1 |
30 |
unneback |
//
|
2 |
|
|
// $Id: binstr.S,v 1.2 2001-09-27 12:01:22 chris Exp $
|
3 |
|
|
//
|
4 |
|
|
// binstr.sa 3.3 12/19/90
|
5 |
|
|
//
|
6 |
|
|
// Description: Converts a 64-bit binary integer to bcd.
|
7 |
|
|
//
|
8 |
|
|
// Input: 64-bit binary integer in d2:d3, desired length (LEN) in
|
9 |
|
|
// d0, and a pointer to start in memory for bcd characters
|
10 |
|
|
// in d0. (This pointer must point to byte 4 of the first
|
11 |
|
|
// lword of the packed decimal memory string.)
|
12 |
|
|
//
|
13 |
|
|
// Output: LEN bcd digits representing the 64-bit integer.
|
14 |
|
|
//
|
15 |
|
|
// Algorithm:
|
16 |
|
|
// The 64-bit binary is assumed to have a decimal point before
|
17 |
|
|
// bit 63. The fraction is multiplied by 10 using a mul by 2
|
18 |
|
|
// shift and a mul by 8 shift. The bits shifted out of the
|
19 |
|
|
// msb form a decimal digit. This process is iterated until
|
20 |
|
|
// LEN digits are formed.
|
21 |
|
|
//
|
22 |
|
|
// A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the
|
23 |
|
|
// digit formed will be assumed the least significant. This is
|
24 |
|
|
// to force the first byte formed to have a 0 in the upper 4 bits.
|
25 |
|
|
//
|
26 |
|
|
// A2. Beginning of the loop:
|
27 |
|
|
// Copy the fraction in d2:d3 to d4:d5.
|
28 |
|
|
//
|
29 |
|
|
// A3. Multiply the fraction in d2:d3 by 8 using bit-field
|
30 |
|
|
// extracts and shifts. The three msbs from d2 will go into
|
31 |
|
|
// d1.
|
32 |
|
|
//
|
33 |
|
|
// A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb
|
34 |
|
|
// will be collected by the carry.
|
35 |
|
|
//
|
36 |
|
|
// A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5
|
37 |
|
|
// into d2:d3. D1 will contain the bcd digit formed.
|
38 |
|
|
//
|
39 |
|
|
// A6. Test d7. If zero, the digit formed is the ms digit. If non-
|
40 |
|
|
// zero, it is the ls digit. Put the digit in its place in the
|
41 |
|
|
// upper word of d0. If it is the ls digit, write the word
|
42 |
|
|
// from d0 to memory.
|
43 |
|
|
//
|
44 |
|
|
// A7. Decrement d6 (LEN counter) and repeat the loop until zero.
|
45 |
|
|
//
|
46 |
|
|
// Implementation Notes:
|
47 |
|
|
//
|
48 |
|
|
// The registers are used as follows:
|
49 |
|
|
//
|
50 |
|
|
// d0: LEN counter
|
51 |
|
|
// d1: temp used to form the digit
|
52 |
|
|
// d2: upper 32-bits of fraction for mul by 8
|
53 |
|
|
// d3: lower 32-bits of fraction for mul by 8
|
54 |
|
|
// d4: upper 32-bits of fraction for mul by 2
|
55 |
|
|
// d5: lower 32-bits of fraction for mul by 2
|
56 |
|
|
// d6: temp for bit-field extracts
|
57 |
|
|
// d7: byte digit formation word;digit count {0,1}
|
58 |
|
|
// a0: pointer into memory for packed bcd string formation
|
59 |
|
|
//
|
60 |
|
|
|
61 |
|
|
// Copyright (C) Motorola, Inc. 1990
|
62 |
|
|
// All Rights Reserved
|
63 |
|
|
//
|
64 |
|
|
// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
65 |
|
|
// The copyright notice above does not evidence any
|
66 |
|
|
// actual or intended publication of such source code.
|
67 |
|
|
|
68 |
|
|
//BINSTR idnt 2,1 | Motorola 040 Floating Point Software Package
|
69 |
|
|
|
70 |
|
|
|section 8
|
71 |
|
|
|
72 |
|
|
#include "fpsp.defs"
|
73 |
|
|
|
74 |
|
|
.global binstr
|
75 |
|
|
binstr:
|
76 |
|
|
moveml %d0-%d7,-(%a7)
|
77 |
|
|
//
|
78 |
|
|
// A1: Init d7
|
79 |
|
|
//
|
80 |
|
|
moveql #1,%d7 //init d7 for second digit
|
81 |
|
|
subql #1,%d0 //for dbf d0 would have LEN+1 passes
|
82 |
|
|
//
|
83 |
|
|
// A2. Copy d2:d3 to d4:d5. Start loop.
|
84 |
|
|
//
|
85 |
|
|
loop:
|
86 |
|
|
movel %d2,%d4 //copy the fraction before muls
|
87 |
|
|
movel %d3,%d5 //to d4:d5
|
88 |
|
|
//
|
89 |
|
|
// A3. Multiply d2:d3 by 8; extract msbs into d1.
|
90 |
|
|
//
|
91 |
|
|
bfextu %d2{#0:#3},%d1 //copy 3 msbs of d2 into d1
|
92 |
|
|
asll #3,%d2 //shift d2 left by 3 places
|
93 |
|
|
bfextu %d3{#0:#3},%d6 //copy 3 msbs of d3 into d6
|
94 |
|
|
asll #3,%d3 //shift d3 left by 3 places
|
95 |
|
|
orl %d6,%d2 //or in msbs from d3 into d2
|
96 |
|
|
//
|
97 |
|
|
// A4. Multiply d4:d5 by 2; add carry out to d1.
|
98 |
|
|
//
|
99 |
|
|
asll #1,%d5 //mul d5 by 2
|
100 |
|
|
roxll #1,%d4 //mul d4 by 2
|
101 |
|
|
swap %d6 //put 0 in d6 lower word
|
102 |
|
|
addxw %d6,%d1 //add in extend from mul by 2
|
103 |
|
|
//
|
104 |
|
|
// A5. Add mul by 8 to mul by 2. D1 contains the digit formed.
|
105 |
|
|
//
|
106 |
|
|
addl %d5,%d3 //add lower 32 bits
|
107 |
|
|
nop //ERRATA ; FIX #13 (Rev. 1.2 6/6/90)
|
108 |
|
|
addxl %d4,%d2 //add with extend upper 32 bits
|
109 |
|
|
nop //ERRATA ; FIX #13 (Rev. 1.2 6/6/90)
|
110 |
|
|
addxw %d6,%d1 //add in extend from add to d1
|
111 |
|
|
swap %d6 //with d6 = 0; put 0 in upper word
|
112 |
|
|
//
|
113 |
|
|
// A6. Test d7 and branch.
|
114 |
|
|
//
|
115 |
|
|
tstw %d7 //if zero, store digit & to loop
|
116 |
|
|
beqs first_d //if non-zero, form byte & write
|
117 |
|
|
sec_d:
|
118 |
|
|
swap %d7 //bring first digit to word d7b
|
119 |
|
|
aslw #4,%d7 //first digit in upper 4 bits d7b
|
120 |
|
|
addw %d1,%d7 //add in ls digit to d7b
|
121 |
|
|
moveb %d7,(%a0)+ //store d7b byte in memory
|
122 |
|
|
swap %d7 //put LEN counter in word d7a
|
123 |
|
|
clrw %d7 //set d7a to signal no digits done
|
124 |
|
|
dbf %d0,loop //do loop some more!
|
125 |
|
|
bras end_bstr //finished, so exit
|
126 |
|
|
first_d:
|
127 |
|
|
swap %d7 //put digit word in d7b
|
128 |
|
|
movew %d1,%d7 //put new digit in d7b
|
129 |
|
|
swap %d7 //put LEN counter in word d7a
|
130 |
|
|
addqw #1,%d7 //set d7a to signal first digit done
|
131 |
|
|
dbf %d0,loop //do loop some more!
|
132 |
|
|
swap %d7 //put last digit in string
|
133 |
|
|
lslw #4,%d7 //move it to upper 4 bits
|
134 |
|
|
moveb %d7,(%a0)+ //store it in memory string
|
135 |
|
|
//
|
136 |
|
|
// Clean up and return with result in fp0.
|
137 |
|
|
//
|
138 |
|
|
end_bstr:
|
139 |
|
|
moveml (%a7)+,%d0-%d7
|
140 |
|
|
rts
|
141 |
|
|
|end
|