OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [exec/] [score/] [cpu/] [sparc/] [rtems/] [score/] [cpu.h] - Blame information for rev 279

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 30 unneback
/*  cpu.h
2
 *
3
 *  This include file contains information pertaining to the port of
4
 *  the executive to the SPARC processor.
5
 *
6
 *  COPYRIGHT (c) 1989-1999.
7
 *  On-Line Applications Research Corporation (OAR).
8
 *
9
 *  The license and distribution terms for this file may be
10
 *  found in the file LICENSE in this distribution or at
11
 *  http://www.OARcorp.com/rtems/license.html.
12
 *
13
 *  Ported to ERC32 implementation of the SPARC by On-Line Applications
14
 *  Research Corporation (OAR) under contract to the European Space
15
 *  Agency (ESA).
16
 *
17
 *  ERC32 modifications of respective RTEMS file: COPYRIGHT (c) 1995.
18
 *  European Space Agency.
19
 *
20
 *  $Id: cpu.h,v 1.2 2001-09-27 11:59:30 chris Exp $
21
 */
22
 
23
#ifndef __CPU_h
24
#define __CPU_h
25
 
26
#ifdef __cplusplus
27
extern "C" {
28
#endif
29
 
30
#include <rtems/score/sparc.h>               /* pick up machine definitions */
31
#ifndef ASM
32
#include <rtems/score/sparctypes.h>
33
#endif
34
 
35
/* conditional compilation parameters */
36
 
37
/*
38
 *  Should the calls to _Thread_Enable_dispatch be inlined?
39
 *
40
 *  If TRUE, then they are inlined.
41
 *  If FALSE, then a subroutine call is made.
42
 */
43
 
44
#define CPU_INLINE_ENABLE_DISPATCH       TRUE
45
 
46
/*
47
 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
48
 *  be unrolled one time?  In unrolled each iteration of the loop examines
49
 *  two "nodes" on the chain being searched.  Otherwise, only one node
50
 *  is examined per iteration.
51
 *
52
 *  If TRUE, then the loops are unrolled.
53
 *  If FALSE, then the loops are not unrolled.
54
 *
55
 *  This parameter could go either way on the SPARC.  The interrupt flash
56
 *  code is relatively lengthy given the requirements for nops following
57
 *  writes to the psr.  But if the clock speed were high enough, this would
58
 *  not represent a great deal of time.
59
 */
60
 
61
#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
62
 
63
/*
64
 *  Does the executive manage a dedicated interrupt stack in software?
65
 *
66
 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
67
 *  If FALSE, nothing is done.
68
 *
69
 *  The SPARC does not have a dedicated HW interrupt stack and one has
70
 *  been implemented in SW.
71
 */
72
 
73
#define CPU_HAS_SOFTWARE_INTERRUPT_STACK   TRUE
74
 
75
/*
76
 *  Does this CPU have hardware support for a dedicated interrupt stack?
77
 *
78
 *  If TRUE, then it must be installed during initialization.
79
 *  If FALSE, then no installation is performed.
80
 *
81
 *  The SPARC does not have a dedicated HW interrupt stack.
82
 */
83
 
84
#define CPU_HAS_HARDWARE_INTERRUPT_STACK  FALSE
85
 
86
/*
87
 *  Do we allocate a dedicated interrupt stack in the Interrupt Manager?
88
 *
89
 *  If TRUE, then the memory is allocated during initialization.
90
 *  If FALSE, then the memory is allocated during initialization.
91
 */
92
 
93
#define CPU_ALLOCATE_INTERRUPT_STACK      TRUE
94
 
95
/*
96
 *  Does the RTEMS invoke the user's ISR with the vector number and
97
 *  a pointer to the saved interrupt frame (1) or just the vector
98
 *  number (0)?
99
 */
100
 
101
#define CPU_ISR_PASSES_FRAME_POINTER 0
102
 
103
/*
104
 *  Does the CPU have hardware floating point?
105
 *
106
 *  If TRUE, then the FLOATING_POINT task attribute is supported.
107
 *  If FALSE, then the FLOATING_POINT task attribute is ignored.
108
 */
109
 
110
#if ( SPARC_HAS_FPU == 1 )
111
#define CPU_HARDWARE_FP     TRUE
112
#else
113
#define CPU_HARDWARE_FP     FALSE
114
#endif
115
 
116
/*
117
 *  Are all tasks FLOATING_POINT tasks implicitly?
118
 *
119
 *  If TRUE, then the FLOATING_POINT task attribute is assumed.
120
 *  If FALSE, then the FLOATING_POINT task attribute is followed.
121
 */
122
 
123
#define CPU_ALL_TASKS_ARE_FP     FALSE
124
 
125
/*
126
 *  Should the IDLE task have a floating point context?
127
 *
128
 *  If TRUE, then the IDLE task is created as a FLOATING_POINT task
129
 *  and it has a floating point context which is switched in and out.
130
 *  If FALSE, then the IDLE task does not have a floating point context.
131
 */
132
 
133
#define CPU_IDLE_TASK_IS_FP      FALSE
134
 
135
/*
136
 *  Should the saving of the floating point registers be deferred
137
 *  until a context switch is made to another different floating point
138
 *  task?
139
 *
140
 *  If TRUE, then the floating point context will not be stored until
141
 *  necessary.  It will remain in the floating point registers and not
142
 *  disturned until another floating point task is switched to.
143
 *
144
 *  If FALSE, then the floating point context is saved when a floating
145
 *  point task is switched out and restored when the next floating point
146
 *  task is restored.  The state of the floating point registers between
147
 *  those two operations is not specified.
148
 */
149
 
150
#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
151
 
152
/*
153
 *  Does this port provide a CPU dependent IDLE task implementation?
154
 *
155
 *  If TRUE, then the routine _CPU_Thread_Idle_body
156
 *  must be provided and is the default IDLE thread body instead of
157
 *  _CPU_Thread_Idle_body.
158
 *
159
 *  If FALSE, then use the generic IDLE thread body if the BSP does
160
 *  not provide one.
161
 */
162
 
163
#if (SPARC_HAS_LOW_POWER_MODE == 1)
164
#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
165
#else
166
#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
167
#endif
168
 
169
/*
170
 *  Does the stack grow up (toward higher addresses) or down
171
 *  (toward lower addresses)?
172
 *
173
 *  If TRUE, then the grows upward.
174
 *  If FALSE, then the grows toward smaller addresses.
175
 *
176
 *  The stack grows to lower addresses on the SPARC.
177
 */
178
 
179
#define CPU_STACK_GROWS_UP               FALSE
180
 
181
/*
182
 *  The following is the variable attribute used to force alignment
183
 *  of critical data structures.  On some processors it may make
184
 *  sense to have these aligned on tighter boundaries than
185
 *  the minimum requirements of the compiler in order to have as
186
 *  much of the critical data area as possible in a cache line.
187
 *
188
 *  The SPARC does not appear to have particularly strict alignment
189
 *  requirements.  This value was chosen to take advantages of caches.
190
 */
191
 
192
#define CPU_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (16)))
193
 
194
/*
195
 *  Define what is required to specify how the network to host conversion
196
 *  routines are handled.
197
 */
198
 
199
#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
200
#define CPU_BIG_ENDIAN                           TRUE
201
#define CPU_LITTLE_ENDIAN                        FALSE
202
 
203
/*
204
 *  The following defines the number of bits actually used in the
205
 *  interrupt field of the task mode.  How those bits map to the
206
 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
207
 *
208
 *  The SPARC has 16 interrupt levels in the PIL field of the PSR.
209
 */
210
 
211
#define CPU_MODES_INTERRUPT_MASK   0x0000000F
212
 
213
/*
214
 *  This structure represents the organization of the minimum stack frame
215
 *  for the SPARC.  More framing information is required in certain situaions
216
 *  such as when there are a large number of out parameters or when the callee
217
 *  must save floating point registers.
218
 */
219
 
220
#ifndef ASM
221
 
222
typedef struct {
223
  unsigned32  l0;
224
  unsigned32  l1;
225
  unsigned32  l2;
226
  unsigned32  l3;
227
  unsigned32  l4;
228
  unsigned32  l5;
229
  unsigned32  l6;
230
  unsigned32  l7;
231
  unsigned32  i0;
232
  unsigned32  i1;
233
  unsigned32  i2;
234
  unsigned32  i3;
235
  unsigned32  i4;
236
  unsigned32  i5;
237
  unsigned32  i6_fp;
238
  unsigned32  i7;
239
  void       *structure_return_address;
240
  /*
241
   *  The following are for the callee to save the register arguments in
242
   *  should this be necessary.
243
   */
244
  unsigned32  saved_arg0;
245
  unsigned32  saved_arg1;
246
  unsigned32  saved_arg2;
247
  unsigned32  saved_arg3;
248
  unsigned32  saved_arg4;
249
  unsigned32  saved_arg5;
250
  unsigned32  pad0;
251
}  CPU_Minimum_stack_frame;
252
 
253
#endif /* ASM */
254
 
255
#define CPU_STACK_FRAME_L0_OFFSET             0x00
256
#define CPU_STACK_FRAME_L1_OFFSET             0x04
257
#define CPU_STACK_FRAME_L2_OFFSET             0x08
258
#define CPU_STACK_FRAME_L3_OFFSET             0x0c
259
#define CPU_STACK_FRAME_L4_OFFSET             0x10
260
#define CPU_STACK_FRAME_L5_OFFSET             0x14
261
#define CPU_STACK_FRAME_L6_OFFSET             0x18
262
#define CPU_STACK_FRAME_L7_OFFSET             0x1c
263
#define CPU_STACK_FRAME_I0_OFFSET             0x20
264
#define CPU_STACK_FRAME_I1_OFFSET             0x24
265
#define CPU_STACK_FRAME_I2_OFFSET             0x28
266
#define CPU_STACK_FRAME_I3_OFFSET             0x2c
267
#define CPU_STACK_FRAME_I4_OFFSET             0x30
268
#define CPU_STACK_FRAME_I5_OFFSET             0x34
269
#define CPU_STACK_FRAME_I6_FP_OFFSET          0x38
270
#define CPU_STACK_FRAME_I7_OFFSET             0x3c
271
#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x40
272
#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET     0x44
273
#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET     0x48
274
#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET     0x4c
275
#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET     0x50
276
#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET     0x54
277
#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET     0x58
278
#define CPU_STACK_FRAME_PAD0_OFFSET           0x5c
279
 
280
#define CPU_MINIMUM_STACK_FRAME_SIZE          0x60
281
 
282
/*
283
 * Contexts
284
 *
285
 *  Generally there are 2 types of context to save.
286
 *     1. Interrupt registers to save
287
 *     2. Task level registers to save
288
 *
289
 *  This means we have the following 3 context items:
290
 *     1. task level context stuff::  Context_Control
291
 *     2. floating point task stuff:: Context_Control_fp
292
 *     3. special interrupt level context :: Context_Control_interrupt
293
 *
294
 *  On the SPARC, we are relatively conservative in that we save most
295
 *  of the CPU state in the context area.  The ET (enable trap) bit and
296
 *  the CWP (current window pointer) fields of the PSR are considered
297
 *  system wide resources and are not maintained on a per-thread basis.
298
 */
299
 
300
#ifndef ASM
301
 
302
typedef struct {
303
    /*
304
     *  Using a double g0_g1 will put everything in this structure on a
305
     *  double word boundary which allows us to use double word loads
306
     *  and stores safely in the context switch.
307
     */
308
    double     g0_g1;
309
    unsigned32 g2;
310
    unsigned32 g3;
311
    unsigned32 g4;
312
    unsigned32 g5;
313
    unsigned32 g6;
314
    unsigned32 g7;
315
 
316
    unsigned32 l0;
317
    unsigned32 l1;
318
    unsigned32 l2;
319
    unsigned32 l3;
320
    unsigned32 l4;
321
    unsigned32 l5;
322
    unsigned32 l6;
323
    unsigned32 l7;
324
 
325
    unsigned32 i0;
326
    unsigned32 i1;
327
    unsigned32 i2;
328
    unsigned32 i3;
329
    unsigned32 i4;
330
    unsigned32 i5;
331
    unsigned32 i6_fp;
332
    unsigned32 i7;
333
 
334
    unsigned32 o0;
335
    unsigned32 o1;
336
    unsigned32 o2;
337
    unsigned32 o3;
338
    unsigned32 o4;
339
    unsigned32 o5;
340
    unsigned32 o6_sp;
341
    unsigned32 o7;
342
 
343
    unsigned32 psr;
344
} Context_Control;
345
 
346
#endif /* ASM */
347
 
348
/*
349
 *  Offsets of fields with Context_Control for assembly routines.
350
 */
351
 
352
#define G0_OFFSET    0x00
353
#define G1_OFFSET    0x04
354
#define G2_OFFSET    0x08
355
#define G3_OFFSET    0x0C
356
#define G4_OFFSET    0x10
357
#define G5_OFFSET    0x14
358
#define G6_OFFSET    0x18
359
#define G7_OFFSET    0x1C
360
 
361
#define L0_OFFSET    0x20
362
#define L1_OFFSET    0x24
363
#define L2_OFFSET    0x28
364
#define L3_OFFSET    0x2C
365
#define L4_OFFSET    0x30
366
#define L5_OFFSET    0x34
367
#define L6_OFFSET    0x38
368
#define L7_OFFSET    0x3C
369
 
370
#define I0_OFFSET    0x40
371
#define I1_OFFSET    0x44
372
#define I2_OFFSET    0x48
373
#define I3_OFFSET    0x4C
374
#define I4_OFFSET    0x50
375
#define I5_OFFSET    0x54
376
#define I6_FP_OFFSET 0x58
377
#define I7_OFFSET    0x5C
378
 
379
#define O0_OFFSET    0x60
380
#define O1_OFFSET    0x64
381
#define O2_OFFSET    0x68
382
#define O3_OFFSET    0x6C
383
#define O4_OFFSET    0x70
384
#define O5_OFFSET    0x74
385
#define O6_SP_OFFSET 0x78
386
#define O7_OFFSET    0x7C
387
 
388
#define PSR_OFFSET   0x80
389
 
390
#define CONTEXT_CONTROL_SIZE 0x84
391
 
392
/*
393
 *  The floating point context area.
394
 */
395
 
396
#ifndef ASM
397
 
398
typedef struct {
399
    double      f0_f1;
400
    double      f2_f3;
401
    double      f4_f5;
402
    double      f6_f7;
403
    double      f8_f9;
404
    double      f10_f11;
405
    double      f12_f13;
406
    double      f14_f15;
407
    double      f16_f17;
408
    double      f18_f19;
409
    double      f20_f21;
410
    double      f22_f23;
411
    double      f24_f25;
412
    double      f26_f27;
413
    double      f28_f29;
414
    double      f30_f31;
415
    unsigned32  fsr;
416
} Context_Control_fp;
417
 
418
#endif /* ASM */
419
 
420
/*
421
 *  Offsets of fields with Context_Control_fp for assembly routines.
422
 */
423
 
424
#define FO_F1_OFFSET     0x00
425
#define F2_F3_OFFSET     0x08
426
#define F4_F5_OFFSET     0x10
427
#define F6_F7_OFFSET     0x18
428
#define F8_F9_OFFSET     0x20
429
#define F1O_F11_OFFSET   0x28
430
#define F12_F13_OFFSET   0x30
431
#define F14_F15_OFFSET   0x38
432
#define F16_F17_OFFSET   0x40
433
#define F18_F19_OFFSET   0x48
434
#define F2O_F21_OFFSET   0x50
435
#define F22_F23_OFFSET   0x58
436
#define F24_F25_OFFSET   0x60
437
#define F26_F27_OFFSET   0x68
438
#define F28_F29_OFFSET   0x70
439
#define F3O_F31_OFFSET   0x78
440
#define FSR_OFFSET       0x80
441
 
442
#define CONTEXT_CONTROL_FP_SIZE 0x84
443
 
444
#ifndef ASM
445
 
446
/*
447
 *  Context saved on stack for an interrupt.
448
 *
449
 *  NOTE:  The PSR, PC, and NPC are only saved in this structure for the
450
 *         benefit of the user's handler.
451
 */
452
 
453
typedef struct {
454
  CPU_Minimum_stack_frame  Stack_frame;
455
  unsigned32               psr;
456
  unsigned32               pc;
457
  unsigned32               npc;
458
  unsigned32               g1;
459
  unsigned32               g2;
460
  unsigned32               g3;
461
  unsigned32               g4;
462
  unsigned32               g5;
463
  unsigned32               g6;
464
  unsigned32               g7;
465
  unsigned32               i0;
466
  unsigned32               i1;
467
  unsigned32               i2;
468
  unsigned32               i3;
469
  unsigned32               i4;
470
  unsigned32               i5;
471
  unsigned32               i6_fp;
472
  unsigned32               i7;
473
  unsigned32               y;
474
  unsigned32               tpc;
475
} CPU_Interrupt_frame;
476
 
477
#endif /* ASM */
478
 
479
/*
480
 *  Offsets of fields with CPU_Interrupt_frame for assembly routines.
481
 */
482
 
483
#define ISF_STACK_FRAME_OFFSET 0x00
484
#define ISF_PSR_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x00
485
#define ISF_PC_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x04
486
#define ISF_NPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x08
487
#define ISF_G1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x0c
488
#define ISF_G2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x10
489
#define ISF_G3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x14
490
#define ISF_G4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x18
491
#define ISF_G5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x1c
492
#define ISF_G6_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x20
493
#define ISF_G7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x24
494
#define ISF_I0_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x28
495
#define ISF_I1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x2c
496
#define ISF_I2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x30
497
#define ISF_I3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x34
498
#define ISF_I4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x38
499
#define ISF_I5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x3c
500
#define ISF_I6_FP_OFFSET       CPU_MINIMUM_STACK_FRAME_SIZE + 0x40
501
#define ISF_I7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x44
502
#define ISF_Y_OFFSET           CPU_MINIMUM_STACK_FRAME_SIZE + 0x48
503
#define ISF_TPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x4c
504
 
505
#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE CPU_MINIMUM_STACK_FRAME_SIZE + 0x50 
506
#ifndef ASM
507
 
508
/*
509
 *  The following table contains the information required to configure
510
 *  the processor specific parameters.
511
 */
512
 
513
typedef struct {
514
  void       (*pretasking_hook)( void );
515
  void       (*predriver_hook)( void );
516
  void       (*postdriver_hook)( void );
517
  void       (*idle_task)( void );
518
  boolean      do_zero_of_workspace;
519
  unsigned32   idle_task_stack_size;
520
  unsigned32   interrupt_stack_size;
521
  unsigned32   extra_mpci_receive_server_stack;
522
  void *     (*stack_allocate_hook)( unsigned32 );
523
  void       (*stack_free_hook)( void* );
524
  /* end of fields required on all CPUs */
525
 
526
}   rtems_cpu_table;
527
 
528
/*
529
 *  Macros to access required entires in the CPU Table are in
530
 *  the file rtems/system.h.
531
 */
532
 
533
/*
534
 *  Macros to access SPARC specific additions to the CPU Table
535
 */
536
 
537
/* There are no CPU specific additions to the CPU Table for this port. */
538
 
539
/*
540
 *  This variable is contains the initialize context for the FP unit.
541
 *  It is filled in by _CPU_Initialize and copied into the task's FP
542
 *  context area during _CPU_Context_Initialize.
543
 */
544
 
545
SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context CPU_STRUCTURE_ALIGNMENT;
546
 
547
/*
548
 *  This stack is allocated by the Interrupt Manager and the switch
549
 *  is performed in _ISR_Handler.  These variables contain pointers
550
 *  to the lowest and highest addresses in the chunk of memory allocated
551
 *  for the interrupt stack.  Since it is unknown whether the stack
552
 *  grows up or down (in general), this give the CPU dependent
553
 *  code the option of picking the version it wants to use.  Thus
554
 *  both must be present if either is.
555
 *
556
 *  The SPARC supports a software based interrupt stack and these
557
 *  are required.
558
 */
559
 
560
SCORE_EXTERN void *_CPU_Interrupt_stack_low;
561
SCORE_EXTERN void *_CPU_Interrupt_stack_high;
562
 
563
#if defined(erc32)
564
 
565
/*
566
 *  ERC32 Specific Variables
567
 */
568
 
569
SCORE_EXTERN unsigned32 _ERC32_MEC_Timer_Control_Mirror;
570
 
571
#endif
572
 
573
/*
574
 *  The following type defines an entry in the SPARC's trap table.
575
 *
576
 *  NOTE: The instructions chosen are RTEMS dependent although one is
577
 *        obligated to use two of the four instructions to perform a
578
 *        long jump.  The other instructions load one register with the
579
 *        trap type (a.k.a. vector) and another with the psr.
580
 */
581
 
582
typedef struct {
583
  unsigned32   mov_psr_l0;                     /* mov   %psr, %l0           */
584
  unsigned32   sethi_of_handler_to_l4;         /* sethi %hi(_handler), %l4  */
585
  unsigned32   jmp_to_low_of_handler_plus_l4;  /* jmp   %l4 + %lo(_handler) */
586
  unsigned32   mov_vector_l3;                  /* mov   _vector, %l3        */
587
} CPU_Trap_table_entry;
588
 
589
/*
590
 *  This is the set of opcodes for the instructions loaded into a trap
591
 *  table entry.  The routine which installs a handler is responsible
592
 *  for filling in the fields for the _handler address and the _vector
593
 *  trap type.
594
 *
595
 *  The constants following this structure are masks for the fields which
596
 *  must be filled in when the handler is installed.
597
 */
598
 
599
extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
600
 
601
/*
602
 *  This is the executive's trap table which is installed into the TBR
603
 *  register.
604
 *
605
 *  NOTE:  Unfortunately, this must be aligned on a 4096 byte boundary.
606
 *         The GNU tools as of binutils 2.5.2 and gcc 2.7.0 would not
607
 *         align an entity to anything greater than a 512 byte boundary.
608
 *
609
 *         Because of this, we pull a little bit of a trick.  We allocate
610
 *         enough memory so we can grab an address on a 4096 byte boundary
611
 *         from this area.
612
 */
613
 
614
#define SPARC_TRAP_TABLE_ALIGNMENT 4096
615
 
616
#ifndef NO_TABLE_MOVE
617
 
618
SCORE_EXTERN unsigned8 _CPU_Trap_Table_area[ 8192 ]
619
           __attribute__ ((aligned (SPARC_TRAP_TABLE_ALIGNMENT)));
620
#endif
621
 
622
 
623
/*
624
 *  The size of the floating point context area.
625
 */
626
 
627
#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
628
 
629
#endif
630
 
631
/*
632
 *  Amount of extra stack (above minimum stack size) required by
633
 *  MPCI receive server thread.  Remember that in a multiprocessor
634
 *  system this thread must exist and be able to process all directives.
635
 */
636
 
637
#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
638
 
639
/*
640
 *  This defines the number of entries in the ISR_Vector_table managed
641
 *  by the executive.
642
 *
643
 *  On the SPARC, there are really only 256 vectors.  However, the executive
644
 *  has no easy, fast, reliable way to determine which traps are synchronous
645
 *  and which are asynchronous.  By default, synchronous traps return to the
646
 *  instruction which caused the interrupt.  So if you install a software
647
 *  trap handler as an executive interrupt handler (which is desirable since
648
 *  RTEMS takes care of window and register issues), then the executive needs
649
 *  to know that the return address is to the trap rather than the instruction
650
 *  following the trap.
651
 *
652
 *  So vectors 0 through 255 are treated as regular asynchronous traps which
653
 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
654
 *  by the executive to be synchronous and to require that the return address
655
 *  be fudged.
656
 *
657
 *  If you use this mechanism to install a trap handler which must reexecute
658
 *  the instruction which caused the trap, then it should be installed as
659
 *  an asynchronous trap.  This will avoid the executive changing the return
660
 *  address.
661
 */
662
 
663
#define CPU_INTERRUPT_NUMBER_OF_VECTORS     256
664
#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 511
665
 
666
#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK     0x100
667
#define SPARC_ASYNCHRONOUS_TRAP( _trap )    (_trap)
668
#define SPARC_SYNCHRONOUS_TRAP( _trap )     ((_trap) + 256 )
669
 
670
#define SPARC_REAL_TRAP_NUMBER( _trap )     ((_trap) % 256)
671
 
672
/*
673
 *  Should be large enough to run all tests.  This insures
674
 *  that a "reasonable" small application should not have any problems.
675
 *
676
 *  This appears to be a fairly generous number for the SPARC since
677
 *  represents a call depth of about 20 routines based on the minimum
678
 *  stack frame.
679
 */
680
 
681
#define CPU_STACK_MINIMUM_SIZE  (1024*4)
682
 
683
/*
684
 *  CPU's worst alignment requirement for data types on a byte boundary.  This
685
 *  alignment does not take into account the requirements for the stack.
686
 *
687
 *  On the SPARC, this is required for double word loads and stores.
688
 */
689
 
690
#define CPU_ALIGNMENT      8
691
 
692
/*
693
 *  This number corresponds to the byte alignment requirement for the
694
 *  heap handler.  This alignment requirement may be stricter than that
695
 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
696
 *  common for the heap to follow the same alignment requirement as
697
 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
698
 *  then this should be set to CPU_ALIGNMENT.
699
 *
700
 *  NOTE:  This does not have to be a power of 2.  It does have to
701
 *         be greater or equal to than CPU_ALIGNMENT.
702
 */
703
 
704
#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
705
 
706
/*
707
 *  This number corresponds to the byte alignment requirement for memory
708
 *  buffers allocated by the partition manager.  This alignment requirement
709
 *  may be stricter than that for the data types alignment specified by
710
 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
711
 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
712
 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
713
 *
714
 *  NOTE:  This does not have to be a power of 2.  It does have to
715
 *         be greater or equal to than CPU_ALIGNMENT.
716
 */
717
 
718
#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
719
 
720
/*
721
 *  This number corresponds to the byte alignment requirement for the
722
 *  stack.  This alignment requirement may be stricter than that for the
723
 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
724
 *  is strict enough for the stack, then this should be set to 0.
725
 *
726
 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
727
 *
728
 *  The alignment restrictions for the SPARC are not that strict but this
729
 *  should unsure that the stack is always sufficiently alignment that the
730
 *  window overflow, underflow, and flush routines can use double word loads
731
 *  and stores.
732
 */
733
 
734
#define CPU_STACK_ALIGNMENT        16
735
 
736
#ifndef ASM
737
 
738
extern unsigned int sparc_disable_interrupts();
739
extern void sparc_enable_interrupts();
740
 
741
/* ISR handler macros */
742
 
743
/*
744
 *  Disable all interrupts for a critical section.  The previous
745
 *  level is returned in _level.
746
 */
747
 
748
#define _CPU_ISR_Disable( _level ) \
749
  (_level) = sparc_disable_interrupts()
750
 
751
/*
752
 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
753
 *  This indicates the end of a critical section.  The parameter
754
 *  _level is not modified.
755
 */
756
 
757
#define _CPU_ISR_Enable( _level ) \
758
  sparc_enable_interrupts( _level )
759
/*
760
 *  This temporarily restores the interrupt to _level before immediately
761
 *  disabling them again.  This is used to divide long critical
762
 *  sections into two or more parts.  The parameter _level is not
763
 *  modified.
764
 */
765
 
766
#define _CPU_ISR_Flash( _level ) \
767
  sparc_flash_interrupts( _level )
768
 
769
/*
770
 *  Map interrupt level in task mode onto the hardware that the CPU
771
 *  actually provides.  Currently, interrupt levels which do not
772
 *  map onto the CPU in a straight fashion are undefined.
773
 */
774
 
775
#define _CPU_ISR_Set_level( _newlevel ) \
776
   sparc_enable_interrupts( _newlevel << 8)
777
 
778
unsigned32 _CPU_ISR_Get_level( void );
779
 
780
/* end of ISR handler macros */
781
 
782
/* Context handler macros */
783
 
784
/*
785
 *  Initialize the context to a state suitable for starting a
786
 *  task after a context restore operation.  Generally, this
787
 *  involves:
788
 *
789
 *     - setting a starting address
790
 *     - preparing the stack
791
 *     - preparing the stack and frame pointers
792
 *     - setting the proper interrupt level in the context
793
 *     - initializing the floating point context
794
 *
795
 *  NOTE:  Implemented as a subroutine for the SPARC port.
796
 */
797
 
798
void _CPU_Context_Initialize(
799
  Context_Control  *the_context,
800
  unsigned32       *stack_base,
801
  unsigned32        size,
802
  unsigned32        new_level,
803
  void             *entry_point,
804
  boolean           is_fp
805
);
806
 
807
/*
808
 *  This routine is responsible for somehow restarting the currently
809
 *  executing task.
810
 *
811
 *  On the SPARC, this is is relatively painless but requires a small
812
 *  amount of wrapper code before using the regular restore code in
813
 *  of the context switch.
814
 */
815
 
816
#define _CPU_Context_Restart_self( _the_context ) \
817
   _CPU_Context_restore( (_the_context) );
818
 
819
/*
820
 *  The FP context area for the SPARC is a simple structure and nothing
821
 *  special is required to find the "starting load point"
822
 */
823
 
824
#define _CPU_Context_Fp_start( _base, _offset ) \
825
   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
826
 
827
/*
828
 *  This routine initializes the FP context area passed to it to.
829
 *
830
 *  The SPARC allows us to use the simple initialization model
831
 *  in which an "initial" FP context was saved into _CPU_Null_fp_context
832
 *  at CPU initialization and it is simply copied into the destination
833
 *  context.
834
 */
835
 
836
#define _CPU_Context_Initialize_fp( _destination ) \
837
  do { \
838
   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
839
  } while (0)
840
 
841
/* end of Context handler macros */
842
 
843
/* Fatal Error manager macros */
844
 
845
/*
846
 *  This routine copies _error into a known place -- typically a stack
847
 *  location or a register, optionally disables interrupts, and
848
 *  halts/stops the CPU.
849
 */
850
 
851
#define _CPU_Fatal_halt( _error ) \
852
  do { \
853
    unsigned32 level; \
854
    \
855
    level = sparc_disable_interrupts(); \
856
    asm volatile ( "mov  %0, %%g1 " : "=r" (level) : "0" (level) ); \
857
    while (1); /* loop forever */ \
858
  } while (0)
859
 
860
/* end of Fatal Error manager macros */
861
 
862
/* Bitfield handler macros */
863
 
864
/*
865
 *  The SPARC port uses the generic C algorithm for bitfield scan if the
866
 *  CPU model does not have a scan instruction.
867
 */
868
 
869
#if ( SPARC_HAS_BITSCAN == 0 )
870
#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
871
#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
872
#else
873
#error "scan instruction not currently supported by RTEMS!!"
874
#endif
875
 
876
/* end of Bitfield handler macros */
877
 
878
/* Priority handler handler macros */
879
 
880
/*
881
 *  The SPARC port uses the generic C algorithm for bitfield scan if the
882
 *  CPU model does not have a scan instruction.
883
 */
884
 
885
#if ( SPARC_HAS_BITSCAN == 1 )
886
#error "scan instruction not currently supported by RTEMS!!"
887
#endif
888
 
889
/* end of Priority handler macros */
890
 
891
/* functions */
892
 
893
/*
894
 *  _CPU_Initialize
895
 *
896
 *  This routine performs CPU dependent initialization.
897
 */
898
 
899
void _CPU_Initialize(
900
  rtems_cpu_table  *cpu_table,
901
  void            (*thread_dispatch)
902
);
903
 
904
/*
905
 *  _CPU_ISR_install_raw_handler
906
 *
907
 *  This routine installs new_handler to be directly called from the trap
908
 *  table.
909
 */
910
 
911
void _CPU_ISR_install_raw_handler(
912
  unsigned32  vector,
913
  proc_ptr    new_handler,
914
  proc_ptr   *old_handler
915
);
916
 
917
/*
918
 *  _CPU_ISR_install_vector
919
 *
920
 *  This routine installs an interrupt vector.
921
 */
922
 
923
void _CPU_ISR_install_vector(
924
  unsigned32  vector,
925
  proc_ptr    new_handler,
926
  proc_ptr   *old_handler
927
);
928
 
929
#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
930
 
931
/*
932
 *  _CPU_Thread_Idle_body
933
 *
934
 *  Some SPARC implementations have low power, sleep, or idle modes.  This
935
 *  tries to take advantage of those models.
936
 */
937
 
938
void _CPU_Thread_Idle_body( void );
939
 
940
#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
941
 
942
/*
943
 *  _CPU_Context_switch
944
 *
945
 *  This routine switches from the run context to the heir context.
946
 */
947
 
948
void _CPU_Context_switch(
949
  Context_Control  *run,
950
  Context_Control  *heir
951
);
952
 
953
/*
954
 *  _CPU_Context_restore
955
 *
956
 *  This routine is generally used only to restart self in an
957
 *  efficient manner.
958
 */
959
 
960
void _CPU_Context_restore(
961
  Context_Control *new_context
962
);
963
 
964
/*
965
 *  _CPU_Context_save_fp
966
 *
967
 *  This routine saves the floating point context passed to it.
968
 */
969
 
970
void _CPU_Context_save_fp(
971
  void **fp_context_ptr
972
);
973
 
974
/*
975
 *  _CPU_Context_restore_fp
976
 *
977
 *  This routine restores the floating point context passed to it.
978
 */
979
 
980
void _CPU_Context_restore_fp(
981
  void **fp_context_ptr
982
);
983
 
984
/*
985
 *  CPU_swap_u32
986
 *
987
 *  The following routine swaps the endian format of an unsigned int.
988
 *  It must be static because it is referenced indirectly.
989
 *
990
 *  This version will work on any processor, but if you come across a better
991
 *  way for the SPARC PLEASE use it.  The most common way to swap a 32-bit
992
 *  entity as shown below is not any more efficient on the SPARC.
993
 *
994
 *     swap least significant two bytes with 16-bit rotate
995
 *     swap upper and lower 16-bits
996
 *     swap most significant two bytes with 16-bit rotate
997
 *
998
 *  It is not obvious how the SPARC can do significantly better than the
999
 *  generic code.  gcc 2.7.0 only generates about 12 instructions for the
1000
 *  following code at optimization level four (i.e. -O4).
1001
 */
1002
 
1003
static inline unsigned int CPU_swap_u32(
1004
  unsigned int value
1005
)
1006
{
1007
  unsigned32 byte1, byte2, byte3, byte4, swapped;
1008
 
1009
  byte4 = (value >> 24) & 0xff;
1010
  byte3 = (value >> 16) & 0xff;
1011
  byte2 = (value >> 8)  & 0xff;
1012
  byte1 =  value        & 0xff;
1013
 
1014
  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1015
  return( swapped );
1016
}
1017
 
1018
#define CPU_swap_u16( value ) \
1019
  (((value&0xff) << 8) | ((value >> 8)&0xff))
1020
 
1021
#endif ASM
1022
 
1023
#ifdef __cplusplus
1024
}
1025
#endif
1026
 
1027
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.