
|
|
memset(arp_table[i].ipaddr, 0, 4);
|
132 |
|
|
}
|
133 |
|
|
}
|
134 |
|
|
/*-----------------------------------------------------------------------------------*/
|
135 |
|
|
/**
|
136 |
|
|
* Periodic ARP processing function.
|
137 |
|
|
*
|
138 |
|
|
* This function performs periodic timer processing in the ARP module
|
139 |
|
|
* and should be called at regular intervals. The recommended interval
|
140 |
|
|
* is 10 seconds between the calls.
|
141 |
|
|
*
|
142 |
|
|
*/
|
143 |
|
|
/*-----------------------------------------------------------------------------------*/
|
144 |
|
|
void
|
145 |
|
|
uip_arp_timer(void)
|
146 |
|
|
{
|
147 |
|
|
struct arp_entry *tabptr;
|
148 |
|
|
|
149 |
|
|
++arptime;
|
150 |
|
|
for(i = 0; i < UIP_ARPTAB_SIZE; ++i) {
|
151 |
|
|
tabptr = &arp_table[i];
|
152 |
|
|
if((tabptr->ipaddr[0] | tabptr->ipaddr[1]) != 0 &&
|
153 |
|
|
arptime - tabptr->time >= UIP_ARP_MAXAGE) {
|
154 |
|
|
memset(tabptr->ipaddr, 0, 4);
|
155 |
|
|
}
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
}
|
159 |
|
|
/*-----------------------------------------------------------------------------------*/
|
160 |
|
|
static void
|
161 |
|
|
uip_arp_update(u16_t *ipaddr, struct uip_eth_addr *ethaddr)
|
162 |
|
|
{
|
163 |
|
|
register struct arp_entry *tabptr;
|
164 |
|
|
/* Walk through the ARP mapping table and try to find an entry to
|
165 |
|
|
update. If none is found, the IP -> MAC address mapping is
|
166 |
|
|
inserted in the ARP table. */
|
167 |
|
|
for(i = 0; i < UIP_ARPTAB_SIZE; ++i) {
|
168 |
|
|
|
169 |
|
|
tabptr = &arp_table[i];
|
170 |
|
|
/* Only check those entries that are actually in use. */
|
171 |
|
|
if(tabptr->ipaddr[0] != 0 &&
|
172 |
|
|
tabptr->ipaddr[1] != 0) {
|
173 |
|
|
|
174 |
|
|
/* Check if the source IP address of the incoming packet matches
|
175 |
|
|
the IP address in this ARP table entry. */
|
176 |
|
|
if(ipaddr[0] == tabptr->ipaddr[0] &&
|
177 |
|
|
ipaddr[1] == tabptr->ipaddr[1]) {
|
178 |
|
|
|
179 |
|
|
/* An old entry found, update this and return. */
|
180 |
|
|
memcpy(tabptr->ethaddr.addr, ethaddr->addr, 6);
|
181 |
|
|
tabptr->time = arptime;
|
182 |
|
|
|
183 |
|
|
return;
|
184 |
|
|
}
|
185 |
|
|
}
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
/* If we get here, no existing ARP table entry was found, so we
|
189 |
|
|
create one. */
|
190 |
|
|
|
191 |
|
|
/* First, we try to find an unused entry in the ARP table. */
|
192 |
|
|
for(i = 0; i < UIP_ARPTAB_SIZE; ++i) {
|
193 |
|
|
tabptr = &arp_table[i];
|
194 |
|
|
if(tabptr->ipaddr[0] == 0 &&
|
195 |
|
|
tabptr->ipaddr[1] == 0) {
|
196 |
|
|
break;
|
197 |
|
|
}
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
/* If no unused entry is found, we try to find the oldest entry and
|
201 |
|
|
throw it away. */
|
202 |
|
|
if(i == UIP_ARPTAB_SIZE) {
|
203 |
|
|
tmpage = 0;
|
204 |
|
|
c = 0;
|
205 |
|
|
for(i = 0; i < UIP_ARPTAB_SIZE; ++i) {
|
206 |
|
|
tabptr = &arp_table[i];
|
207 |
|
|
if(arptime - tabptr->time > tmpage) {
|
208 |
|
|
tmpage = arptime - tabptr->time;
|
209 |
|
|
c = i;
|
210 |
|
|
}
|
211 |
|
|
}
|
212 |
|
|
i = c;
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
/* Now, i is the ARP table entry which we will fill with the new
|
216 |
|
|
information. */
|
217 |
|
|
memcpy(tabptr->ipaddr, ipaddr, 4);
|
218 |
|
|
memcpy(tabptr->ethaddr.addr, ethaddr->addr, 6);
|
219 |
|
|
tabptr->time = arptime;
|
220 |
|
|
}
|
221 |
|
|
/*-----------------------------------------------------------------------------------*/
|
222 |
|
|
/**
|
223 |
|
|
* ARP processing for incoming IP packets
|
224 |
|
|
*
|
225 |
|
|
* This function should be called by the device driver when an IP
|
226 |
|
|
* packet has been received. The function will check if the address is
|
227 |
|
|
* in the ARP cache, and if so the ARP cache entry will be
|
228 |
|
|
* refreshed. If no ARP cache entry was found, a new one is created.
|
229 |
|
|
*
|
230 |
|
|
* This function expects an IP packet with a prepended Ethernet header
|
231 |
|
|
* in the uip_buf[] buffer, and the length of the packet in the global
|
232 |
|
|
* variable uip_len.
|
233 |
|
|
*/
|
234 |
|
|
/*-----------------------------------------------------------------------------------*/
|
235 |
|
|
void
|
236 |
|
|
uip_arp_ipin(void)
|
237 |
|
|
{
|
238 |
|
|
uip_len -= sizeof(struct uip_eth_hdr);
|
239 |
|
|
|
240 |
|
|
/* Only insert/update an entry if the source IP address of the
|
241 |
|
|
incoming IP packet comes from a host on the local network. */
|
242 |
|
|
if((IPBUF->srcipaddr[0] & uip_arp_netmask[0]) !=
|
243 |
|
|
(uip_hostaddr[0] & uip_arp_netmask[0])) {
|
244 |
|
|
return;
|
245 |
|
|
}
|
246 |
|
|
if((IPBUF->srcipaddr[1] & uip_arp_netmask[1]) !=
|
247 |
|
|
(uip_hostaddr[1] & uip_arp_netmask[1])) {
|
248 |
|
|
return;
|
249 |
|
|
}
|
250 |
|
|
uip_arp_update(IPBUF->srcipaddr, &(IPBUF->ethhdr.src));
|
251 |
|
|
|
252 |
|
|
return;
|
253 |
|
|
}
|
254 |
|
|
/*-----------------------------------------------------------------------------------*/
|
255 |
|
|
/**
|
256 |
|
|
* ARP processing for incoming ARP packets.
|
257 |
|
|
*
|
258 |
|
|
* This function should be called by the device driver when an ARP
|
259 |
|
|
* packet has been received. The function will act differently
|
260 |
|
|
* depending on the ARP packet type: if it is a reply for a request
|
261 |
|
|
* that we previously sent out, the ARP cache will be filled in with
|
262 |
|
|
* the values from the ARP reply. If the incoming ARP packet is an ARP
|
263 |
|
|
* request for our IP address, an ARP reply packet is created and put
|
264 |
|
|
* into the uip_buf[] buffer.
|
265 |
|
|
*
|
266 |
|
|
* When the function returns, the value of the global variable uip_len
|
267 |
|
|
* indicates whether the device driver should send out a packet or
|
268 |
|
|
* not. If uip_len is zero, no packet should be sent. If uip_len is
|
269 |
|
|
* non-zero, it contains the length of the outbound packet that is
|
270 |
|
|
* present in the uip_buf[] buffer.
|
271 |
|
|
*
|
272 |
|
|
* This function expects an ARP packet with a prepended Ethernet
|
273 |
|
|
* header in the uip_buf[] buffer, and the length of the packet in the
|
274 |
|
|
* global variable uip_len.
|
275 |
|
|
*/
|
276 |
|
|
/*-----------------------------------------------------------------------------------*/
|
277 |
|
|
typedef struct arp_hdr aht;
|
278 |
|
|
|
279 |
|
|
void
|
280 |
|
|
uip_arp_arpin(void)
|
281 |
|
|
{
|
282 |
|
|
int ul;
|
283 |
|
|
|
284 |
|
|
if(uip_len < sizeof(struct arp_hdr)) {
|
285 |
|
|
uip_len = 0;
|
286 |
|
|
return;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
uip_len = 0;
|
290 |
|
|
|
291 |
|
|
switch(BUF->opcode) {
|
292 |
|
|
case HTONS(ARP_REQUEST):
|
293 |
|
|
/* ARP request. If it asked for our address, we send out a
|
294 |
|
|
reply. */
|
295 |
|
|
if(BUF->dipaddr[0] == uip_hostaddr[0] &&
|
296 |
|
|
BUF->dipaddr[1] == uip_hostaddr[1]) {
|
297 |
|
|
/* The reply opcode is 2. */
|
298 |
|
|
BUF->opcode = HTONS(2);
|
299 |
|
|
|
300 |
|
|
memcpy(BUF->dhwaddr.addr, BUF->shwaddr.addr, 6);
|
301 |
|
|
memcpy(BUF->shwaddr.addr, uip_ethaddr.addr, 6);
|
302 |
|
|
memcpy(BUF->ethhdr.src.addr, uip_ethaddr.addr, 6);
|
303 |
|
|
memcpy(BUF->ethhdr.dest.addr, BUF->dhwaddr.addr, 6);
|
304 |
|
|
|
305 |
|
|
BUF->dipaddr[0] = BUF->sipaddr[0];
|
306 |
|
|
BUF->dipaddr[1] = BUF->sipaddr[1];
|
307 |
|
|
BUF->sipaddr[0] = uip_hostaddr[0];
|
308 |
|
|
BUF->sipaddr[1] = uip_hostaddr[1];
|
309 |
|
|
|
310 |
|
|
ul = BUF->hwlen;
|
311 |
|
|
BUF->ethhdr.type = HTONS(UIP_ETHTYPE_ARP);
|
312 |
|
|
uip_len = sizeof(struct arp_hdr);
|
313 |
|
|
}
|
314 |
|
|
break;
|
315 |
|
|
case HTONS(ARP_REPLY):
|
316 |
|
|
/* ARP reply. We insert or update the ARP table if it was meant
|
317 |
|
|
for us. */
|
318 |
|
|
if(BUF->dipaddr[0] == uip_hostaddr[0] &&
|
319 |
|
|
BUF->dipaddr[1] == uip_hostaddr[1]) {
|
320 |
|
|
|
321 |
|
|
uip_arp_update(BUF->sipaddr, &BUF->shwaddr);
|
322 |
|
|
}
|
323 |
|
|
break;
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
( void ) ul;
|
327 |
|
|
|
328 |
|
|
return;
|
329 |
|
|
}
|
330 |
|
|
/*-----------------------------------------------------------------------------------*/
|
331 |
|
|
/**
|
332 |
|
|
* Prepend Ethernet header to an outbound IP packet and see if we need
|
333 |
|
|
* to send out an ARP request.
|
334 |
|
|
*
|
335 |
|
|
* This function should be called before sending out an IP packet. The
|
336 |
|
|
* function checks the destination IP address of the IP packet to see
|
337 |
|
|
* what Ethernet MAC address that should be used as a destination MAC
|
338 |
|
|
* address on the Ethernet.
|
339 |
|
|
*
|
340 |
|
|
* If the destination IP address is in the local network (determined
|
341 |
|
|
* by logical ANDing of netmask and our IP address), the function
|
342 |
|
|
* checks the ARP cache to see if an entry for the destination IP
|
343 |
|
|
* address is found. If so, an Ethernet header is prepended and the
|
344 |
|
|
* function returns. If no ARP cache entry is found for the
|
345 |
|
|
* destination IP address, the packet in the uip_buf[] is replaced by
|
346 |
|
|
* an ARP request packet for the IP address. The IP packet is dropped
|
347 |
|
|
* and it is assumed that they higher level protocols (e.g., TCP)
|
348 |
|
|
* eventually will retransmit the dropped packet.
|
349 |
|
|
*
|
350 |
|
|
* If the destination IP address is not on the local network, the IP
|
351 |
|
|
* address of the default router is used instead.
|
352 |
|
|
*
|
353 |
|
|
* When the function returns, a packet is present in the uip_buf[]
|
354 |
|
|
* buffer, and the length of the packet is in the global variable
|
355 |
|
|
* uip_len.
|
356 |
|
|
*/
|
357 |
|
|
/*-----------------------------------------------------------------------------------*/
|
358 |
|
|
void
|
359 |
|
|
uip_arp_out(void)
|
360 |
|
|
{
|
361 |
|
|
struct arp_entry *tabptr;
|
362 |
|
|
/* Find the destination IP address in the ARP table and construct
|
363 |
|
|
the Ethernet header. If the destination IP addres isn't on the
|
364 |
|
|
local network, we use the default router's IP address instead.
|
365 |
|
|
|
366 |
|
|
If not ARP table entry is found, we overwrite the original IP
|
367 |
|
|
packet with an ARP request for the IP address. */
|
368 |
|
|
|
369 |
|
|
/* Check if the destination address is on the local network. */
|
370 |
|
|
if((IPBUF->destipaddr[0] & uip_arp_netmask[0]) !=
|
371 |
|
|
(uip_hostaddr[0] & uip_arp_netmask[0]) ||
|
372 |
|
|
(IPBUF->destipaddr[1] & uip_arp_netmask[1]) !=
|
373 |
|
|
(uip_hostaddr[1] & uip_arp_netmask[1])) {
|
374 |
|
|
/* Destination address was not on the local network, so we need to
|
375 |
|
|
use the default router's IP address instead of the destination
|
376 |
|
|
address when determining the MAC address. */
|
377 |
|
|
ipaddr[0] = uip_arp_draddr[0];
|
378 |
|
|
ipaddr[1] = uip_arp_draddr[1];
|
379 |
|
|
} else {
|
380 |
|
|
/* Else, we use the destination IP address. */
|
381 |
|
|
ipaddr[0] = IPBUF->destipaddr[0];
|
382 |
|
|
ipaddr[1] = IPBUF->destipaddr[1];
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
for(i = 0; i < UIP_ARPTAB_SIZE; ++i) {
|
386 |
|
|
tabptr = &arp_table[i];
|
387 |
|
|
if(ipaddr[0] == tabptr->ipaddr[0] &&
|
388 |
|
|
ipaddr[1] == tabptr->ipaddr[1])
|
389 |
|
|
break;
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
if(i == UIP_ARPTAB_SIZE) {
|
393 |
|
|
/* The destination address was not in our ARP table, so we
|
394 |
|
|
overwrite the IP packet with an ARP request. */
|
395 |
|
|
|
396 |
|
|
memset(BUF->ethhdr.dest.addr, 0xff, 6);
|
397 |
|
|
memset(BUF->dhwaddr.addr, 0x00, 6);
|
398 |
|
|
memcpy(BUF->ethhdr.src.addr, uip_ethaddr.addr, 6);
|
399 |
|
|
memcpy(BUF->shwaddr.addr, uip_ethaddr.addr, 6);
|
400 |
|
|
|
401 |
|
|
BUF->dipaddr[0] = ipaddr[0];
|
402 |
|
|
BUF->dipaddr[1] = ipaddr[1];
|
403 |
|
|
BUF->sipaddr[0] = uip_hostaddr[0];
|
404 |
|
|
BUF->sipaddr[1] = uip_hostaddr[1];
|
405 |
|
|
BUF->opcode = HTONS(ARP_REQUEST); /* ARP request. */
|
406 |
|
|
BUF->hwtype = HTONS(ARP_HWTYPE_ETH);
|
407 |
|
|
BUF->protocol = HTONS(UIP_ETHTYPE_IP);
|
408 |
|
|
BUF->hwlen = 6;
|
409 |
|
|
BUF->protolen = 4;
|
410 |
|
|
BUF->ethhdr.type = HTONS(UIP_ETHTYPE_ARP);
|
411 |
|
|
|
412 |
|
|
uip_appdata = &uip_buf[40 + UIP_LLH_LEN];
|
413 |
|
|
|
414 |
|
|
uip_len = sizeof(struct arp_hdr);
|
415 |
|
|
return;
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
/* Build an ethernet header. */
|
419 |
|
|
memcpy(IPBUF->ethhdr.dest.addr, tabptr->ethaddr.addr, 6);
|
420 |
|
|
memcpy(IPBUF->ethhdr.src.addr, uip_ethaddr.addr, 6);
|
421 |
|
|
|
422 |
|
|
IPBUF->ethhdr.type = HTONS(UIP_ETHTYPE_IP);
|
423 |
|
|
|
424 |
|
|
uip_len += sizeof(struct uip_eth_hdr);
|
425 |
|
|
}
|
426 |
|
|
/*-----------------------------------------------------------------------------------*/
|
427 |
|
|
|
428 |
|
|
/** @} */
|
429 |
|
|
/** @} */
|