OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [freertos-6.1.1/] [Demo/] [uIP_Demo_Rowley_ARM7/] [uip/] [uip.c] - Blame information for rev 754

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 583 jeremybenn
/**
2
 * \addtogroup uip
3
 * @{
4
 */
5
 
6
/**
7
 * \file
8
 * The uIP TCP/IP stack code.
9
 * \author Adam Dunkels <adam@dunkels.com>
10
 */
11
 
12
/*
13
 * Copyright (c) 2001-2003, Adam Dunkels.
14
 * All rights reserved.
15
 *
16
 * Redistribution and use in source and binary forms, with or without
17
 * modification, are permitted provided that the following conditions
18
 * are met:
19
 * 1. Redistributions of source code must retain the above copyright
20
 *    notice, this list of conditions and the following disclaimer.
21
 * 2. Redistributions in binary form must reproduce the above copyright
22
 *    notice, this list of conditions and the following disclaimer in the
23
 *    documentation and/or other materials provided with the distribution.
24
 * 3. The name of the author may not be used to endorse or promote
25
 *    products derived from this software without specific prior
26
 *    written permission.
27
 *
28
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
29
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
30
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
32
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
34
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
36
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
37
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
38
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39
 *
40
 * This file is part of the uIP TCP/IP stack.
41
 *
42
 * $Id: uip.c 2 2011-07-17 20:13:17Z filepang@gmail.com $
43
 *
44
 */
45
 
46
/*
47
This is a small implementation of the IP and TCP protocols (as well as
48
some basic ICMP stuff). The implementation couples the IP, TCP and the
49
application layers very tightly. To keep the size of the compiled code
50
down, this code also features heavy usage of the goto statement.
51
 
52
The principle is that we have a small buffer, called the uip_buf, in
53
which the device driver puts an incoming packet. The TCP/IP stack
54
parses the headers in the packet, and calls upon the application. If
55
the remote host has sent data to the application, this data is present
56
in the uip_buf and the application read the data from there. It is up
57
to the application to put this data into a byte stream if needed. The
58
application will not be fed with data that is out of sequence.
59
 
60
If the application whishes to send data to the peer, it should put its
61
data into the uip_buf, 40 bytes from the start of the buffer. The
62
TCP/IP stack will calculate the checksums, and fill in the necessary
63
header fields and finally send the packet back to the peer.
64
*/
65
 
66
#include "uip.h"
67
#include "uipopt.h"
68
#include "uip_arch.h"
69
 
70
/*-----------------------------------------------------------------------------------*/
71
/* Variable definitions. */
72
 
73
 
74
/* The IP address of this host. If it is defined to be fixed (by setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set here. Otherwise, the address */
75
#if UIP_FIXEDADDR > 0
76
const u16_t uip_hostaddr[2] =
77
  {HTONS((UIP_IPADDR0 << 8) | UIP_IPADDR1),
78
   HTONS((UIP_IPADDR2 << 8) | UIP_IPADDR3)};
79
const u16_t uip_arp_draddr[2] =
80
  {HTONS((UIP_DRIPADDR0 << 8) | UIP_DRIPADDR1),
81
   HTONS((UIP_DRIPADDR2 << 8) | UIP_DRIPADDR3)};
82
const u16_t uip_arp_netmask[2] =
83
  {HTONS((UIP_NETMASK0 << 8) | UIP_NETMASK1),
84
   HTONS((UIP_NETMASK2 << 8) | UIP_NETMASK3)};
85
#else
86
u16_t uip_hostaddr[2];
87
u16_t uip_arp_draddr[2], uip_arp_netmask[2];
88
#endif /* UIP_FIXEDADDR */
89
 
90
u8_t uip_buf[UIP_BUFSIZE+2];   /* The packet buffer that contains
91
                                incoming packets. */
92
volatile u8_t *uip_appdata;  /* The uip_appdata pointer points to
93
                                application data. */
94
volatile u8_t *uip_sappdata;  /* The uip_appdata pointer points to the
95
                                 application data which is to be sent. */
96
#if UIP_URGDATA > 0
97
volatile u8_t *uip_urgdata;  /* The uip_urgdata pointer points to
98
                                urgent data (out-of-band data), if
99
                                present. */
100
volatile u8_t uip_urglen, uip_surglen;
101
#endif /* UIP_URGDATA > 0 */
102
 
103
volatile u16_t uip_len, uip_slen;
104
                             /* The uip_len is either 8 or 16 bits,
105
                                depending on the maximum packet
106
                                size. */
107
 
108
volatile u8_t uip_flags;     /* The uip_flags variable is used for
109
                                communication between the TCP/IP stack
110
                                and the application program. */
111
struct uip_conn *uip_conn;   /* uip_conn always points to the current
112
                                connection. */
113
 
114
struct uip_conn uip_conns[UIP_CONNS];
115
                             /* The uip_conns array holds all TCP
116
                                connections. */
117
u16_t uip_listenports[UIP_LISTENPORTS];
118
                             /* The uip_listenports list all currently
119
                                listning ports. */
120
#if UIP_UDP
121
struct uip_udp_conn *uip_udp_conn;
122
struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
123
#endif /* UIP_UDP */
124
 
125
 
126
static u16_t ipid;           /* Ths ipid variable is an increasing
127
                                number that is used for the IP ID
128
                                field. */
129
 
130
static u8_t iss[4];          /* The iss variable is used for the TCP
131
                                initial sequence number. */
132
 
133
#if UIP_ACTIVE_OPEN
134
static u16_t lastport;       /* Keeps track of the last port used for
135
                                a new connection. */
136
#endif /* UIP_ACTIVE_OPEN */
137
 
138
/* Temporary variables. */
139
volatile u8_t uip_acc32[4];
140
static u8_t c, opt;
141
static u16_t tmp16;
142
 
143
/* Structures and definitions. */
144
#define TCP_FIN 0x01
145
#define TCP_SYN 0x02
146
#define TCP_RST 0x04
147
#define TCP_PSH 0x08
148
#define TCP_ACK 0x10
149
#define TCP_URG 0x20
150
#define TCP_CTL 0x3f
151
 
152
#define ICMP_ECHO_REPLY 0
153
#define ICMP_ECHO       8     
154
 
155
/* Macros. */
156
#define BUF ((uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN])
157
#define FBUF ((uip_tcpip_hdr *)&uip_reassbuf[0])
158
#define ICMPBUF ((uip_icmpip_hdr *)&uip_buf[UIP_LLH_LEN])
159
#define UDPBUF ((uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN])
160
 
161
#if UIP_STATISTICS == 1
162
struct uip_stats uip_stat;
163
#define UIP_STAT(s) s
164
#else
165
#define UIP_STAT(s)
166
#endif /* UIP_STATISTICS == 1 */
167
 
168
#if UIP_LOGGING == 1
169
#include <stdio.h>
170
void uip_log(char *msg);
171
#define UIP_LOG(m) uip_log(m)
172
#else
173
#define UIP_LOG(m)
174
#endif /* UIP_LOGGING == 1 */
175
 
176
/*-----------------------------------------------------------------------------------*/
177
void
178
uip_init(void)
179
{
180
  for(c = 0; c < UIP_LISTENPORTS; ++c) {
181
    uip_listenports[c] = 0;
182
  }
183
  for(c = 0; c < UIP_CONNS; ++c) {
184
    uip_conns[c].tcpstateflags = CLOSED;
185
  }
186
#if UIP_ACTIVE_OPEN
187
  lastport = 1024;
188
#endif /* UIP_ACTIVE_OPEN */
189
 
190
#if UIP_UDP
191
  for(c = 0; c < UIP_UDP_CONNS; ++c) {
192
    uip_udp_conns[c].lport = 0;
193
  }
194
#endif /* UIP_UDP */
195
 
196
 
197
  /* IPv4 initialization. */
198
#if UIP_FIXEDADDR == 0
199
  uip_hostaddr[0] = uip_hostaddr[1] = 0;
200
#endif /* UIP_FIXEDADDR */
201
 
202
}
203
/*-----------------------------------------------------------------------------------*/
204
#if UIP_ACTIVE_OPEN
205
struct uip_conn *
206
uip_connect(u16_t *ripaddr, u16_t rport)
207
{
208
  register struct uip_conn *conn, *cconn;
209
 
210
  /* Find an unused local port. */
211
 again:
212
  ++lastport;
213
 
214
  if(lastport >= 32000) {
215
    lastport = 4096;
216
  }
217
 
218
  /* Check if this port is already in use, and if so try to find
219
     another one. */
220
  for(c = 0; c < UIP_CONNS; ++c) {
221
    conn = &uip_conns[c];
222
    if(conn->tcpstateflags != CLOSED &&
223
       conn->lport == htons(lastport)) {
224
      goto again;
225
    }
226
  }
227
 
228
 
229
  conn = 0;
230
  for(c = 0; c < UIP_CONNS; ++c) {
231
    cconn = &uip_conns[c];
232
    if(cconn->tcpstateflags == CLOSED) {
233
      conn = cconn;
234
      break;
235
    }
236
    if(cconn->tcpstateflags == TIME_WAIT) {
237
      if(conn == 0 ||
238
         cconn->timer > uip_conn->timer) {
239
        conn = cconn;
240
      }
241
    }
242
  }
243
 
244
  if(conn == 0) {
245
    return 0;
246
  }
247
 
248
  conn->tcpstateflags = SYN_SENT;
249
 
250
  conn->snd_nxt[0] = iss[0];
251
  conn->snd_nxt[1] = iss[1];
252
  conn->snd_nxt[2] = iss[2];
253
  conn->snd_nxt[3] = iss[3];
254
 
255
  conn->initialmss = conn->mss = UIP_TCP_MSS;
256
 
257
  conn->len = 1;   /* TCP length of the SYN is one. */
258
  conn->nrtx = 0;
259
  conn->timer = 1; /* Send the SYN next time around. */
260
  conn->rto = UIP_RTO;
261
  conn->sa = 0;
262
  conn->sv = 16;
263
  conn->lport = htons(lastport);
264
  conn->rport = rport;
265
  conn->ripaddr[0] = ripaddr[0];
266
  conn->ripaddr[1] = ripaddr[1];
267
 
268
  return conn;
269
}
270
#endif /* UIP_ACTIVE_OPEN */
271
/*-----------------------------------------------------------------------------------*/
272
#if UIP_UDP
273
struct uip_udp_conn *
274
uip_udp_new(u16_t *ripaddr, u16_t rport)
275
{
276
  register struct uip_udp_conn *conn;
277
 
278
  /* Find an unused local port. */
279
 again:
280
  ++lastport;
281
 
282
  if(lastport >= 32000) {
283
    lastport = 4096;
284
  }
285
 
286
  for(c = 0; c < UIP_UDP_CONNS; ++c) {
287
    if(uip_udp_conns[c].lport == lastport) {
288
      goto again;
289
    }
290
  }
291
 
292
 
293
  conn = 0;
294
  for(c = 0; c < UIP_UDP_CONNS; ++c) {
295
    if(uip_udp_conns[c].lport == 0) {
296
      conn = &uip_udp_conns[c];
297
      break;
298
    }
299
  }
300
 
301
  if(conn == 0) {
302
    return 0;
303
  }
304
 
305
  conn->lport = HTONS(lastport);
306
  conn->rport = HTONS(rport);
307
  conn->ripaddr[0] = ripaddr[0];
308
  conn->ripaddr[1] = ripaddr[1];
309
 
310
  return conn;
311
}
312
#endif /* UIP_UDP */
313
/*-----------------------------------------------------------------------------------*/
314
void
315
uip_unlisten(u16_t port)
316
{
317
  for(c = 0; c < UIP_LISTENPORTS; ++c) {
318
    if(uip_listenports[c] == port) {
319
      uip_listenports[c] = 0;
320
      return;
321
    }
322
  }
323
}
324
/*-----------------------------------------------------------------------------------*/
325
void
326
uip_listen(u16_t port)
327
{
328
  for(c = 0; c < UIP_LISTENPORTS; ++c) {
329
    if(uip_listenports[c] == 0) {
330
      uip_listenports[c] = port;
331
      return;
332
    }
333
  }
334
}
335
/*-----------------------------------------------------------------------------------*/
336
/* XXX: IP fragment reassembly: not well-tested. */
337
 
338
#if UIP_REASSEMBLY
339
#define UIP_REASS_BUFSIZE (UIP_BUFSIZE - UIP_LLH_LEN)
340
static u8_t uip_reassbuf[UIP_REASS_BUFSIZE];
341
static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)];
342
static const u8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f,
343
                                    0x0f, 0x07, 0x03, 0x01};
344
static u16_t uip_reasslen;
345
static u8_t uip_reassflags;
346
#define UIP_REASS_FLAG_LASTFRAG 0x01
347
static u8_t uip_reasstmr;
348
 
349
#define IP_HLEN 20
350
#define IP_MF   0x20
351
 
352
static u8_t
353
uip_reass(void)
354
{
355
  u16_t offset, len;
356
  u16_t i;
357
 
358
  /* If ip_reasstmr is zero, no packet is present in the buffer, so we
359
     write the IP header of the fragment into the reassembly
360
     buffer. The timer is updated with the maximum age. */
361
  if(uip_reasstmr == 0) {
362
    memcpy(uip_reassbuf, &BUF->vhl, IP_HLEN);
363
    uip_reasstmr = UIP_REASS_MAXAGE;
364
    uip_reassflags = 0;
365
    /* Clear the bitmap. */
366
    memset(uip_reassbitmap, sizeof(uip_reassbitmap), 0);
367
  }
368
 
369
  /* Check if the incoming fragment matches the one currently present
370
     in the reasembly buffer. If so, we proceed with copying the
371
     fragment into the buffer. */
372
  if(BUF->srcipaddr[0] == FBUF->srcipaddr[0] &&
373
     BUF->srcipaddr[1] == FBUF->srcipaddr[1] &&
374
     BUF->destipaddr[0] == FBUF->destipaddr[0] &&
375
     BUF->destipaddr[1] == FBUF->destipaddr[1] &&
376
     BUF->ipid[0] == FBUF->ipid[0] &&
377
     BUF->ipid[1] == FBUF->ipid[1]) {
378
 
379
    len = (BUF->len[0] << 8) + BUF->len[1] - (BUF->vhl & 0x0f) * 4;
380
    offset = (((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1]) * 8;
381
 
382
    /* If the offset or the offset + fragment length overflows the
383
       reassembly buffer, we discard the entire packet. */
384
    if(offset > UIP_REASS_BUFSIZE ||
385
       offset + len > UIP_REASS_BUFSIZE) {
386
      uip_reasstmr = 0;
387
      goto nullreturn;
388
    }
389
 
390
    /* Copy the fragment into the reassembly buffer, at the right
391
       offset. */
392
    memcpy(&uip_reassbuf[IP_HLEN + offset],
393
           (char *)BUF + (int)((BUF->vhl & 0x0f) * 4),
394
           len);
395
 
396
    /* Update the bitmap. */
397
    if(offset / (8 * 8) == (offset + len) / (8 * 8)) {
398
      /* If the two endpoints are in the same byte, we only update
399
         that byte. */
400
 
401
      uip_reassbitmap[offset / (8 * 8)] |=
402
             bitmap_bits[(offset / 8 ) & 7] &
403
             ~bitmap_bits[((offset + len) / 8 ) & 7];
404
    } else {
405
      /* If the two endpoints are in different bytes, we update the
406
         bytes in the endpoints and fill the stuff inbetween with
407
         0xff. */
408
      uip_reassbitmap[offset / (8 * 8)] |=
409
        bitmap_bits[(offset / 8 ) & 7];
410
      for(i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) {
411
        uip_reassbitmap[i] = 0xff;
412
      }
413
      uip_reassbitmap[(offset + len) / (8 * 8)] |=
414
        ~bitmap_bits[((offset + len) / 8 ) & 7];
415
    }
416
 
417
    /* If this fragment has the More Fragments flag set to zero, we
418
       know that this is the last fragment, so we can calculate the
419
       size of the entire packet. We also set the
420
       IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
421
       the final fragment. */
422
 
423
    if((BUF->ipoffset[0] & IP_MF) == 0) {
424
      uip_reassflags |= UIP_REASS_FLAG_LASTFRAG;
425
      uip_reasslen = offset + len;
426
    }
427
 
428
    /* Finally, we check if we have a full packet in the buffer. We do
429
       this by checking if we have the last fragment and if all bits
430
       in the bitmap are set. */
431
    if(uip_reassflags & UIP_REASS_FLAG_LASTFRAG) {
432
      /* Check all bytes up to and including all but the last byte in
433
         the bitmap. */
434
      for(i = 0; i < uip_reasslen / (8 * 8) - 1; ++i) {
435
        if(uip_reassbitmap[i] != 0xff) {
436
          goto nullreturn;
437
        }
438
      }
439
      /* Check the last byte in the bitmap. It should contain just the
440
         right amount of bits. */
441
      if(uip_reassbitmap[uip_reasslen / (8 * 8)] !=
442
         (u8_t)~bitmap_bits[uip_reasslen / 8 & 7]) {
443
        goto nullreturn;
444
      }
445
 
446
      /* If we have come this far, we have a full packet in the
447
         buffer, so we allocate a pbuf and copy the packet into it. We
448
         also reset the timer. */
449
      uip_reasstmr = 0;
450
      memcpy(BUF, FBUF, uip_reasslen);
451
 
452
      /* Pretend to be a "normal" (i.e., not fragmented) IP packet
453
         from now on. */
454
      BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
455
      BUF->len[0] = uip_reasslen >> 8;
456
      BUF->len[1] = uip_reasslen & 0xff;
457
      BUF->ipchksum = 0;
458
      BUF->ipchksum = ~(uip_ipchksum());
459
 
460
      return uip_reasslen;
461
    }
462
  }
463
 
464
 nullreturn:
465
  return 0;
466
}
467
#endif /* UIP_REASSEMBL */
468
/*-----------------------------------------------------------------------------------*/
469
static void
470
uip_add_rcv_nxt(u16_t n)
471
{
472
  uip_add32(uip_conn->rcv_nxt, n);
473
  uip_conn->rcv_nxt[0] = uip_acc32[0];
474
  uip_conn->rcv_nxt[1] = uip_acc32[1];
475
  uip_conn->rcv_nxt[2] = uip_acc32[2];
476
  uip_conn->rcv_nxt[3] = uip_acc32[3];
477
}
478
/*-----------------------------------------------------------------------------------*/
479
void
480
uip_process(u8_t flag)
481
{
482
  register struct uip_conn *uip_connr = uip_conn;
483
 
484
  uip_appdata = &uip_buf[40 + UIP_LLH_LEN];
485
 
486
 
487
  /* Check if we were invoked because of the perodic timer fireing. */
488
  if(flag == UIP_TIMER) {
489
#if UIP_REASSEMBLY
490
    if(uip_reasstmr != 0) {
491
      --uip_reasstmr;
492
    }
493
#endif /* UIP_REASSEMBLY */
494
    /* Increase the initial sequence number. */
495
    if(++iss[3] == 0) {
496
      if(++iss[2] == 0) {
497
        if(++iss[1] == 0) {
498
          ++iss[0];
499
        }
500
      }
501
    }
502
    uip_len = 0;
503
    if(uip_connr->tcpstateflags == TIME_WAIT ||
504
       uip_connr->tcpstateflags == FIN_WAIT_2) {
505
      ++(uip_connr->timer);
506
      if(uip_connr->timer == UIP_TIME_WAIT_TIMEOUT) {
507
        uip_connr->tcpstateflags = CLOSED;
508
      }
509
    } else if(uip_connr->tcpstateflags != CLOSED) {
510
      /* If the connection has outstanding data, we increase the
511
         connection's timer and see if it has reached the RTO value
512
         in which case we retransmit. */
513
      if(uip_outstanding(uip_connr)) {
514
        if(uip_connr->timer-- == 0) {
515
          if(uip_connr->nrtx == UIP_MAXRTX ||
516
             ((uip_connr->tcpstateflags == SYN_SENT ||
517
               uip_connr->tcpstateflags == SYN_RCVD) &&
518
              uip_connr->nrtx == UIP_MAXSYNRTX)) {
519
            uip_connr->tcpstateflags = CLOSED;
520
 
521
            /* We call UIP_APPCALL() with uip_flags set to
522
               UIP_TIMEDOUT to inform the application that the
523
               connection has timed out. */
524
            uip_flags = UIP_TIMEDOUT;
525
            UIP_APPCALL();
526
 
527
            /* We also send a reset packet to the remote host. */
528
            BUF->flags = TCP_RST | TCP_ACK;
529
            goto tcp_send_nodata;
530
          }
531
 
532
          /* Exponential backoff. */
533
          uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4?
534
                                         4:
535
                                         uip_connr->nrtx);
536
          ++(uip_connr->nrtx);
537
 
538
          /* Ok, so we need to retransmit. We do this differently
539
             depending on which state we are in. In ESTABLISHED, we
540
             call upon the application so that it may prepare the
541
             data for the retransmit. In SYN_RCVD, we resend the
542
             SYNACK that we sent earlier and in LAST_ACK we have to
543
             retransmit our FINACK. */
544
          UIP_STAT(++uip_stat.tcp.rexmit);
545
          switch(uip_connr->tcpstateflags & TS_MASK) {
546
          case SYN_RCVD:
547
            /* In the SYN_RCVD state, we should retransmit our
548
               SYNACK. */
549
            goto tcp_send_synack;
550
 
551
#if UIP_ACTIVE_OPEN
552
          case SYN_SENT:
553
            /* In the SYN_SENT state, we retransmit out SYN. */
554
            BUF->flags = 0;
555
            goto tcp_send_syn;
556
#endif /* UIP_ACTIVE_OPEN */
557
 
558
          case ESTABLISHED:
559
            /* In the ESTABLISHED state, we call upon the application
560
               to do the actual retransmit after which we jump into
561
               the code for sending out the packet (the apprexmit
562
               label). */
563
            uip_len = 0;
564
            uip_slen = 0;
565
            uip_flags = UIP_REXMIT;
566
            UIP_APPCALL();
567
            goto apprexmit;
568
 
569
          case FIN_WAIT_1:
570
          case CLOSING:
571
          case LAST_ACK:
572
            /* In all these states we should retransmit a FINACK. */
573
            goto tcp_send_finack;
574
 
575
          }
576
        }
577
      } else if((uip_connr->tcpstateflags & TS_MASK) == ESTABLISHED) {
578
        /* If there was no need for a retransmission, we poll the
579
           application for new data. */
580
        uip_len = 0;
581
        uip_slen = 0;
582
        uip_flags = UIP_POLL;
583
        UIP_APPCALL();
584
        goto appsend;
585
      }
586
    }
587
    goto drop;
588
  }
589
#if UIP_UDP 
590
  if(flag == UIP_UDP_TIMER) {
591
    if(uip_udp_conn->lport != 0) {
592
      uip_appdata = &uip_buf[UIP_LLH_LEN + 28];
593
      uip_len = uip_slen = 0;
594
      uip_flags = UIP_POLL;
595
      UIP_UDP_APPCALL();
596
      goto udp_send;
597
    } else {
598
      goto drop;
599
    }
600
  }
601
#endif
602
 
603
  /* This is where the input processing starts. */
604
  UIP_STAT(++uip_stat.ip.recv);
605
 
606
 
607
  /* Start of IPv4 input header processing code. */
608
 
609
  /* Check validity of the IP header. */
610
  if(BUF->vhl != 0x45)  { /* IP version and header length. */
611
    UIP_STAT(++uip_stat.ip.drop);
612
    UIP_STAT(++uip_stat.ip.vhlerr);
613
    UIP_LOG("ip: invalid version or header length.");
614
    goto drop;
615
  }
616
 
617
  /* Check the size of the packet. If the size reported to us in
618
     uip_len doesn't match the size reported in the IP header, there
619
     has been a transmission error and we drop the packet. */
620
 
621
  if(BUF->len[0] != (uip_len >> 8)) { /* IP length, high byte. */
622
    uip_len = (uip_len & 0xff) | (BUF->len[0] << 8);
623
  }
624
  if(BUF->len[1] != (uip_len & 0xff)) { /* IP length, low byte. */
625
    uip_len = (uip_len & 0xff00) | BUF->len[1];
626
  }
627
 
628
  /* Check the fragment flag. */
629
  if((BUF->ipoffset[0] & 0x3f) != 0 ||
630
     BUF->ipoffset[1] != 0) {
631
#if UIP_REASSEMBLY
632
    uip_len = uip_reass();
633
    if(uip_len == 0) {
634
      goto drop;
635
    }
636
#else
637
    UIP_STAT(++uip_stat.ip.drop);
638
    UIP_STAT(++uip_stat.ip.fragerr);
639
    UIP_LOG("ip: fragment dropped.");
640
    goto drop;
641
#endif /* UIP_REASSEMBLY */
642
  }
643
 
644
  /* If we are configured to use ping IP address configuration and
645
     hasn't been assigned an IP address yet, we accept all ICMP
646
     packets. */
647
#if UIP_PINGADDRCONF
648
  if((uip_hostaddr[0] | uip_hostaddr[1]) == 0) {
649
    if(BUF->proto == UIP_PROTO_ICMP) {
650
      UIP_LOG("ip: possible ping config packet received.");
651
      goto icmp_input;
652
    } else {
653
      UIP_LOG("ip: packet dropped since no address assigned.");
654
      goto drop;
655
    }
656
  }
657
#endif /* UIP_PINGADDRCONF */
658
 
659
  /* Check if the packet is destined for our IP address. */
660
  if(BUF->destipaddr[0] != uip_hostaddr[0]) {
661
    UIP_STAT(++uip_stat.ip.drop);
662
    UIP_LOG("ip: packet not for us.");
663
    goto drop;
664
  }
665
  if(BUF->destipaddr[1] != uip_hostaddr[1]) {
666
    UIP_STAT(++uip_stat.ip.drop);
667
    UIP_LOG("ip: packet not for us.");
668
    goto drop;
669
  }
670
 
671
#if 0
672
  // IP checksum is wrong through Netgear DSL router
673
  if (uip_ipchksum() != 0xffff) { /* Compute and check the IP header
674
                                    checksum. */
675
    UIP_STAT(++uip_stat.ip.drop);
676
    UIP_STAT(++uip_stat.ip.chkerr);
677
    UIP_LOG("ip: bad checksum.");
678
    goto drop;
679
  }
680
#endif
681
 
682
  if(BUF->proto == UIP_PROTO_TCP)  /* Check for TCP packet. If so, jump
683
                                     to the tcp_input label. */
684
    goto tcp_input;
685
 
686
#if UIP_UDP
687
  if(BUF->proto == UIP_PROTO_UDP)
688
    goto udp_input;
689
#endif /* UIP_UDP */
690
 
691
  if(BUF->proto != UIP_PROTO_ICMP) { /* We only allow ICMP packets from
692
                                        here. */
693
    UIP_STAT(++uip_stat.ip.drop);
694
    UIP_STAT(++uip_stat.ip.protoerr);
695
    UIP_LOG("ip: neither tcp nor icmp.");
696
    goto drop;
697
  }
698
 
699
 icmp_input:
700
  UIP_STAT(++uip_stat.icmp.recv);
701
 
702
  /* ICMP echo (i.e., ping) processing. This is simple, we only change
703
     the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP
704
     checksum before we return the packet. */
705
  if(ICMPBUF->type != ICMP_ECHO) {
706
    UIP_STAT(++uip_stat.icmp.drop);
707
    UIP_STAT(++uip_stat.icmp.typeerr);
708
    UIP_LOG("icmp: not icmp echo.");
709
    goto drop;
710
  }
711
 
712
  /* If we are configured to use ping IP address assignment, we use
713
     the destination IP address of this ping packet and assign it to
714
     ourself. */
715
#if UIP_PINGADDRCONF
716
  if((uip_hostaddr[0] | uip_hostaddr[1]) == 0) {
717
    uip_hostaddr[0] = BUF->destipaddr[0];
718
    uip_hostaddr[1] = BUF->destipaddr[1];
719
  }
720
#endif /* UIP_PINGADDRCONF */  
721
 
722
  ICMPBUF->type = ICMP_ECHO_REPLY;
723
 
724
  if(ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8))) {
725
    ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8) + 1;
726
  } else {
727
    ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8);
728
  }
729
 
730
  /* Swap IP addresses. */
731
  tmp16 = BUF->destipaddr[0];
732
  BUF->destipaddr[0] = BUF->srcipaddr[0];
733
  BUF->srcipaddr[0] = tmp16;
734
  tmp16 = BUF->destipaddr[1];
735
  BUF->destipaddr[1] = BUF->srcipaddr[1];
736
  BUF->srcipaddr[1] = tmp16;
737
 
738
  UIP_STAT(++uip_stat.icmp.sent);
739
  goto send;
740
 
741
  /* End of IPv4 input header processing code. */
742
 
743
 
744
#if UIP_UDP
745
  /* UDP input processing. */
746
 udp_input:
747
  /* UDP processing is really just a hack. We don't do anything to the
748
     UDP/IP headers, but let the UDP application do all the hard
749
     work. If the application sets uip_slen, it has a packet to
750
     send. */
751
#if UIP_UDP_CHECKSUMS
752
  if(uip_udpchksum() != 0xffff) {
753
    UIP_STAT(++uip_stat.udp.drop);
754
    UIP_STAT(++uip_stat.udp.chkerr);
755
    UIP_LOG("udp: bad checksum.");
756
    goto drop;
757
  }
758
#endif /* UIP_UDP_CHECKSUMS */
759
 
760
  /* Demultiplex this UDP packet between the UDP "connections". */
761
  for(uip_udp_conn = &uip_udp_conns[0];
762
      uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS];
763
      ++uip_udp_conn) {
764
    if(uip_udp_conn->lport != 0 &&
765
       UDPBUF->destport == uip_udp_conn->lport &&
766
       (uip_udp_conn->rport == 0 ||
767
        UDPBUF->srcport == uip_udp_conn->rport) &&
768
       BUF->srcipaddr[0] == uip_udp_conn->ripaddr[0] &&
769
       BUF->srcipaddr[1] == uip_udp_conn->ripaddr[1]) {
770
      goto udp_found;
771
    }
772
  }
773
  goto drop;
774
 
775
 udp_found:
776
  uip_len = uip_len - 28;
777
  uip_appdata = &uip_buf[UIP_LLH_LEN + 28];
778
  uip_flags = UIP_NEWDATA;
779
  uip_slen = 0;
780
  UIP_UDP_APPCALL();
781
 udp_send:
782
  if(uip_slen == 0) {
783
    goto drop;
784
  }
785
  uip_len = uip_slen + 28;
786
 
787
  BUF->len[0] = (uip_len >> 8);
788
  BUF->len[1] = (uip_len & 0xff);
789
 
790
  BUF->proto = UIP_PROTO_UDP;
791
 
792
  UDPBUF->udplen = HTONS(uip_slen + 8);
793
  UDPBUF->udpchksum = 0;
794
#if UIP_UDP_CHECKSUMS 
795
  /* Calculate UDP checksum. */
796
  UDPBUF->udpchksum = ~(uip_udpchksum());
797
  if(UDPBUF->udpchksum == 0) {
798
    UDPBUF->udpchksum = 0xffff;
799
  }
800
#endif /* UIP_UDP_CHECKSUMS */
801
 
802
  BUF->srcport  = uip_udp_conn->lport;
803
  BUF->destport = uip_udp_conn->rport;
804
 
805
  BUF->srcipaddr[0] = uip_hostaddr[0];
806
  BUF->srcipaddr[1] = uip_hostaddr[1];
807
  BUF->destipaddr[0] = uip_udp_conn->ripaddr[0];
808
  BUF->destipaddr[1] = uip_udp_conn->ripaddr[1];
809
 
810
  uip_appdata = &uip_buf[UIP_LLH_LEN + 40];
811
  goto ip_send_nolen;
812
#endif /* UIP_UDP */
813
 
814
  /* TCP input processing. */
815
 tcp_input:
816
  UIP_STAT(++uip_stat.tcp.recv);
817
 
818
  /* Start of TCP input header processing code. */
819
 
820
#if 1  // FIXME
821
  if(uip_tcpchksum() != 0xffff) {   /* Compute and check the TCP
822
                                       checksum. */
823
    UIP_STAT(++uip_stat.tcp.drop);
824
    UIP_STAT(++uip_stat.tcp.chkerr);
825
    UIP_LOG("tcp: bad checksum.");
826
    goto drop;
827
  }
828
#endif
829
 
830
  /* Demultiplex this segment. */
831
  /* First check any active connections. */
832
  for(uip_connr = &uip_conns[0]; uip_connr < &uip_conns[UIP_CONNS]; ++uip_connr) {
833
    if(uip_connr->tcpstateflags != CLOSED &&
834
       BUF->destport == uip_connr->lport &&
835
       BUF->srcport == uip_connr->rport &&
836
       BUF->srcipaddr[0] == uip_connr->ripaddr[0] &&
837
       BUF->srcipaddr[1] == uip_connr->ripaddr[1]) {
838
      goto found;
839
    }
840
  }
841
 
842
  /* If we didn't find and active connection that expected the packet,
843
     either this packet is an old duplicate, or this is a SYN packet
844
     destined for a connection in LISTEN. If the SYN flag isn't set,
845
     it is an old packet and we send a RST. */
846
  if((BUF->flags & TCP_CTL) != TCP_SYN)
847
    goto reset;
848
 
849
  tmp16 = BUF->destport;
850
  /* Next, check listening connections. */
851
  for(c = 0; c < UIP_LISTENPORTS; ++c) {
852
    if(tmp16 == uip_listenports[c])
853
      goto found_listen;
854
  }
855
 
856
  /* No matching connection found, so we send a RST packet. */
857
  UIP_STAT(++uip_stat.tcp.synrst);
858
 reset:
859
 
860
  /* We do not send resets in response to resets. */
861
  if(BUF->flags & TCP_RST)
862
    goto drop;
863
 
864
  UIP_STAT(++uip_stat.tcp.rst);
865
 
866
  BUF->flags = TCP_RST | TCP_ACK;
867
  uip_len = 40;
868
  BUF->tcpoffset = 5 << 4;
869
 
870
  /* Flip the seqno and ackno fields in the TCP header. */
871
  c = BUF->seqno[3];
872
  BUF->seqno[3] = BUF->ackno[3];
873
  BUF->ackno[3] = c;
874
 
875
  c = BUF->seqno[2];
876
  BUF->seqno[2] = BUF->ackno[2];
877
  BUF->ackno[2] = c;
878
 
879
  c = BUF->seqno[1];
880
  BUF->seqno[1] = BUF->ackno[1];
881
  BUF->ackno[1] = c;
882
 
883
  c = BUF->seqno[0];
884
  BUF->seqno[0] = BUF->ackno[0];
885
  BUF->ackno[0] = c;
886
 
887
  /* We also have to increase the sequence number we are
888
     acknowledging. If the least significant byte overflowed, we need
889
     to propagate the carry to the other bytes as well. */
890
  if(++BUF->ackno[3] == 0) {
891
    if(++BUF->ackno[2] == 0) {
892
      if(++BUF->ackno[1] == 0) {
893
        ++BUF->ackno[0];
894
      }
895
    }
896
  }
897
 
898
  /* Swap port numbers. */
899
  tmp16 = BUF->srcport;
900
  BUF->srcport = BUF->destport;
901
  BUF->destport = tmp16;
902
 
903
  /* Swap IP addresses. */
904
  tmp16 = BUF->destipaddr[0];
905
  BUF->destipaddr[0] = BUF->srcipaddr[0];
906
  BUF->srcipaddr[0] = tmp16;
907
  tmp16 = BUF->destipaddr[1];
908
  BUF->destipaddr[1] = BUF->srcipaddr[1];
909
  BUF->srcipaddr[1] = tmp16;
910
 
911
 
912
  /* And send out the RST packet! */
913
  goto tcp_send_noconn;
914
 
915
  /* This label will be jumped to if we matched the incoming packet
916
     with a connection in LISTEN. In that case, we should create a new
917
     connection and send a SYNACK in return. */
918
 found_listen:
919
  /* First we check if there are any connections avaliable. Unused
920
     connections are kept in the same table as used connections, but
921
     unused ones have the tcpstate set to CLOSED. Also, connections in
922
     TIME_WAIT are kept track of and we'll use the oldest one if no
923
     CLOSED connections are found. Thanks to Eddie C. Dost for a very
924
     nice algorithm for the TIME_WAIT search. */
925
  uip_connr = 0;
926
  for(c = 0; c < UIP_CONNS; ++c) {
927
    if(uip_conns[c].tcpstateflags == CLOSED) {
928
      uip_connr = &uip_conns[c];
929
      break;
930
    }
931
    if(uip_conns[c].tcpstateflags == TIME_WAIT) {
932
      if(uip_connr == 0 ||
933
         uip_conns[c].timer > uip_connr->timer) {
934
        uip_connr = &uip_conns[c];
935
      }
936
    }
937
  }
938
 
939
  if(uip_connr == 0) {
940
    /* All connections are used already, we drop packet and hope that
941
       the remote end will retransmit the packet at a time when we
942
       have more spare connections. */
943
    UIP_STAT(++uip_stat.tcp.syndrop);
944
    UIP_LOG("tcp: found no unused connections.");
945
    goto drop;
946
  }
947
  uip_conn = uip_connr;
948
 
949
  /* Fill in the necessary fields for the new connection. */
950
  uip_connr->rto = uip_connr->timer = UIP_RTO;
951
  uip_connr->sa = 0;
952
  uip_connr->sv = 4;
953
  uip_connr->nrtx = 0;
954
  uip_connr->lport = BUF->destport;
955
  uip_connr->rport = BUF->srcport;
956
  uip_connr->ripaddr[0] = BUF->srcipaddr[0];
957
  uip_connr->ripaddr[1] = BUF->srcipaddr[1];
958
  uip_connr->tcpstateflags = SYN_RCVD;
959
 
960
  uip_connr->snd_nxt[0] = iss[0];
961
  uip_connr->snd_nxt[1] = iss[1];
962
  uip_connr->snd_nxt[2] = iss[2];
963
  uip_connr->snd_nxt[3] = iss[3];
964
  uip_connr->len = 1;
965
 
966
  /* rcv_nxt should be the seqno from the incoming packet + 1. */
967
  uip_connr->rcv_nxt[3] = BUF->seqno[3];
968
  uip_connr->rcv_nxt[2] = BUF->seqno[2];
969
  uip_connr->rcv_nxt[1] = BUF->seqno[1];
970
  uip_connr->rcv_nxt[0] = BUF->seqno[0];
971
  uip_add_rcv_nxt(1);
972
 
973
  /* Parse the TCP MSS option, if present. */
974
  if((BUF->tcpoffset & 0xf0) > 0x50) {
975
    for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) {
976
      opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c];
977
      if(opt == 0x00) {
978
        /* End of options. */
979
        break;
980
      } else if(opt == 0x01) {
981
        ++c;
982
        /* NOP option. */
983
      } else if(opt == 0x02 &&
984
                uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0x04) {
985
        /* An MSS option with the right option length. */
986
        tmp16 = ((u16_t)uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
987
          (u16_t)uip_buf[40 + UIP_LLH_LEN + 3 + c];
988
        uip_connr->initialmss = uip_connr->mss =
989
          tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
990
 
991
        /* And we are done processing options. */
992
        break;
993
      } else {
994
        /* All other options have a length field, so that we easily
995
           can skip past them. */
996
        if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) {
997
          /* If the length field is zero, the options are malformed
998
             and we don't process them further. */
999
          break;
1000
        }
1001
        c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
1002
      }
1003
    }
1004
  }
1005
 
1006
  /* Our response will be a SYNACK. */
1007
#if UIP_ACTIVE_OPEN
1008
 tcp_send_synack:
1009
  BUF->flags = TCP_ACK;
1010
 
1011
 tcp_send_syn:
1012
  BUF->flags |= TCP_SYN;
1013
#else /* UIP_ACTIVE_OPEN */
1014
 tcp_send_synack:
1015
  BUF->flags = TCP_SYN | TCP_ACK;
1016
#endif /* UIP_ACTIVE_OPEN */
1017
 
1018
  /* We send out the TCP Maximum Segment Size option with our
1019
     SYNACK. */
1020
  BUF->optdata[0] = 2;
1021
  BUF->optdata[1] = 4;
1022
  BUF->optdata[2] = (UIP_TCP_MSS) / 256;
1023
  BUF->optdata[3] = (UIP_TCP_MSS) & 255;
1024
  uip_len = 44;
1025
  BUF->tcpoffset = 6 << 4;
1026
  goto tcp_send;
1027
 
1028
  /* This label will be jumped to if we found an active connection. */
1029
 found:
1030
  uip_conn = uip_connr;
1031
  uip_flags = 0;
1032
 
1033
  /* We do a very naive form of TCP reset processing; we just accept
1034
     any RST and kill our connection. We should in fact check if the
1035
     sequence number of this reset is wihtin our advertised window
1036
     before we accept the reset. */
1037
  if(BUF->flags & TCP_RST) {
1038
    uip_connr->tcpstateflags = CLOSED;
1039
    UIP_LOG("tcp: got reset, aborting connection.");
1040
    uip_flags = UIP_ABORT;
1041
    UIP_APPCALL();
1042
    goto drop;
1043
  }
1044
  /* Calculated the length of the data, if the application has sent
1045
     any data to us. */
1046
  c = (BUF->tcpoffset >> 4) << 2;
1047
  /* uip_len will contain the length of the actual TCP data. This is
1048
     calculated by subtracing the length of the TCP header (in
1049
     c) and the length of the IP header (20 bytes). */
1050
  uip_len = uip_len - c - 20;
1051
 
1052
  /* First, check if the sequence number of the incoming packet is
1053
     what we're expecting next. If not, we send out an ACK with the
1054
     correct numbers in. */
1055
  if(uip_len > 0 &&
1056
     (BUF->seqno[0] != uip_connr->rcv_nxt[0] ||
1057
      BUF->seqno[1] != uip_connr->rcv_nxt[1] ||
1058
      BUF->seqno[2] != uip_connr->rcv_nxt[2] ||
1059
      BUF->seqno[3] != uip_connr->rcv_nxt[3])) {
1060
    goto tcp_send_ack;
1061
  }
1062
 
1063
  /* Next, check if the incoming segment acknowledges any outstanding
1064
     data. If so, we update the sequence number, reset the length of
1065
     the outstanding data, calculate RTT estimations, and reset the
1066
     retransmission timer. */
1067
  if((BUF->flags & TCP_ACK) && uip_outstanding(uip_connr)) {
1068
    uip_add32(uip_connr->snd_nxt, uip_connr->len);
1069
    if(BUF->ackno[0] == uip_acc32[0] &&
1070
       BUF->ackno[1] == uip_acc32[1] &&
1071
       BUF->ackno[2] == uip_acc32[2] &&
1072
       BUF->ackno[3] == uip_acc32[3]) {
1073
      /* Update sequence number. */
1074
      uip_connr->snd_nxt[0] = uip_acc32[0];
1075
      uip_connr->snd_nxt[1] = uip_acc32[1];
1076
      uip_connr->snd_nxt[2] = uip_acc32[2];
1077
      uip_connr->snd_nxt[3] = uip_acc32[3];
1078
 
1079
 
1080
      /* Do RTT estimation, unless we have done retransmissions. */
1081
      if(uip_connr->nrtx == 0) {
1082
        signed char m;
1083
        m = uip_connr->rto - uip_connr->timer;
1084
        /* This is taken directly from VJs original code in his paper */
1085
        m = m - (uip_connr->sa >> 3);
1086
        uip_connr->sa += m;
1087
        if(m < 0) {
1088
          m = -m;
1089
        }
1090
        m = m - (uip_connr->sv >> 2);
1091
        uip_connr->sv += m;
1092
        uip_connr->rto = (uip_connr->sa >> 3) + uip_connr->sv;
1093
 
1094
      }
1095
      /* Set the acknowledged flag. */
1096
      uip_flags = UIP_ACKDATA;
1097
      /* Reset the retransmission timer. */
1098
      uip_connr->timer = uip_connr->rto;
1099
    }
1100
 
1101
  }
1102
 
1103
  /* Do different things depending on in what state the connection is. */
1104
  switch(uip_connr->tcpstateflags & TS_MASK) {
1105
    /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not
1106
        implemented, since we force the application to close when the
1107
        peer sends a FIN (hence the application goes directly from
1108
        ESTABLISHED to LAST_ACK). */
1109
  case SYN_RCVD:
1110
    /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and
1111
       we are waiting for an ACK that acknowledges the data we sent
1112
       out the last time. Therefore, we want to have the UIP_ACKDATA
1113
       flag set. If so, we enter the ESTABLISHED state. */
1114
    if(uip_flags & UIP_ACKDATA) {
1115
      uip_connr->tcpstateflags = ESTABLISHED;
1116
      uip_flags = UIP_CONNECTED;
1117
      uip_connr->len = 0;
1118
      if(uip_len > 0) {
1119
        uip_flags |= UIP_NEWDATA;
1120
        uip_add_rcv_nxt(uip_len);
1121
      }
1122
      uip_slen = 0;
1123
      UIP_APPCALL();
1124
      goto appsend;
1125
    }
1126
    goto drop;
1127
#if UIP_ACTIVE_OPEN
1128
  case SYN_SENT:
1129
    /* In SYN_SENT, we wait for a SYNACK that is sent in response to
1130
       our SYN. The rcv_nxt is set to sequence number in the SYNACK
1131
       plus one, and we send an ACK. We move into the ESTABLISHED
1132
       state. */
1133
    if((uip_flags & UIP_ACKDATA) &&
1134
       BUF->flags == (TCP_SYN | TCP_ACK)) {
1135
 
1136
      /* Parse the TCP MSS option, if present. */
1137
      if((BUF->tcpoffset & 0xf0) > 0x50) {
1138
        for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) {
1139
          opt = uip_buf[40 + UIP_LLH_LEN + c];
1140
          if(opt == 0x00) {
1141
            /* End of options. */
1142
            break;
1143
          } else if(opt == 0x01) {
1144
            ++c;
1145
            /* NOP option. */
1146
          } else if(opt == 0x02 &&
1147
                    uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0x04) {
1148
            /* An MSS option with the right option length. */
1149
            tmp16 = (uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
1150
              uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c];
1151
            uip_connr->initialmss =
1152
              uip_connr->mss = tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
1153
 
1154
            /* And we are done processing options. */
1155
            break;
1156
          } else {
1157
            /* All other options have a length field, so that we easily
1158
               can skip past them. */
1159
            if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) {
1160
              /* If the length field is zero, the options are malformed
1161
                 and we don't process them further. */
1162
              break;
1163
            }
1164
            c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
1165
          }
1166
        }
1167
      }
1168
      uip_connr->tcpstateflags = ESTABLISHED;
1169
      uip_connr->rcv_nxt[0] = BUF->seqno[0];
1170
      uip_connr->rcv_nxt[1] = BUF->seqno[1];
1171
      uip_connr->rcv_nxt[2] = BUF->seqno[2];
1172
      uip_connr->rcv_nxt[3] = BUF->seqno[3];
1173
      uip_add_rcv_nxt(1);
1174
      uip_flags = UIP_CONNECTED | UIP_NEWDATA;
1175
      uip_connr->len = 0;
1176
      uip_len = 0;
1177
      uip_slen = 0;
1178
      UIP_APPCALL();
1179
      goto appsend;
1180
    }
1181
    goto reset;
1182
#endif /* UIP_ACTIVE_OPEN */
1183
 
1184
  case ESTABLISHED:
1185
    /* In the ESTABLISHED state, we call upon the application to feed
1186
    data into the uip_buf. If the UIP_ACKDATA flag is set, the
1187
    application should put new data into the buffer, otherwise we are
1188
    retransmitting an old segment, and the application should put that
1189
    data into the buffer.
1190
 
1191
    If the incoming packet is a FIN, we should close the connection on
1192
    this side as well, and we send out a FIN and enter the LAST_ACK
1193
    state. We require that there is no outstanding data; otherwise the
1194
    sequence numbers will be screwed up. */
1195
 
1196
    if(BUF->flags & TCP_FIN) {
1197
      if(uip_outstanding(uip_connr)) {
1198
        goto drop;
1199
      }
1200
      uip_add_rcv_nxt(1 + uip_len);
1201
      uip_flags = UIP_CLOSE;
1202
      if(uip_len > 0) {
1203
        uip_flags |= UIP_NEWDATA;
1204
      }
1205
      UIP_APPCALL();
1206
      uip_connr->len = 1;
1207
      uip_connr->tcpstateflags = LAST_ACK;
1208
      uip_connr->nrtx = 0;
1209
    tcp_send_finack:
1210
      BUF->flags = TCP_FIN | TCP_ACK;
1211
      goto tcp_send_nodata;
1212
    }
1213
 
1214
    /* Check the URG flag. If this is set, the segment carries urgent
1215
       data that we must pass to the application. */
1216
    if(BUF->flags & TCP_URG) {
1217
#if UIP_URGDATA > 0
1218
      uip_urglen = (BUF->urgp[0] << 8) | BUF->urgp[1];
1219
      if(uip_urglen > uip_len) {
1220
        /* There is more urgent data in the next segment to come. */
1221
        uip_urglen = uip_len;
1222
      }
1223
      uip_add_rcv_nxt(uip_urglen);
1224
      uip_len -= uip_urglen;
1225
      uip_urgdata = uip_appdata;
1226
      uip_appdata += uip_urglen;
1227
    } else {
1228
      uip_urglen = 0;
1229
#endif /* UIP_URGDATA > 0 */
1230
      uip_appdata += (BUF->urgp[0] << 8) | BUF->urgp[1];
1231
      uip_len -= (BUF->urgp[0] << 8) | BUF->urgp[1];
1232
    }
1233
 
1234
 
1235
    /* If uip_len > 0 we have TCP data in the packet, and we flag this
1236
       by setting the UIP_NEWDATA flag and update the sequence number
1237
       we acknowledge. If the application has stopped the dataflow
1238
       using uip_stop(), we must not accept any data packets from the
1239
       remote host. */
1240
    if(uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED)) {
1241
      uip_flags |= UIP_NEWDATA;
1242
      uip_add_rcv_nxt(uip_len);
1243
    }
1244
 
1245
    /* Check if the available buffer space advertised by the other end
1246
       is smaller than the initial MSS for this connection. If so, we
1247
       set the current MSS to the window size to ensure that the
1248
       application does not send more data than the other end can
1249
       handle.
1250
 
1251
       If the remote host advertises a zero window, we set the MSS to
1252
       the initial MSS so that the application will send an entire MSS
1253
       of data. This data will not be acknowledged by the receiver,
1254
       and the application will retransmit it. This is called the
1255
       "persistent timer" and uses the retransmission mechanim.
1256
    */
1257
    tmp16 = ((u16_t)BUF->wnd[0] << 8) + (u16_t)BUF->wnd[1];
1258
    if(tmp16 > uip_connr->initialmss ||
1259
       tmp16 == 0) {
1260
      tmp16 = uip_connr->initialmss;
1261
    }
1262
    uip_connr->mss = tmp16;
1263
 
1264
    /* If this packet constitutes an ACK for outstanding data (flagged
1265
       by the UIP_ACKDATA flag, we should call the application since it
1266
       might want to send more data. If the incoming packet had data
1267
       from the peer (as flagged by the UIP_NEWDATA flag), the
1268
       application must also be notified.
1269
 
1270
       When the application is called, the global variable uip_len
1271
       contains the length of the incoming data. The application can
1272
       access the incoming data through the global pointer
1273
       uip_appdata, which usually points 40 bytes into the uip_buf
1274
       array.
1275
 
1276
       If the application wishes to send any data, this data should be
1277
       put into the uip_appdata and the length of the data should be
1278
       put into uip_len. If the application don't have any data to
1279
       send, uip_len must be set to 0. */
1280
    if(uip_flags & (UIP_NEWDATA | UIP_ACKDATA)) {
1281
      uip_slen = 0;
1282
      UIP_APPCALL();
1283
 
1284
    appsend:
1285
 
1286
      if(uip_flags & UIP_ABORT) {
1287
        uip_slen = 0;
1288
        uip_connr->tcpstateflags = CLOSED;
1289
        BUF->flags = TCP_RST | TCP_ACK;
1290
        goto tcp_send_nodata;
1291
      }
1292
 
1293
      if(uip_flags & UIP_CLOSE) {
1294
        uip_slen = 0;
1295
        uip_connr->len = 1;
1296
        uip_connr->tcpstateflags = FIN_WAIT_1;
1297
        uip_connr->nrtx = 0;
1298
        BUF->flags = TCP_FIN | TCP_ACK;
1299
        goto tcp_send_nodata;
1300
      }
1301
 
1302
      /* If uip_slen > 0, the application has data to be sent. */
1303
      if(uip_slen > 0) {
1304
 
1305
        /* If the connection has acknowledged data, the contents of
1306
           the ->len variable should be discarded. */
1307
        if((uip_flags & UIP_ACKDATA) != 0) {
1308
          uip_connr->len = 0;
1309
        }
1310
 
1311
        /* If the ->len variable is non-zero the connection has
1312
           already data in transit and cannot send anymore right
1313
           now. */
1314
        if(uip_connr->len == 0) {
1315
 
1316
          /* The application cannot send more than what is allowed by
1317
             the mss (the minumum of the MSS and the available
1318
             window). */
1319
          if(uip_slen > uip_connr->mss) {
1320
            uip_slen = uip_connr->mss;
1321
          }
1322
 
1323
          /* Remember how much data we send out now so that we know
1324
             when everything has been acknowledged. */
1325
          uip_connr->len = uip_slen;
1326
        } else {
1327
 
1328
          /* If the application already had unacknowledged data, we
1329
             make sure that the application does not send (i.e.,
1330
             retransmit) out more than it previously sent out. */
1331
          uip_slen = uip_connr->len;
1332
        }
1333
      } else {
1334
        uip_connr->len = 0;
1335
      }
1336
      uip_connr->nrtx = 0;
1337
    apprexmit:
1338
      uip_appdata = uip_sappdata;
1339
 
1340
      /* If the application has data to be sent, or if the incoming
1341
         packet had new data in it, we must send out a packet. */
1342
      if(uip_slen > 0 && uip_connr->len > 0) {
1343
        /* Add the length of the IP and TCP headers. */
1344
        uip_len = uip_connr->len + UIP_TCPIP_HLEN;
1345
        /* We always set the ACK flag in response packets. */
1346
        BUF->flags = TCP_ACK | TCP_PSH;
1347
        /* Send the packet. */
1348
        goto tcp_send_noopts;
1349
      }
1350
      /* If there is no data to send, just send out a pure ACK if
1351
         there is newdata. */
1352
      if(uip_flags & UIP_NEWDATA) {
1353
        uip_len = UIP_TCPIP_HLEN;
1354
        BUF->flags = TCP_ACK;
1355
        goto tcp_send_noopts;
1356
      }
1357
    }
1358
    goto drop;
1359
  case LAST_ACK:
1360
    /* We can close this connection if the peer has acknowledged our
1361
       FIN. This is indicated by the UIP_ACKDATA flag. */
1362
    if(uip_flags & UIP_ACKDATA) {
1363
      uip_connr->tcpstateflags = CLOSED;
1364
      uip_flags = UIP_CLOSE;
1365
      UIP_APPCALL();
1366
    }
1367
    break;
1368
 
1369
  case FIN_WAIT_1:
1370
    /* The application has closed the connection, but the remote host
1371
       hasn't closed its end yet. Thus we do nothing but wait for a
1372
       FIN from the other side. */
1373
    if(uip_len > 0) {
1374
      uip_add_rcv_nxt(uip_len);
1375
    }
1376
    if(BUF->flags & TCP_FIN) {
1377
      if(uip_flags & UIP_ACKDATA) {
1378
        uip_connr->tcpstateflags = TIME_WAIT;
1379
        uip_connr->timer = 0;
1380
        uip_connr->len = 0;
1381
      } else {
1382
        uip_connr->tcpstateflags = CLOSING;
1383
      }
1384
      uip_add_rcv_nxt(1);
1385
      uip_flags = UIP_CLOSE;
1386
      UIP_APPCALL();
1387
      goto tcp_send_ack;
1388
    } else if(uip_flags & UIP_ACKDATA) {
1389
      uip_connr->tcpstateflags = FIN_WAIT_2;
1390
      uip_connr->len = 0;
1391
      goto drop;
1392
    }
1393
    if(uip_len > 0) {
1394
      goto tcp_send_ack;
1395
    }
1396
    goto drop;
1397
 
1398
  case FIN_WAIT_2:
1399
    if(uip_len > 0) {
1400
      uip_add_rcv_nxt(uip_len);
1401
    }
1402
    if(BUF->flags & TCP_FIN) {
1403
      uip_connr->tcpstateflags = TIME_WAIT;
1404
      uip_connr->timer = 0;
1405
      uip_add_rcv_nxt(1);
1406
      uip_flags = UIP_CLOSE;
1407
      UIP_APPCALL();
1408
      goto tcp_send_ack;
1409
    }
1410
    if(uip_len > 0) {
1411
      goto tcp_send_ack;
1412
    }
1413
    goto drop;
1414
 
1415
  case TIME_WAIT:
1416
    goto tcp_send_ack;
1417
 
1418
  case CLOSING:
1419
    if(uip_flags & UIP_ACKDATA) {
1420
      uip_connr->tcpstateflags = TIME_WAIT;
1421
      uip_connr->timer = 0;
1422
    }
1423
  }
1424
  goto drop;
1425
 
1426
 
1427
  /* We jump here when we are ready to send the packet, and just want
1428
     to set the appropriate TCP sequence numbers in the TCP header. */
1429
 tcp_send_ack:
1430
  BUF->flags = TCP_ACK;
1431
 tcp_send_nodata:
1432
  uip_len = 40;
1433
 tcp_send_noopts:
1434
  BUF->tcpoffset = 5 << 4;
1435
 tcp_send:
1436
  /* We're done with the input processing. We are now ready to send a
1437
     reply. Our job is to fill in all the fields of the TCP and IP
1438
     headers before calculating the checksum and finally send the
1439
     packet. */
1440
  BUF->ackno[0] = uip_connr->rcv_nxt[0];
1441
  BUF->ackno[1] = uip_connr->rcv_nxt[1];
1442
  BUF->ackno[2] = uip_connr->rcv_nxt[2];
1443
  BUF->ackno[3] = uip_connr->rcv_nxt[3];
1444
 
1445
  BUF->seqno[0] = uip_connr->snd_nxt[0];
1446
  BUF->seqno[1] = uip_connr->snd_nxt[1];
1447
  BUF->seqno[2] = uip_connr->snd_nxt[2];
1448
  BUF->seqno[3] = uip_connr->snd_nxt[3];
1449
 
1450
  BUF->proto = UIP_PROTO_TCP;
1451
 
1452
  BUF->srcport  = uip_connr->lport;
1453
  BUF->destport = uip_connr->rport;
1454
 
1455
  BUF->srcipaddr[0] = uip_hostaddr[0];
1456
  BUF->srcipaddr[1] = uip_hostaddr[1];
1457
  BUF->destipaddr[0] = uip_connr->ripaddr[0];
1458
  BUF->destipaddr[1] = uip_connr->ripaddr[1];
1459
 
1460
 
1461
  if(uip_connr->tcpstateflags & UIP_STOPPED) {
1462
    /* If the connection has issued uip_stop(), we advertise a zero
1463
       window so that the remote host will stop sending data. */
1464
    BUF->wnd[0] = BUF->wnd[1] = 0;
1465
  } else {
1466
    BUF->wnd[0] = ((UIP_RECEIVE_WINDOW) >> 8);
1467
    BUF->wnd[1] = ((UIP_RECEIVE_WINDOW) & 0xff);
1468
  }
1469
 
1470
 tcp_send_noconn:
1471
 
1472
  BUF->len[0] = (uip_len >> 8);
1473
  BUF->len[1] = (uip_len & 0xff);
1474
 
1475
  /* Calculate TCP checksum. */
1476
  BUF->tcpchksum = 0;
1477
  BUF->tcpchksum = ~(uip_tcpchksum());
1478
 
1479
 ip_send_nolen:
1480
 
1481
  BUF->vhl = 0x45;
1482
  BUF->tos = 0;
1483
  BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
1484
  BUF->ttl  = UIP_TTL;
1485
  ++ipid;
1486
  BUF->ipid[0] = ipid >> 8;
1487
  BUF->ipid[1] = ipid & 0xff;
1488
 
1489
  /* Calculate IP checksum. */
1490
  BUF->ipchksum = 0;
1491
  BUF->ipchksum = ~(uip_ipchksum());
1492
 
1493
  UIP_STAT(++uip_stat.tcp.sent);
1494
 send:
1495
  UIP_STAT(++uip_stat.ip.sent);
1496
  /* Return and let the caller do the actual transmission. */
1497
  return;
1498
 drop:
1499
  uip_len = 0;
1500
  return;
1501
}
1502
/*-----------------------------------------------------------------------------------*/
1503
u16_t
1504
htons(u16_t val)
1505
{
1506
  return HTONS(val);
1507
}
1508
/*-----------------------------------------------------------------------------------*/
1509
/** @} */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.