1 |
30 |
unneback |
/*
|
2 |
|
|
* mm.c -- Crude memory management for early boot.
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 1998, 1999 Gabriel Paubert, paubert@iram.es
|
5 |
|
|
*
|
6 |
|
|
* Modified to compile in RTEMS development environment
|
7 |
|
|
* by Eric Valette
|
8 |
|
|
*
|
9 |
|
|
* Copyright (C) 1999 Eric Valette. valette@crf.canon.fr
|
10 |
|
|
*
|
11 |
|
|
* The license and distribution terms for this file may be
|
12 |
|
|
* found in found in the file LICENSE in this distribution or at
|
13 |
|
|
* http://www.OARcorp.com/rtems/license.html.
|
14 |
|
|
*
|
15 |
|
|
* $Id: mm.c,v 1.2 2001-09-27 12:01:06 chris Exp $
|
16 |
|
|
*/
|
17 |
|
|
|
18 |
|
|
/* This code is a crude memory manager for early boot for LinuxPPC.
|
19 |
|
|
* As such, it does not try to perform many optimiztions depending
|
20 |
|
|
* on the processor, it only uses features which are common to
|
21 |
|
|
* all processors (no BATs...).
|
22 |
|
|
*
|
23 |
|
|
* On PreP platorms (the only ones on which it works for now),
|
24 |
|
|
* it maps 1:1 all RAM/ROM and I/O space as claimed by the
|
25 |
|
|
* residual data. The holes between these areas can be virtually
|
26 |
|
|
* remapped to any of these, since for some functions it is very handy
|
27 |
|
|
* to have virtually contiguous but physically discontiguous memory.
|
28 |
|
|
*
|
29 |
|
|
* Physical memory allocation is also very crude, since it's only
|
30 |
|
|
* designed to manage a small number of large chunks. For valloc/vfree
|
31 |
|
|
* and palloc/pfree, the unit of allocation is the 4kB page.
|
32 |
|
|
*
|
33 |
|
|
* The salloc/sfree has been added after tracing gunzip and seeing
|
34 |
|
|
* how it performed a very large number of small allocations.
|
35 |
|
|
* For these the unit of allocation is 8 bytes (the s stands for
|
36 |
|
|
* small or subpage). This memory is cleared when allocated.
|
37 |
|
|
*
|
38 |
|
|
*/
|
39 |
|
|
|
40 |
|
|
#include <sys/types.h>
|
41 |
|
|
#include <libcpu/spr.h>
|
42 |
|
|
#include "bootldr.h"
|
43 |
|
|
#include <libcpu/mmu.h>
|
44 |
|
|
#include <libcpu/page.h>
|
45 |
|
|
#include <limits.h>
|
46 |
|
|
|
47 |
|
|
/* We use our own kind of simple memory areas for the loader, but
|
48 |
|
|
* we want to avoid potential clashes with kernel includes.
|
49 |
|
|
* Here a map maps contiguous areas from base to end,
|
50 |
|
|
* the firstpte entry corresponds to physical address and has the low
|
51 |
|
|
* order bits set for caching and permission.
|
52 |
|
|
*/
|
53 |
|
|
|
54 |
|
|
typedef struct _map {
|
55 |
|
|
struct _map *next;
|
56 |
|
|
u_long base;
|
57 |
|
|
u_long end;
|
58 |
|
|
u_long firstpte;
|
59 |
|
|
} map;
|
60 |
|
|
|
61 |
|
|
/* The LSB of the firstpte entries on map lists other than mappings
|
62 |
|
|
* are constants which can be checked for debugging. All these constants
|
63 |
|
|
* have bit of weight 4 set, this bit is zero in the mappings list entries.
|
64 |
|
|
* Actually firstpte&7 value is:
|
65 |
|
|
* - 0 or 1 should not happen
|
66 |
|
|
* - 2 for RW actual virtual->physical mappings
|
67 |
|
|
* - 3 for RO actual virtual->physical mappings
|
68 |
|
|
* - 6 for free areas to be suballocated by salloc
|
69 |
|
|
* - 7 for salloc'ated areas
|
70 |
|
|
* - 4 or 5 for all others, in this case firtpte & 63 is
|
71 |
|
|
* - 4 for unused maps (on the free list)
|
72 |
|
|
* - 12 for free physical memory
|
73 |
|
|
* - 13 for physical memory in use
|
74 |
|
|
* - 20 for free virtual address space
|
75 |
|
|
* - 21 for allocated virtual address space
|
76 |
|
|
* - 28 for physical memory space suballocated by salloc
|
77 |
|
|
* - 29 for physical memory that can't be freed
|
78 |
|
|
*/
|
79 |
|
|
|
80 |
|
|
#define MAP_FREE_SUBS 6
|
81 |
|
|
#define MAP_USED_SUBS 7
|
82 |
|
|
|
83 |
|
|
#define MAP_FREE 4
|
84 |
|
|
#define MAP_FREE_PHYS 12
|
85 |
|
|
#define MAP_USED_PHYS 13
|
86 |
|
|
#define MAP_FREE_VIRT 20
|
87 |
|
|
#define MAP_USED_VIRT 21
|
88 |
|
|
#define MAP_SUBS_PHYS 28
|
89 |
|
|
#define MAP_PERM_PHYS 29
|
90 |
|
|
|
91 |
|
|
SPR_RW(SDR1);
|
92 |
|
|
SPR_RO(DSISR);
|
93 |
|
|
SPR_RO(DAR);
|
94 |
|
|
|
95 |
|
|
/* We need a few statically allocated free maps to bootstrap the
|
96 |
|
|
* memory managment */
|
97 |
|
|
static map free_maps[4] = {{free_maps+1, 0, 0, MAP_FREE},
|
98 |
|
|
{free_maps+2, 0, 0, MAP_FREE},
|
99 |
|
|
{free_maps+3, 0, 0, MAP_FREE},
|
100 |
|
|
{NULL, 0, 0, MAP_FREE}};
|
101 |
|
|
struct _mm_private {
|
102 |
|
|
void *sdr1;
|
103 |
|
|
u_long hashmask;
|
104 |
|
|
map *freemaps; /* Pool of unused map structs */
|
105 |
|
|
map *mappings; /* Sorted list of virtual->physical mappings */
|
106 |
|
|
map *physavail; /* Unallocated physical address space */
|
107 |
|
|
map *physused; /* Allocated physical address space */
|
108 |
|
|
map *physperm; /* Permanently allocated physical space */
|
109 |
|
|
map *virtavail; /* Unallocated virtual address space */
|
110 |
|
|
map *virtused; /* Allocated virtual address space */
|
111 |
|
|
map *sallocfree; /* Free maps for salloc */
|
112 |
|
|
map *sallocused; /* Used maps for salloc */
|
113 |
|
|
map *sallocphys; /* Physical areas used by salloc */
|
114 |
|
|
u_int hashcnt; /* Used to cycle in PTEG when they overflow */
|
115 |
|
|
} mm_private = {hashmask: 0xffc0,
|
116 |
|
|
freemaps: free_maps+0};
|
117 |
|
|
|
118 |
|
|
/* A simplified hash table entry declaration */
|
119 |
|
|
typedef struct _hash_entry {
|
120 |
|
|
int key;
|
121 |
|
|
u_long rpn;
|
122 |
|
|
} hash_entry;
|
123 |
|
|
|
124 |
|
|
void print_maps(map *, const char *);
|
125 |
|
|
|
126 |
|
|
/* The handler used for all exceptions although for now it is only
|
127 |
|
|
* designed to properly handle MMU interrupts to fill the hash table.
|
128 |
|
|
*/
|
129 |
|
|
|
130 |
|
|
|
131 |
|
|
void _handler(int vec, ctxt *p) {
|
132 |
|
|
map *area;
|
133 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
134 |
|
|
u_long vaddr, cause;
|
135 |
|
|
if (vec==4 || vec==7) { /* ISI exceptions are different */
|
136 |
|
|
vaddr = p->nip;
|
137 |
|
|
cause = p->msr;
|
138 |
|
|
} else { /* Valid for DSI and alignment exceptions */
|
139 |
|
|
vaddr = _read_DAR();
|
140 |
|
|
cause = _read_DSISR();
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
if (vec==3 || vec==4) {
|
144 |
|
|
/* Panic if the fault is not PTE not found. */
|
145 |
|
|
if (!(cause & 0x40000000)) {
|
146 |
|
|
MMUon();
|
147 |
|
|
printk("\nPanic: vector=%x, cause=%lx\n", vec, cause);
|
148 |
|
|
hang("Memory protection violation at ", vaddr, p);
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
for(area=mm->mappings; area; area=area->next) {
|
152 |
|
|
if(area->base<=vaddr && vaddr<=area->end) break;
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
if (area) {
|
156 |
|
|
u_long hash, vsid, rpn;
|
157 |
|
|
hash_entry volatile *hte, *_hte1;
|
158 |
|
|
u_int i, alt=0, flushva;
|
159 |
|
|
|
160 |
|
|
vsid = _read_SR((void *)vaddr);
|
161 |
|
|
rpn = (vaddr&PAGE_MASK)-area->base+area->firstpte;
|
162 |
|
|
hash = vsid<<6;
|
163 |
|
|
hash ^= (vaddr>>(PAGE_SHIFT-6))&0x3fffc0;
|
164 |
|
|
hash &= mm->hashmask;
|
165 |
|
|
/* Find an empty entry in the PTEG, else
|
166 |
|
|
* replace a random one.
|
167 |
|
|
*/
|
168 |
|
|
hte = (hash_entry *) ((u_long)(mm->sdr1)+hash);
|
169 |
|
|
for (i=0; i<8; i++) {
|
170 |
|
|
if (hte[i].key>=0) goto found;
|
171 |
|
|
}
|
172 |
|
|
hash ^= mm->hashmask;
|
173 |
|
|
alt = 0x40; _hte1 = hte;
|
174 |
|
|
hte = (hash_entry *) ((u_long)(mm->sdr1)+hash);
|
175 |
|
|
|
176 |
|
|
for (i=0; i<8; i++) {
|
177 |
|
|
if (hte[i].key>=0) goto found;
|
178 |
|
|
}
|
179 |
|
|
alt = 0;
|
180 |
|
|
hte = _hte1;
|
181 |
|
|
/* Chose a victim entry and replace it. There might be
|
182 |
|
|
* better policies to choose the victim, but in a boot
|
183 |
|
|
* loader we want simplicity as long as it works.
|
184 |
|
|
*
|
185 |
|
|
* We would not need to invalidate the TLB entry since
|
186 |
|
|
* the mapping is still valid. But this would be a mess
|
187 |
|
|
* when unmapping so we make sure that the TLB is a
|
188 |
|
|
* subset of the hash table under all circumstances.
|
189 |
|
|
*/
|
190 |
|
|
i = mm->hashcnt;
|
191 |
|
|
mm->hashcnt = (mm->hashcnt+1)%8;
|
192 |
|
|
/* Note that the hash is already complemented here ! */
|
193 |
|
|
flushva = (~(hash<<9)^((hte[i].key)<<5)) &0x3ff000;
|
194 |
|
|
if (hte[i].key&0x40) flushva^=0x3ff000;
|
195 |
|
|
flushva |= ((hte[i].key<<21)&0xf0000000)
|
196 |
|
|
| ((hte[i].key<<22)&0x0fc00000);
|
197 |
|
|
hte[i].key=0;
|
198 |
|
|
asm volatile("sync; tlbie %0; sync" : : "r" (flushva));
|
199 |
|
|
found:
|
200 |
|
|
hte[i].rpn = rpn;
|
201 |
|
|
asm volatile("eieio": : );
|
202 |
|
|
hte[i].key = 0x80000000|(vsid<<7)|alt|
|
203 |
|
|
((vaddr>>22)&0x3f);
|
204 |
|
|
return;
|
205 |
|
|
} else {
|
206 |
|
|
MMUon();
|
207 |
|
|
printk("\nPanic: vector=%x, cause=%lx\n", vec, cause);
|
208 |
|
|
hang("\nInvalid memory access attempt at ", vaddr, p);
|
209 |
|
|
}
|
210 |
|
|
} else {
|
211 |
|
|
MMUon();
|
212 |
|
|
printk("\nPanic: vector=%x, dsisr=%lx, faultaddr =%lx, msr=%lx opcode=%lx\n", vec,
|
213 |
|
|
cause, p->nip, p->msr, * ((unsigned int*) p->nip) );
|
214 |
|
|
if (vec == 7) {
|
215 |
|
|
unsigned int* ptr = ((unsigned int*) p->nip) - 4 * 10;
|
216 |
|
|
for (; ptr <= (((unsigned int*) p->nip) + 4 * 10); ptr ++)
|
217 |
|
|
printk("Hexdecimal code at address %x = %x\n", ptr, *ptr);
|
218 |
|
|
}
|
219 |
|
|
hang("Program or alignment exception at ", vaddr, p);
|
220 |
|
|
}
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
/* Generic routines for map handling.
|
224 |
|
|
*/
|
225 |
|
|
|
226 |
|
|
static inline
|
227 |
|
|
void free_map(map *p) {
|
228 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
229 |
|
|
if (!p) return;
|
230 |
|
|
p->next=mm->freemaps;
|
231 |
|
|
mm->freemaps=p;
|
232 |
|
|
p->firstpte=MAP_FREE;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
/* Sorted insertion in linked list */
|
236 |
|
|
static
|
237 |
|
|
int insert_map(map **head, map *p) {
|
238 |
|
|
map *q = *head;
|
239 |
|
|
if (!p) return 0;
|
240 |
|
|
if (q && (q->base < p->base)) {
|
241 |
|
|
for(;q->next && q->next->base<p->base; q = q->next);
|
242 |
|
|
if ((q->end >= p->base) ||
|
243 |
|
|
(q->next && p->end>=q->next->base)) {
|
244 |
|
|
free_map(p);
|
245 |
|
|
printk("Overlapping areas!\n");
|
246 |
|
|
return 1;
|
247 |
|
|
}
|
248 |
|
|
p->next = q->next;
|
249 |
|
|
q->next = p;
|
250 |
|
|
} else { /* Insert at head */
|
251 |
|
|
if (q && (p->end >= q->base)) {
|
252 |
|
|
free_map(p);
|
253 |
|
|
printk("Overlapping areas!\n");
|
254 |
|
|
return 1;
|
255 |
|
|
}
|
256 |
|
|
p->next = q;
|
257 |
|
|
*head = p;
|
258 |
|
|
}
|
259 |
|
|
return 0;
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
/* Removal from linked list */
|
264 |
|
|
|
265 |
|
|
static
|
266 |
|
|
map *remove_map(map **head, map *p) {
|
267 |
|
|
map *q = *head;
|
268 |
|
|
|
269 |
|
|
if (!p || !q) return NULL;
|
270 |
|
|
if (q==p) {
|
271 |
|
|
*head = q->next;
|
272 |
|
|
return p;
|
273 |
|
|
}
|
274 |
|
|
for(;q && q->next!=p; q=q->next);
|
275 |
|
|
if (q) {
|
276 |
|
|
q->next=p->next;
|
277 |
|
|
return p;
|
278 |
|
|
} else {
|
279 |
|
|
return NULL;
|
280 |
|
|
}
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
static
|
284 |
|
|
map *remove_map_at(map **head, void * vaddr) {
|
285 |
|
|
map *p, *q = *head;
|
286 |
|
|
|
287 |
|
|
if (!vaddr || !q) return NULL;
|
288 |
|
|
if (q->base==(u_long)vaddr) {
|
289 |
|
|
*head = q->next;
|
290 |
|
|
return q;
|
291 |
|
|
}
|
292 |
|
|
while (q->next && q->next->base != (u_long)vaddr) q=q->next;
|
293 |
|
|
p=q->next;
|
294 |
|
|
if (p) q->next=p->next;
|
295 |
|
|
return p;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
static inline
|
299 |
|
|
map * alloc_map_page(void) {
|
300 |
|
|
map *from, *p;
|
301 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
302 |
|
|
|
303 |
|
|
/* printk("Allocating new map page !"); */
|
304 |
|
|
/* Get the highest page */
|
305 |
|
|
for (from=mm->physavail; from && from->next; from=from->next);
|
306 |
|
|
if (!from) return NULL;
|
307 |
|
|
|
308 |
|
|
from->end -= PAGE_SIZE;
|
309 |
|
|
|
310 |
|
|
mm->freemaps = (map *) (from->end+1);
|
311 |
|
|
|
312 |
|
|
for(p=mm->freemaps; p<mm->freemaps+PAGE_SIZE/sizeof(map)-1; p++) {
|
313 |
|
|
p->next = p+1;
|
314 |
|
|
p->firstpte = MAP_FREE;
|
315 |
|
|
}
|
316 |
|
|
(p-1)->next=0;
|
317 |
|
|
|
318 |
|
|
/* Take the last one as pointer to self and insert
|
319 |
|
|
* the map into the permanent map list.
|
320 |
|
|
*/
|
321 |
|
|
|
322 |
|
|
p->firstpte = MAP_PERM_PHYS;
|
323 |
|
|
p->base=(u_long) mm->freemaps;
|
324 |
|
|
p->end = p->base+PAGE_SIZE-1;
|
325 |
|
|
|
326 |
|
|
insert_map(&mm->physperm, p);
|
327 |
|
|
|
328 |
|
|
if (from->end+1 == from->base)
|
329 |
|
|
free_map(remove_map(&mm->physavail, from));
|
330 |
|
|
|
331 |
|
|
return mm->freemaps;
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
static
|
335 |
|
|
map * alloc_map(void) {
|
336 |
|
|
map *p;
|
337 |
|
|
struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
|
338 |
|
|
|
339 |
|
|
p = mm->freemaps;
|
340 |
|
|
if (!p) {
|
341 |
|
|
p=alloc_map_page();
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
if(p) mm->freemaps=p->next;
|
345 |
|
|
|
346 |
|
|
return p;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
static
|
350 |
|
|
void coalesce_maps(map *p) {
|
351 |
|
|
while(p) {
|
352 |
|
|
if (p->next && (p->end+1 == p->next->base)) {
|
353 |
|
|
map *q=p->next;
|
354 |
|
|
p->end=q->end;
|
355 |
|
|
p->next=q->next;
|
356 |
|
|
free_map(q);
|
357 |
|
|
} else {
|
358 |
|
|
p = p->next;
|
359 |
|
|
}
|
360 |
|
|
}
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
/* These routines are used to find the free memory zones to avoid
|
364 |
|
|
* overlapping destructive copies when initializing.
|
365 |
|
|
* They work from the top because of the way we want to boot.
|
366 |
|
|
* In the following the term zone refers to the memory described
|
367 |
|
|
* by one or several contiguous so called segments in the
|
368 |
|
|
* residual data.
|
369 |
|
|
*/
|
370 |
|
|
#define STACK_PAGES 2
|
371 |
|
|
static inline u_long
|
372 |
|
|
find_next_zone(RESIDUAL *res, u_long lowpage, u_long flags) {
|
373 |
|
|
u_long i, newmin=0, size=0;
|
374 |
|
|
for(i=0; i<res->ActualNumMemSegs; i++) {
|
375 |
|
|
if (res->Segs[i].Usage & flags
|
376 |
|
|
&& res->Segs[i].BasePage<lowpage
|
377 |
|
|
&& res->Segs[i].BasePage>newmin) {
|
378 |
|
|
newmin=res->Segs[i].BasePage;
|
379 |
|
|
size=res->Segs[i].PageCount;
|
380 |
|
|
}
|
381 |
|
|
}
|
382 |
|
|
return newmin+size;
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
static inline u_long
|
386 |
|
|
find_zone_start(RESIDUAL *res, u_long highpage, u_long flags) {
|
387 |
|
|
u_long i;
|
388 |
|
|
int progress;
|
389 |
|
|
do {
|
390 |
|
|
progress=0;
|
391 |
|
|
for (i=0; i<res->ActualNumMemSegs; i++) {
|
392 |
|
|
if ( (res->Segs[i].BasePage+res->Segs[i].PageCount
|
393 |
|
|
== highpage)
|
394 |
|
|
&& res->Segs[i].Usage & flags) {
|
395 |
|
|
highpage=res->Segs[i].BasePage;
|
396 |
|
|
progress=1;
|
397 |
|
|
}
|
398 |
|
|
}
|
399 |
|
|
} while(progress);
|
400 |
|
|
return highpage;
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
/* The Motorola NT firmware does not provide any setting in the residual
|
404 |
|
|
* data about memory segment usage. The following table provides enough
|
405 |
|
|
* info so that this bootloader can work.
|
406 |
|
|
*/
|
407 |
|
|
MEM_MAP seg_fix[] = {
|
408 |
|
|
{ 0x2000, 0xFFF00, 0x00100 },
|
409 |
|
|
{ 0x0020, 0x02000, 0x7E000 },
|
410 |
|
|
{ 0x0008, 0x00800, 0x00168 },
|
411 |
|
|
{ 0x0004, 0x00000, 0x00005 },
|
412 |
|
|
{ 0x0001, 0x006F1, 0x0010F },
|
413 |
|
|
{ 0x0002, 0x006AD, 0x00044 },
|
414 |
|
|
{ 0x0010, 0x00005, 0x006A8 },
|
415 |
|
|
{ 0x0010, 0x00968, 0x00698 },
|
416 |
|
|
{ 0x0800, 0xC0000, 0x3F000 },
|
417 |
|
|
{ 0x0600, 0xBF800, 0x00800 },
|
418 |
|
|
{ 0x0500, 0x81000, 0x3E800 },
|
419 |
|
|
{ 0x0480, 0x80800, 0x00800 },
|
420 |
|
|
{ 0x0440, 0x80000, 0x00800 } };
|
421 |
|
|
|
422 |
|
|
|
423 |
|
|
/* The Motorola NT firmware does not set up all required info in the residual
|
424 |
|
|
* data. This routine changes some things in a way that the bootloader and
|
425 |
|
|
* linux are happy.
|
426 |
|
|
*/
|
427 |
|
|
void
|
428 |
|
|
fix_residual( RESIDUAL *res )
|
429 |
|
|
{
|
430 |
|
|
#if 0
|
431 |
|
|
PPC_DEVICE *hostbridge;
|
432 |
|
|
#endif
|
433 |
|
|
int i;
|
434 |
|
|
|
435 |
|
|
/* Missing memory segment information */
|
436 |
|
|
res->ActualNumMemSegs = sizeof(seg_fix)/sizeof(MEM_MAP);
|
437 |
|
|
for (i=0; i<res->ActualNumMemSegs; i++) {
|
438 |
|
|
res->Segs[i].Usage = seg_fix[i].Usage;
|
439 |
|
|
res->Segs[i].BasePage = seg_fix[i].BasePage;
|
440 |
|
|
res->Segs[i].PageCount = seg_fix[i].PageCount;
|
441 |
|
|
}
|
442 |
|
|
/* The following should be fixed in the current version of the
|
443 |
|
|
* kernel and of the bootloader.
|
444 |
|
|
*/
|
445 |
|
|
#if 0
|
446 |
|
|
/* PPCBug has this zero */
|
447 |
|
|
res->VitalProductData.CacheLineSize = 0;
|
448 |
|
|
/* Motorola NT firmware sets TimeBaseDivisor to 0 */
|
449 |
|
|
if ( res->VitalProductData.TimeBaseDivisor == 0 ) {
|
450 |
|
|
res->VitalProductData.TimeBaseDivisor = 4000;
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
/* Motorola NT firmware records the PCIBridge as a "PCIDEVICE" and
|
454 |
|
|
* sets "PCIBridgeDirect". This bootloader and linux works better if
|
455 |
|
|
* BusId = "PROCESSORDEVICE" and Interface = "PCIBridgeIndirect".
|
456 |
|
|
*/
|
457 |
|
|
hostbridge=residual_find_device(PCIDEVICE, NULL,
|
458 |
|
|
BridgeController,
|
459 |
|
|
PCIBridge, -1, 0);
|
460 |
|
|
if (hostbridge) {
|
461 |
|
|
hostbridge->DeviceId.BusId = PROCESSORDEVICE;
|
462 |
|
|
hostbridge->DeviceId.Interface = PCIBridgeIndirect;
|
463 |
|
|
}
|
464 |
|
|
#endif
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
/* This routine is the first C code called with very little stack space!
|
468 |
|
|
* Its goal is to find where the boot image can be moved. This will
|
469 |
|
|
* be the highest address with enough room.
|
470 |
|
|
*/
|
471 |
|
|
int early_setup(u_long image_size) {
|
472 |
|
|
register RESIDUAL *res = bd->residual;
|
473 |
|
|
u_long minpages = PAGE_ALIGN(image_size)>>PAGE_SHIFT;
|
474 |
|
|
|
475 |
|
|
/* Fix residual if we are loaded by Motorola NT firmware */
|
476 |
|
|
if ( res && res->VitalProductData.FirmwareSupplier == 0x10000 )
|
477 |
|
|
fix_residual( res );
|
478 |
|
|
|
479 |
|
|
/* FIXME: if OF we should do something different */
|
480 |
|
|
if( !bd->of_entry && res &&
|
481 |
|
|
res->ResidualLength <= sizeof(RESIDUAL) && res->Version == 0 ) {
|
482 |
|
|
u_long lowpage=ULONG_MAX, highpage;
|
483 |
|
|
u_long imghigh=0, stkhigh=0;
|
484 |
|
|
/* Find the highest and large enough contiguous zone
|
485 |
|
|
consisting of free and BootImage sections. */
|
486 |
|
|
/* Find 3 free areas of memory, one for the main image, one
|
487 |
|
|
* for the stack (STACK_PAGES), and page one to put the map
|
488 |
|
|
* structures. They are allocated from the top of memory.
|
489 |
|
|
* In most cases the stack will be put just below the image.
|
490 |
|
|
*/
|
491 |
|
|
while((highpage =
|
492 |
|
|
find_next_zone(res, lowpage, BootImage|Free))) {
|
493 |
|
|
lowpage=find_zone_start(res, highpage, BootImage|Free);
|
494 |
|
|
if ((highpage-lowpage)>minpages &&
|
495 |
|
|
highpage>imghigh) {
|
496 |
|
|
imghigh=highpage;
|
497 |
|
|
highpage -=minpages;
|
498 |
|
|
}
|
499 |
|
|
if ((highpage-lowpage)>STACK_PAGES &&
|
500 |
|
|
highpage>stkhigh) {
|
501 |
|
|
stkhigh=highpage;
|
502 |
|
|
highpage-=STACK_PAGES;
|
503 |
|
|
}
|
504 |
|
|
}
|
505 |
|
|
|
506 |
|
|
bd->image = (void *)((imghigh-minpages)<<PAGE_SHIFT);
|
507 |
|
|
bd->stack=(void *) (stkhigh<<PAGE_SHIFT);
|
508 |
|
|
|
509 |
|
|
/* The code mover is put at the lowest possible place
|
510 |
|
|
* of free memory. If this corresponds to the loaded boot
|
511 |
|
|
* partition image it does not matter because it overrides
|
512 |
|
|
* the unused part of it (x86 code).
|
513 |
|
|
*/
|
514 |
|
|
bd->mover=(void *) (lowpage<<PAGE_SHIFT);
|
515 |
|
|
|
516 |
|
|
/* Let us flush the caches in all cases. After all it should
|
517 |
|
|
* not harm even on 601 and we don't care about performance.
|
518 |
|
|
* Right now it's easy since all processors have a line size
|
519 |
|
|
* of 32 bytes. Once again residual data has proved unreliable.
|
520 |
|
|
*/
|
521 |
|
|
bd->cache_lsize = 32;
|
522 |
|
|
}
|
523 |
|
|
/* For now we always assume that it's succesful, we should
|
524 |
|
|
* handle better the case of insufficient memory.
|
525 |
|
|
*/
|
526 |
|
|
return 0;
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
void * valloc(u_long size) {
|
530 |
|
|
map *p, *q;
|
531 |
|
|
struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
|
532 |
|
|
|
533 |
|
|
if (size==0) return NULL;
|
534 |
|
|
size=PAGE_ALIGN(size)-1;
|
535 |
|
|
for (p=mm->virtavail; p; p=p->next) {
|
536 |
|
|
if (p->base+size <= p->end) break;
|
537 |
|
|
}
|
538 |
|
|
if(!p) return NULL;
|
539 |
|
|
q=alloc_map();
|
540 |
|
|
q->base=p->base;
|
541 |
|
|
q->end=q->base+size;
|
542 |
|
|
q->firstpte=MAP_USED_VIRT;
|
543 |
|
|
insert_map(&mm->virtused, q);
|
544 |
|
|
if (q->end==p->end) free_map(remove_map(&mm->virtavail, p));
|
545 |
|
|
else p->base += size+1;
|
546 |
|
|
return (void *)q->base;
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
static
|
550 |
|
|
void vflush(map *virtmap) {
|
551 |
|
|
struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
|
552 |
|
|
u_long i, limit=(mm->hashmask>>3)+8;
|
553 |
|
|
hash_entry volatile *p=(hash_entry *) mm->sdr1;
|
554 |
|
|
|
555 |
|
|
/* PTE handling is simple since the processor never update
|
556 |
|
|
* the entries. Writable pages always have the C bit set and
|
557 |
|
|
* all valid entries have the R bit set. From the processor
|
558 |
|
|
* point of view the hash table is read only.
|
559 |
|
|
*/
|
560 |
|
|
for (i=0; i<limit; i++) {
|
561 |
|
|
if (p[i].key<0) {
|
562 |
|
|
u_long va;
|
563 |
|
|
va = ((i<<9)^((p[i].key)<<5)) &0x3ff000;
|
564 |
|
|
if (p[i].key&0x40) va^=0x3ff000;
|
565 |
|
|
va |= ((p[i].key<<21)&0xf0000000)
|
566 |
|
|
| ((p[i].key<<22)&0x0fc00000);
|
567 |
|
|
if (va>=virtmap->base && va<=virtmap->end) {
|
568 |
|
|
p[i].key=0;
|
569 |
|
|
asm volatile("sync; tlbie %0; sync" : :
|
570 |
|
|
"r" (va));
|
571 |
|
|
}
|
572 |
|
|
}
|
573 |
|
|
}
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
void vfree(void *vaddr) {
|
577 |
|
|
map *physmap, *virtmap; /* Actual mappings pertaining to this vm */
|
578 |
|
|
struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
|
579 |
|
|
|
580 |
|
|
/* Flush memory queues */
|
581 |
|
|
asm volatile("sync": : : "memory");
|
582 |
|
|
|
583 |
|
|
virtmap = remove_map_at(&mm->virtused, vaddr);
|
584 |
|
|
if (!virtmap) return;
|
585 |
|
|
|
586 |
|
|
/* Remove mappings corresponding to virtmap */
|
587 |
|
|
for (physmap=mm->mappings; physmap; ) {
|
588 |
|
|
map *nextmap=physmap->next;
|
589 |
|
|
if (physmap->base>=virtmap->base
|
590 |
|
|
&& physmap->base<virtmap->end) {
|
591 |
|
|
free_map(remove_map(&mm->mappings, physmap));
|
592 |
|
|
}
|
593 |
|
|
physmap=nextmap;
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
vflush(virtmap);
|
597 |
|
|
|
598 |
|
|
virtmap->firstpte= MAP_FREE_VIRT;
|
599 |
|
|
insert_map(&mm->virtavail, virtmap);
|
600 |
|
|
coalesce_maps(mm->virtavail);
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
void vunmap(void *vaddr) {
|
604 |
|
|
map *physmap, *virtmap; /* Actual mappings pertaining to this vm */
|
605 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
606 |
|
|
|
607 |
|
|
/* Flush memory queues */
|
608 |
|
|
asm volatile("sync": : : "memory");
|
609 |
|
|
|
610 |
|
|
/* vaddr must be within one of the vm areas in use and
|
611 |
|
|
* then must correspond to one of the physical areas
|
612 |
|
|
*/
|
613 |
|
|
for (virtmap=mm->virtused; virtmap; virtmap=virtmap->next) {
|
614 |
|
|
if (virtmap->base<=(u_long)vaddr &&
|
615 |
|
|
virtmap->end>=(u_long)vaddr) break;
|
616 |
|
|
}
|
617 |
|
|
if (!virtmap) return;
|
618 |
|
|
|
619 |
|
|
physmap = remove_map_at(&mm->mappings, vaddr);
|
620 |
|
|
if(!physmap) return;
|
621 |
|
|
vflush(physmap);
|
622 |
|
|
free_map(physmap);
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
int vmap(void *vaddr, u_long p, u_long size) {
|
626 |
|
|
map *q;
|
627 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
628 |
|
|
|
629 |
|
|
size=PAGE_ALIGN(size);
|
630 |
|
|
if(!size) return 1;
|
631 |
|
|
/* Check that the requested area fits in one vm image */
|
632 |
|
|
for (q=mm->virtused; q; q=q->next) {
|
633 |
|
|
if ((q->base <= (u_long)vaddr) &&
|
634 |
|
|
(q->end>=(u_long)vaddr+size -1)) break;
|
635 |
|
|
}
|
636 |
|
|
if (!q) return 1;
|
637 |
|
|
q= alloc_map();
|
638 |
|
|
if (!q) return 1;
|
639 |
|
|
q->base = (u_long)vaddr;
|
640 |
|
|
q->end = (u_long)vaddr+size-1;
|
641 |
|
|
q->firstpte = p;
|
642 |
|
|
return insert_map(&mm->mappings, q);
|
643 |
|
|
}
|
644 |
|
|
|
645 |
|
|
static
|
646 |
|
|
void create_identity_mappings(int type, int attr) {
|
647 |
|
|
u_long lowpage=ULONG_MAX, highpage;
|
648 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
649 |
|
|
RESIDUAL * res=bd->residual;
|
650 |
|
|
|
651 |
|
|
while((highpage = find_next_zone(res, lowpage, type))) {
|
652 |
|
|
map *p;
|
653 |
|
|
lowpage=find_zone_start(res, highpage, type);
|
654 |
|
|
p=alloc_map();
|
655 |
|
|
/* Do not map page 0 to catch null pointers */
|
656 |
|
|
lowpage = lowpage ? lowpage : 1;
|
657 |
|
|
p->base=lowpage<<PAGE_SHIFT;
|
658 |
|
|
p->end=(highpage<<PAGE_SHIFT)-1;
|
659 |
|
|
p->firstpte = (lowpage<<PAGE_SHIFT)|attr;
|
660 |
|
|
insert_map(&mm->mappings, p);
|
661 |
|
|
}
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
static inline
|
665 |
|
|
void add_free_map(u_long base, u_long end) {
|
666 |
|
|
map *q=NULL;
|
667 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
668 |
|
|
|
669 |
|
|
if (base<end) q=alloc_map();
|
670 |
|
|
if (!q) return;
|
671 |
|
|
q->base=base;
|
672 |
|
|
q->end=end-1;
|
673 |
|
|
q->firstpte=MAP_FREE_VIRT;
|
674 |
|
|
insert_map(&mm->virtavail, q);
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
static inline
|
678 |
|
|
void create_free_vm(void) {
|
679 |
|
|
map *p;
|
680 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
681 |
|
|
|
682 |
|
|
u_long vaddr=PAGE_SIZE; /* Never map vaddr 0 */
|
683 |
|
|
for(p=mm->mappings; p; p=p->next) {
|
684 |
|
|
add_free_map(vaddr, p->base);
|
685 |
|
|
vaddr=p->end+1;
|
686 |
|
|
}
|
687 |
|
|
/* Special end of memory case */
|
688 |
|
|
if (vaddr) add_free_map(vaddr,0);
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
/* Memory management initialization.
|
692 |
|
|
* Set up the mapping lists.
|
693 |
|
|
*/
|
694 |
|
|
|
695 |
|
|
static inline
|
696 |
|
|
void add_perm_map(u_long start, u_long size) {
|
697 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
698 |
|
|
map *p=alloc_map();
|
699 |
|
|
p->base = start;
|
700 |
|
|
p->end = start + size - 1;
|
701 |
|
|
p->firstpte = MAP_PERM_PHYS;
|
702 |
|
|
insert_map(& mm->physperm , p);
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
void mm_init(u_long image_size)
|
706 |
|
|
{
|
707 |
|
|
u_long lowpage=ULONG_MAX, highpage;
|
708 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
709 |
|
|
RESIDUAL * res=bd->residual;
|
710 |
|
|
extern void (tlb_handlers)(void);
|
711 |
|
|
extern void (_handler_glue)(void);
|
712 |
|
|
int i;
|
713 |
|
|
map *p;
|
714 |
|
|
|
715 |
|
|
/* The checks are simplified by the fact that the image
|
716 |
|
|
* and stack area are always allocated at the upper end
|
717 |
|
|
* of a free block.
|
718 |
|
|
*/
|
719 |
|
|
while((highpage = find_next_zone(res, lowpage, BootImage|Free))) {
|
720 |
|
|
lowpage=find_zone_start(res, highpage, BootImage|Free);
|
721 |
|
|
if ( ( ((u_long)bd->image+PAGE_ALIGN(image_size))>>PAGE_SHIFT)
|
722 |
|
|
== highpage) {
|
723 |
|
|
highpage=(u_long)(bd->image)>>PAGE_SHIFT;
|
724 |
|
|
add_perm_map((u_long)bd->image, image_size);
|
725 |
|
|
}
|
726 |
|
|
if ( (( u_long)bd->stack>>PAGE_SHIFT) == highpage) {
|
727 |
|
|
highpage -= STACK_PAGES;
|
728 |
|
|
add_perm_map(highpage<<PAGE_SHIFT,
|
729 |
|
|
STACK_PAGES*PAGE_SIZE);
|
730 |
|
|
}
|
731 |
|
|
/* Protect the interrupt handlers that we need ! */
|
732 |
|
|
if (lowpage<2) lowpage=2;
|
733 |
|
|
/* Check for the special case of full area! */
|
734 |
|
|
if (highpage>lowpage) {
|
735 |
|
|
p = alloc_map();
|
736 |
|
|
p->base = lowpage<<PAGE_SHIFT;
|
737 |
|
|
p->end = (highpage<<PAGE_SHIFT)-1;
|
738 |
|
|
p->firstpte=MAP_FREE_PHYS;
|
739 |
|
|
insert_map(&mm->physavail, p);
|
740 |
|
|
}
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
/* Allocate the hash table */
|
744 |
|
|
mm->sdr1=__palloc(0x10000, PA_PERM|16);
|
745 |
|
|
_write_SDR1((u_long)mm->sdr1);
|
746 |
|
|
memset(mm->sdr1, 0, 0x10000);
|
747 |
|
|
mm->hashmask = 0xffc0;
|
748 |
|
|
|
749 |
|
|
/* Setup the segment registers as we want them */
|
750 |
|
|
for (i=0; i<16; i++) _write_SR(i, (void *)(i<<28));
|
751 |
|
|
/* Create the maps for the physical memory, firwmarecode does not
|
752 |
|
|
* seem to be necessary. ROM is mapped read-only to reduce the risk
|
753 |
|
|
* of reprogramming it because it's often Flash and some are
|
754 |
|
|
* amazingly easy to overwrite.
|
755 |
|
|
*/
|
756 |
|
|
create_identity_mappings(BootImage|Free|FirmwareCode|FirmwareHeap|
|
757 |
|
|
FirmwareStack, PTE_RAM);
|
758 |
|
|
create_identity_mappings(SystemROM, PTE_ROM);
|
759 |
|
|
create_identity_mappings(IOMemory|SystemIO|SystemRegs|
|
760 |
|
|
PCIAddr|PCIConfig|ISAAddr, PTE_IO);
|
761 |
|
|
|
762 |
|
|
create_free_vm();
|
763 |
|
|
|
764 |
|
|
/* Install our own MMU and trap handlers. */
|
765 |
|
|
codemove((void *) 0x300, _handler_glue, 0x100, bd->cache_lsize);
|
766 |
|
|
codemove((void *) 0x400, _handler_glue, 0x100, bd->cache_lsize);
|
767 |
|
|
codemove((void *) 0x600, _handler_glue, 0x100, bd->cache_lsize);
|
768 |
|
|
codemove((void *) 0x700, _handler_glue, 0x100, bd->cache_lsize);
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
void * salloc(u_long size) {
|
772 |
|
|
map *p, *q;
|
773 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
774 |
|
|
|
775 |
|
|
if (size==0) return NULL;
|
776 |
|
|
|
777 |
|
|
size = (size+7)&~7;
|
778 |
|
|
|
779 |
|
|
for (p=mm->sallocfree; p; p=p->next) {
|
780 |
|
|
if (p->base+size <= p->end) break;
|
781 |
|
|
}
|
782 |
|
|
if(!p) {
|
783 |
|
|
void *m;
|
784 |
|
|
m = __palloc(size, PA_SUBALLOC);
|
785 |
|
|
p = alloc_map();
|
786 |
|
|
if (!m && !p) return NULL;
|
787 |
|
|
p->base = (u_long) m;
|
788 |
|
|
p->firstpte = MAP_FREE_SUBS;
|
789 |
|
|
p->end = (u_long)m+PAGE_ALIGN(size)-1;
|
790 |
|
|
insert_map(&mm->sallocfree, p);
|
791 |
|
|
coalesce_maps(mm->sallocfree);
|
792 |
|
|
coalesce_maps(mm->sallocphys);
|
793 |
|
|
};
|
794 |
|
|
q=alloc_map();
|
795 |
|
|
q->base=p->base;
|
796 |
|
|
q->end=q->base+size-1;
|
797 |
|
|
q->firstpte=MAP_USED_SUBS;
|
798 |
|
|
insert_map(&mm->sallocused, q);
|
799 |
|
|
if (q->end==p->end) free_map(remove_map(&mm->sallocfree, p));
|
800 |
|
|
else p->base += size;
|
801 |
|
|
memset((void *)q->base, 0, size);
|
802 |
|
|
return (void *)q->base;
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
void sfree(void *p) {
|
806 |
|
|
map *q;
|
807 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
808 |
|
|
|
809 |
|
|
q=remove_map_at(&mm->sallocused, p);
|
810 |
|
|
if (!q) return;
|
811 |
|
|
q->firstpte=MAP_FREE_SUBS;
|
812 |
|
|
insert_map(&mm->sallocfree, q);
|
813 |
|
|
coalesce_maps(mm->sallocfree);
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
/* first/last area fit, flags is a power of 2 indicating the required
|
817 |
|
|
* alignment. The algorithms are stupid because we expect very little
|
818 |
|
|
* fragmentation of the areas, if any. The unit of allocation is the page.
|
819 |
|
|
* The allocation is by default performed from higher addresses down,
|
820 |
|
|
* unless flags&PA_LOW is true.
|
821 |
|
|
*/
|
822 |
|
|
|
823 |
|
|
void * __palloc(u_long size, int flags)
|
824 |
|
|
{
|
825 |
|
|
u_long mask = ((1<<(flags&PA_ALIGN_MASK))-1);
|
826 |
|
|
map *newmap, *frommap, *p, *splitmap=0;
|
827 |
|
|
map **queue;
|
828 |
|
|
u_long qflags;
|
829 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
830 |
|
|
|
831 |
|
|
/* Asking for a size which is not a multiple of the alignment
|
832 |
|
|
is likely to be an error. */
|
833 |
|
|
|
834 |
|
|
if (size & mask) return NULL;
|
835 |
|
|
size = PAGE_ALIGN(size);
|
836 |
|
|
if(!size) return NULL;
|
837 |
|
|
|
838 |
|
|
if (flags&PA_SUBALLOC) {
|
839 |
|
|
queue = &mm->sallocphys;
|
840 |
|
|
qflags = MAP_SUBS_PHYS;
|
841 |
|
|
} else if (flags&PA_PERM) {
|
842 |
|
|
queue = &mm->physperm;
|
843 |
|
|
qflags = MAP_PERM_PHYS;
|
844 |
|
|
} else {
|
845 |
|
|
queue = &mm->physused;
|
846 |
|
|
qflags = MAP_USED_PHYS;
|
847 |
|
|
}
|
848 |
|
|
/* We need to allocate that one now so no two allocations may attempt
|
849 |
|
|
* to take the same memory simultaneously. Alloc_map_page does
|
850 |
|
|
* not call back here to avoid infinite recursion in alloc_map.
|
851 |
|
|
*/
|
852 |
|
|
|
853 |
|
|
if (mask&PAGE_MASK) {
|
854 |
|
|
splitmap=alloc_map();
|
855 |
|
|
if (!splitmap) return NULL;
|
856 |
|
|
}
|
857 |
|
|
|
858 |
|
|
for (p=mm->physavail, frommap=NULL; p; p=p->next) {
|
859 |
|
|
u_long high = p->end;
|
860 |
|
|
u_long limit = ((p->base+mask)&~mask) + size-1;
|
861 |
|
|
if (high>=limit && ((p->base+mask)&~mask)+size>p->base) {
|
862 |
|
|
frommap = p;
|
863 |
|
|
if (flags&PA_LOW) break;
|
864 |
|
|
}
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
if (!frommap) {
|
868 |
|
|
if (splitmap) free_map(splitmap);
|
869 |
|
|
return NULL;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
newmap=alloc_map();
|
873 |
|
|
|
874 |
|
|
if (flags&PA_LOW) {
|
875 |
|
|
newmap->base = (frommap->base+mask)&~mask;
|
876 |
|
|
} else {
|
877 |
|
|
newmap->base = (frommap->end +1 - size) & ~mask;
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
newmap->end = newmap->base+size-1;
|
881 |
|
|
newmap->firstpte = qflags;
|
882 |
|
|
|
883 |
|
|
/* Add a fragment if we don't allocate until the end. */
|
884 |
|
|
|
885 |
|
|
if (splitmap) {
|
886 |
|
|
splitmap->base=newmap->base+size;
|
887 |
|
|
splitmap->end=frommap->end;
|
888 |
|
|
splitmap->firstpte= MAP_FREE_PHYS;
|
889 |
|
|
frommap->end=newmap->base-1;
|
890 |
|
|
} else if (flags & PA_LOW) {
|
891 |
|
|
frommap->base=newmap->base+size;
|
892 |
|
|
} else {
|
893 |
|
|
frommap->end=newmap->base-1;
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
/* Remove a fragment if it becomes empty. */
|
897 |
|
|
if (frommap->base == frommap->end+1) {
|
898 |
|
|
free_map(remove_map(&mm->physavail, frommap));
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
if (splitmap) {
|
902 |
|
|
if (splitmap->base == splitmap->end+1) {
|
903 |
|
|
free_map(remove_map(&mm->physavail, splitmap));
|
904 |
|
|
} else {
|
905 |
|
|
insert_map(&mm->physavail, splitmap);
|
906 |
|
|
}
|
907 |
|
|
}
|
908 |
|
|
|
909 |
|
|
insert_map(queue, newmap);
|
910 |
|
|
return (void *) newmap->base;
|
911 |
|
|
|
912 |
|
|
}
|
913 |
|
|
|
914 |
|
|
void pfree(void * p) {
|
915 |
|
|
map *q;
|
916 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
917 |
|
|
q=remove_map_at(&mm->physused, p);
|
918 |
|
|
if (!q) return;
|
919 |
|
|
q->firstpte=MAP_FREE_PHYS;
|
920 |
|
|
insert_map(&mm->physavail, q);
|
921 |
|
|
coalesce_maps(mm->physavail);
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
#ifdef DEBUG
|
925 |
|
|
/* Debugging functions */
|
926 |
|
|
void print_maps(map *chain, const char *s) {
|
927 |
|
|
map *p;
|
928 |
|
|
printk("%s",s);
|
929 |
|
|
for(p=chain; p; p=p->next) {
|
930 |
|
|
printk(" %08lx-%08lx: %08lx\n",
|
931 |
|
|
p->base, p->end, p->firstpte);
|
932 |
|
|
}
|
933 |
|
|
}
|
934 |
|
|
|
935 |
|
|
void print_all_maps(const char * s) {
|
936 |
|
|
u_long freemaps;
|
937 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
938 |
|
|
map *free;
|
939 |
|
|
printk("%s",s);
|
940 |
|
|
print_maps(mm->mappings, " Currently defined mappings:\n");
|
941 |
|
|
print_maps(mm->physavail, " Currently available physical areas:\n");
|
942 |
|
|
print_maps(mm->physused, " Currently used physical areas:\n");
|
943 |
|
|
print_maps(mm->virtavail, " Currently available virtual areas:\n");
|
944 |
|
|
print_maps(mm->virtused, " Currently used virtual areas:\n");
|
945 |
|
|
print_maps(mm->physperm, " Permanently used physical areas:\n");
|
946 |
|
|
print_maps(mm->sallocphys, " Physical memory used for salloc:\n");
|
947 |
|
|
print_maps(mm->sallocfree, " Memory available for salloc:\n");
|
948 |
|
|
print_maps(mm->sallocused, " Memory allocated through salloc:\n");
|
949 |
|
|
for (freemaps=0, free=mm->freemaps; free; freemaps++, free=free->next);
|
950 |
|
|
printk(" %ld free maps.\n", freemaps);
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
void print_hash_table(void) {
|
954 |
|
|
struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
|
955 |
|
|
hash_entry *p=(hash_entry *) mm->sdr1;
|
956 |
|
|
u_int i, valid=0;
|
957 |
|
|
for (i=0; i<((mm->hashmask)>>3)+8; i++) {
|
958 |
|
|
if (p[i].key<0) valid++;
|
959 |
|
|
}
|
960 |
|
|
printk("%u valid hash entries on pass 1.\n", valid);
|
961 |
|
|
valid = 0;
|
962 |
|
|
for (i=0; i<((mm->hashmask)>>3)+8; i++) {
|
963 |
|
|
if (p[i].key<0) valid++;
|
964 |
|
|
}
|
965 |
|
|
printk("%u valid hash entries on pass 2.\n"
|
966 |
|
|
" vpn:rpn_attr, p/s, pteg.i\n", valid);
|
967 |
|
|
for (i=0; i<((mm->hashmask)>>3)+8; i++) {
|
968 |
|
|
if (p[i].key<0) {
|
969 |
|
|
u_int pteg=(i>>3);
|
970 |
|
|
u_long vpn;
|
971 |
|
|
vpn = (pteg^((p[i].key)>>7)) &0x3ff;
|
972 |
|
|
if (p[i].key&0x40) vpn^=0x3ff;
|
973 |
|
|
vpn |= ((p[i].key<<9)&0xffff0000)
|
974 |
|
|
| ((p[i].key<<10)&0xfc00);
|
975 |
|
|
printk("%08lx:%08lx, %s, %5d.%d\n",
|
976 |
|
|
vpn, p[i].rpn, p[i].key&0x40 ? "sec" : "pri",
|
977 |
|
|
pteg, i%8);
|
978 |
|
|
}
|
979 |
|
|
}
|
980 |
|
|
}
|
981 |
|
|
|
982 |
|
|
#endif
|