1 |
30 |
unneback |
#pragma ident "@(#)auth_time.c 1.4 92/11/10 SMI"
|
2 |
|
|
|
3 |
|
|
/*
|
4 |
|
|
* auth_time.c
|
5 |
|
|
*
|
6 |
|
|
* This module contains the private function __rpc_get_time_offset()
|
7 |
|
|
* which will return the difference in seconds between the local system's
|
8 |
|
|
* notion of time and a remote server's notion of time. This must be
|
9 |
|
|
* possible without calling any functions that may invoke the name
|
10 |
|
|
* service. (netdir_getbyxxx, getXbyY, etc). The function is used in the
|
11 |
|
|
* synchronize call of the authdes code to synchronize clocks between
|
12 |
|
|
* NIS+ clients and their servers.
|
13 |
|
|
*
|
14 |
|
|
* Note to minimize the amount of duplicate code, portions of the
|
15 |
|
|
* synchronize() function were folded into this code, and the synchronize
|
16 |
|
|
* call becomes simply a wrapper around this function. Further, if this
|
17 |
|
|
* function is called with a timehost it *DOES* recurse to the name
|
18 |
|
|
* server so don't use it in that mode if you are doing name service code.
|
19 |
|
|
*
|
20 |
|
|
* Copyright (c) 1992 Sun Microsystems Inc.
|
21 |
|
|
* All rights reserved.
|
22 |
|
|
*
|
23 |
|
|
* Side effects :
|
24 |
|
|
* When called a client handle to a RPCBIND process is created
|
25 |
|
|
* and destroyed. Two strings "netid" and "uaddr" are malloc'd
|
26 |
|
|
* and returned. The SIGALRM processing is modified only if
|
27 |
|
|
* needed to deal with TCP connections.
|
28 |
|
|
*
|
29 |
|
|
* NOTE: This code has had the crap beaten out it in order to convert
|
30 |
|
|
* it from TI-RPC back to TD-RPC for use on FreeBSD.
|
31 |
|
|
*
|
32 |
|
|
* $FreeBSD: src/lib/libc/rpc/auth_time.c,v 1.4 2000/01/27 23:06:35 jasone Exp $
|
33 |
|
|
*/
|
34 |
|
|
#include <stdio.h>
|
35 |
|
|
#include <syslog.h>
|
36 |
|
|
#include <string.h>
|
37 |
|
|
#include <stdlib.h>
|
38 |
|
|
#include <unistd.h>
|
39 |
|
|
#include <netdb.h>
|
40 |
|
|
#include <sys/signal.h>
|
41 |
|
|
#include <sys/errno.h>
|
42 |
|
|
#include <sys/socket.h>
|
43 |
|
|
#include <netinet/in.h>
|
44 |
|
|
#include <arpa/inet.h>
|
45 |
|
|
#include <rpc/rpc.h>
|
46 |
|
|
#include <rpc/rpc_com.h>
|
47 |
|
|
#undef NIS
|
48 |
|
|
#include <rpcsvc/nis.h>
|
49 |
|
|
|
50 |
|
|
/*
|
51 |
|
|
* FreeBSD currently uses RPC 4.0, which uses portmap rather than
|
52 |
|
|
* rpcbind. Consequently, we need to fake up these values here.
|
53 |
|
|
* Luckily, the RPCB_GETTIME procedure uses only base XDR data types
|
54 |
|
|
* so we don't need anything besides these magic numbers.
|
55 |
|
|
*/
|
56 |
|
|
#define RPCBPROG (u_long)100000
|
57 |
|
|
#define RPCBVERS (u_long)3
|
58 |
|
|
#define RPCBPROC_GETTIME (u_long)6
|
59 |
|
|
|
60 |
|
|
#ifdef TESTING
|
61 |
|
|
#define msg(x) printf("ERROR: %s\n", x)
|
62 |
|
|
/* #define msg(x) syslog(LOG_ERR, "%s", x) */
|
63 |
|
|
#else
|
64 |
|
|
#define msg(x)
|
65 |
|
|
#endif
|
66 |
|
|
|
67 |
|
|
static int saw_alarm = 0;
|
68 |
|
|
|
69 |
|
|
static void
|
70 |
|
|
alarm_hndler(s)
|
71 |
|
|
int s;
|
72 |
|
|
{
|
73 |
|
|
saw_alarm = 1;
|
74 |
|
|
return;
|
75 |
|
|
}
|
76 |
|
|
|
77 |
|
|
/*
|
78 |
|
|
* The internet time server defines the epoch to be Jan 1, 1900
|
79 |
|
|
* whereas UNIX defines it to be Jan 1, 1970. To adjust the result
|
80 |
|
|
* from internet time-service time, into UNIX time we subtract the
|
81 |
|
|
* following offset :
|
82 |
|
|
*/
|
83 |
|
|
#define NYEARS (1970 - 1900)
|
84 |
|
|
#define TOFFSET ((u_long)60*60*24*(365*NYEARS + (NYEARS/4)))
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
/*
|
88 |
|
|
* Stolen from rpc.nisd:
|
89 |
|
|
* Turn a 'universal address' into a struct sockaddr_in.
|
90 |
|
|
* Bletch.
|
91 |
|
|
*/
|
92 |
|
|
static int uaddr_to_sockaddr(uaddr, sin)
|
93 |
|
|
#ifdef foo
|
94 |
|
|
endpoint *endpt;
|
95 |
|
|
#endif
|
96 |
|
|
char *uaddr;
|
97 |
|
|
struct sockaddr_in *sin;
|
98 |
|
|
{
|
99 |
|
|
unsigned char p_bytes[2];
|
100 |
|
|
int i;
|
101 |
|
|
unsigned long a[6];
|
102 |
|
|
|
103 |
|
|
i = sscanf(uaddr, "%lu.%lu.%lu.%lu.%lu.%lu", &a[0], &a[1], &a[2],
|
104 |
|
|
&a[3], &a[4], &a[5]);
|
105 |
|
|
|
106 |
|
|
if (i < 6)
|
107 |
|
|
return(1);
|
108 |
|
|
|
109 |
|
|
for (i = 0; i < 4; i++)
|
110 |
|
|
sin->sin_addr.s_addr |= (a[i] & 0x000000FF) << (8 * i);
|
111 |
|
|
|
112 |
|
|
p_bytes[0] = (unsigned char)a[4] & 0x000000FF;
|
113 |
|
|
p_bytes[1] = (unsigned char)a[5] & 0x000000FF;
|
114 |
|
|
|
115 |
|
|
sin->sin_family = AF_INET; /* always */
|
116 |
|
|
bcopy((char *)&p_bytes, (char *)&sin->sin_port, 2);
|
117 |
|
|
|
118 |
|
|
return (0);
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
/*
|
122 |
|
|
* free_eps()
|
123 |
|
|
*
|
124 |
|
|
* Free the strings that were strduped into the eps structure.
|
125 |
|
|
*/
|
126 |
|
|
static void
|
127 |
|
|
free_eps(eps, num)
|
128 |
|
|
endpoint eps[];
|
129 |
|
|
int num;
|
130 |
|
|
{
|
131 |
|
|
int i;
|
132 |
|
|
|
133 |
|
|
for (i = 0; i < num; i++) {
|
134 |
|
|
free(eps[i].uaddr);
|
135 |
|
|
free(eps[i].proto);
|
136 |
|
|
free(eps[i].family);
|
137 |
|
|
}
|
138 |
|
|
return;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
/*
|
142 |
|
|
* get_server()
|
143 |
|
|
*
|
144 |
|
|
* This function constructs a nis_server structure description for the
|
145 |
|
|
* indicated hostname.
|
146 |
|
|
*
|
147 |
|
|
* NOTE: There is a chance we may end up recursing here due to the
|
148 |
|
|
* fact that gethostbyname() could do an NIS search. Ideally, the
|
149 |
|
|
* NIS+ server will call __rpc_get_time_offset() with the nis_server
|
150 |
|
|
* structure already populated.
|
151 |
|
|
*/
|
152 |
|
|
static nis_server *
|
153 |
|
|
get_server(sin, host, srv, eps, maxep)
|
154 |
|
|
struct sockaddr_in *sin;
|
155 |
|
|
char *host; /* name of the time host */
|
156 |
|
|
nis_server *srv; /* nis_server struct to use. */
|
157 |
|
|
endpoint eps[]; /* array of endpoints */
|
158 |
|
|
int maxep; /* max array size */
|
159 |
|
|
{
|
160 |
|
|
char hname[256];
|
161 |
|
|
int num_ep = 0, i;
|
162 |
|
|
struct hostent *he;
|
163 |
|
|
struct hostent dummy;
|
164 |
|
|
char *ptr[2];
|
165 |
|
|
|
166 |
|
|
if (host == NULL && sin == NULL)
|
167 |
|
|
return (NULL);
|
168 |
|
|
|
169 |
|
|
if (sin == NULL) {
|
170 |
|
|
he = gethostbyname(host);
|
171 |
|
|
if (he == NULL)
|
172 |
|
|
return(NULL);
|
173 |
|
|
} else {
|
174 |
|
|
he = &dummy;
|
175 |
|
|
ptr[0] = (char *)&sin->sin_addr.s_addr;
|
176 |
|
|
ptr[1] = NULL;
|
177 |
|
|
dummy.h_addr_list = ptr;
|
178 |
|
|
}
|
179 |
|
|
|
180 |
|
|
/*
|
181 |
|
|
* This is lame. We go around once for TCP, then again
|
182 |
|
|
* for UDP.
|
183 |
|
|
*/
|
184 |
|
|
for (i = 0; (he->h_addr_list[i] != NULL) && (num_ep < maxep);
|
185 |
|
|
i++, num_ep++) {
|
186 |
|
|
struct in_addr *a;
|
187 |
|
|
|
188 |
|
|
a = (struct in_addr *)he->h_addr_list[i];
|
189 |
|
|
snprintf(hname, sizeof(hname), "%s.0.111", inet_ntoa(*a));
|
190 |
|
|
eps[num_ep].uaddr = strdup(hname);
|
191 |
|
|
eps[num_ep].family = strdup("inet");
|
192 |
|
|
eps[num_ep].proto = strdup("tcp");
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
for (i = 0; (he->h_addr_list[i] != NULL) && (num_ep < maxep);
|
196 |
|
|
i++, num_ep++) {
|
197 |
|
|
struct in_addr *a;
|
198 |
|
|
|
199 |
|
|
a = (struct in_addr *)he->h_addr_list[i];
|
200 |
|
|
snprintf(hname, sizeof(hname), "%s.0.111", inet_ntoa(*a));
|
201 |
|
|
eps[num_ep].uaddr = strdup(hname);
|
202 |
|
|
eps[num_ep].family = strdup("inet");
|
203 |
|
|
eps[num_ep].proto = strdup("udp");
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
srv->name = (nis_name) host;
|
207 |
|
|
srv->ep.ep_len = num_ep;
|
208 |
|
|
srv->ep.ep_val = eps;
|
209 |
|
|
srv->key_type = NIS_PK_NONE;
|
210 |
|
|
srv->pkey.n_bytes = NULL;
|
211 |
|
|
srv->pkey.n_len = 0;
|
212 |
|
|
return (srv);
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
/*
|
216 |
|
|
* __rpc_get_time_offset()
|
217 |
|
|
*
|
218 |
|
|
* This function uses a nis_server structure to contact the a remote
|
219 |
|
|
* machine (as named in that structure) and returns the offset in time
|
220 |
|
|
* between that machine and this one. This offset is returned in seconds
|
221 |
|
|
* and may be positive or negative.
|
222 |
|
|
*
|
223 |
|
|
* The first time through, a lot of fiddling is done with the netconfig
|
224 |
|
|
* stuff to find a suitable transport. The function is very aggressive
|
225 |
|
|
* about choosing UDP or at worst TCP if it can. This is because
|
226 |
|
|
* those transports support both the RCPBIND call and the internet
|
227 |
|
|
* time service.
|
228 |
|
|
*
|
229 |
|
|
* Once through, *uaddr is set to the universal address of
|
230 |
|
|
* the machine and *netid is set to the local netid for the transport
|
231 |
|
|
* that uaddr goes with. On the second call, the netconfig stuff
|
232 |
|
|
* is skipped and the uaddr/netid pair are used to fetch the netconfig
|
233 |
|
|
* structure and to then contact the machine for the time.
|
234 |
|
|
*
|
235 |
|
|
* td = "server" - "client"
|
236 |
|
|
*/
|
237 |
|
|
int
|
238 |
|
|
__rpc_get_time_offset(td, srv, thost, uaddr, netid)
|
239 |
|
|
struct timeval *td; /* Time difference */
|
240 |
|
|
nis_server *srv; /* NIS Server description */
|
241 |
|
|
char *thost; /* if no server, this is the timehost */
|
242 |
|
|
char **uaddr; /* known universal address */
|
243 |
|
|
struct sockaddr_in *netid; /* known network identifier */
|
244 |
|
|
{
|
245 |
|
|
CLIENT *clnt; /* Client handle */
|
246 |
|
|
endpoint *ep, /* useful endpoints */
|
247 |
|
|
*useep = NULL; /* endpoint of xp */
|
248 |
|
|
char *useua = NULL; /* uaddr of selected xp */
|
249 |
|
|
int epl, i; /* counters */
|
250 |
|
|
enum clnt_stat status; /* result of clnt_call */
|
251 |
|
|
u_long thetime, delta;
|
252 |
|
|
int needfree = 0;
|
253 |
|
|
struct timeval tv;
|
254 |
|
|
int time_valid;
|
255 |
|
|
int udp_ep = -1, tcp_ep = -1;
|
256 |
|
|
int a1, a2, a3, a4;
|
257 |
|
|
char ut[64], ipuaddr[64];
|
258 |
|
|
endpoint teps[32];
|
259 |
|
|
nis_server tsrv;
|
260 |
|
|
void (*oldsig)() = NULL; /* old alarm handler */
|
261 |
|
|
struct sockaddr_in sin;
|
262 |
|
|
int s = RPC_ANYSOCK, len;
|
263 |
|
|
int type = 0;
|
264 |
|
|
|
265 |
|
|
td->tv_sec = 0;
|
266 |
|
|
td->tv_usec = 0;
|
267 |
|
|
|
268 |
|
|
/*
|
269 |
|
|
* First check to see if we need to find and address for this
|
270 |
|
|
* server.
|
271 |
|
|
*/
|
272 |
|
|
if (*uaddr == NULL) {
|
273 |
|
|
if ((srv != NULL) && (thost != NULL)) {
|
274 |
|
|
msg("both timehost and srv pointer used!");
|
275 |
|
|
return (0);
|
276 |
|
|
}
|
277 |
|
|
if (! srv) {
|
278 |
|
|
srv = get_server(netid, thost, &tsrv, teps, 32);
|
279 |
|
|
if (srv == NULL) {
|
280 |
|
|
msg("unable to contruct server data.");
|
281 |
|
|
return (0);
|
282 |
|
|
}
|
283 |
|
|
needfree = 1; /* need to free data in endpoints */
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
ep = srv->ep.ep_val;
|
287 |
|
|
epl = srv->ep.ep_len;
|
288 |
|
|
|
289 |
|
|
/* Identify the TCP and UDP endpoints */
|
290 |
|
|
for (i = 0;
|
291 |
|
|
(i < epl) && ((udp_ep == -1) || (tcp_ep == -1)); i++) {
|
292 |
|
|
if (strcasecmp(ep[i].proto, "udp") == 0)
|
293 |
|
|
udp_ep = i;
|
294 |
|
|
if (strcasecmp(ep[i].proto, "tcp") == 0)
|
295 |
|
|
tcp_ep = i;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
/* Check to see if it is UDP or TCP */
|
299 |
|
|
if (tcp_ep > -1) {
|
300 |
|
|
useep = &ep[tcp_ep];
|
301 |
|
|
useua = ep[tcp_ep].uaddr;
|
302 |
|
|
type = SOCK_STREAM;
|
303 |
|
|
} else if (udp_ep > -1) {
|
304 |
|
|
useep = &ep[udp_ep];
|
305 |
|
|
useua = ep[udp_ep].uaddr;
|
306 |
|
|
type = SOCK_DGRAM;
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
if (useep == NULL) {
|
310 |
|
|
msg("no acceptable transport endpoints.");
|
311 |
|
|
if (needfree)
|
312 |
|
|
free_eps(teps, tsrv.ep.ep_len);
|
313 |
|
|
return (0);
|
314 |
|
|
}
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
/*
|
318 |
|
|
* Create a sockaddr from the uaddr.
|
319 |
|
|
*/
|
320 |
|
|
if (*uaddr != NULL)
|
321 |
|
|
useua = *uaddr;
|
322 |
|
|
|
323 |
|
|
/* Fixup test for NIS+ */
|
324 |
|
|
sscanf(useua, "%d.%d.%d.%d.", &a1, &a2, &a3, &a4);
|
325 |
|
|
sprintf(ipuaddr, "%d.%d.%d.%d.0.111", a1, a2, a3, a4);
|
326 |
|
|
useua = &ipuaddr[0];
|
327 |
|
|
|
328 |
|
|
bzero((char *)&sin, sizeof(sin));
|
329 |
|
|
if (uaddr_to_sockaddr(useua, &sin)) {
|
330 |
|
|
msg("unable to translate uaddr to sockaddr.");
|
331 |
|
|
if (needfree)
|
332 |
|
|
free_eps(teps, tsrv.ep.ep_len);
|
333 |
|
|
return (0);
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
/*
|
337 |
|
|
* Create the client handle to rpcbind. Note we always try
|
338 |
|
|
* version 3 since that is the earliest version that supports
|
339 |
|
|
* the RPCB_GETTIME call. Also it is the version that comes
|
340 |
|
|
* standard with SVR4. Since most everyone supports TCP/IP
|
341 |
|
|
* we could consider trying the rtime call first.
|
342 |
|
|
*/
|
343 |
|
|
clnt = clnttcp_create(&sin, RPCBPROG, RPCBVERS, &s, 0, 0);
|
344 |
|
|
if (clnt == NULL) {
|
345 |
|
|
msg("unable to create client handle to rpcbind.");
|
346 |
|
|
if (needfree)
|
347 |
|
|
free_eps(teps, tsrv.ep.ep_len);
|
348 |
|
|
return (0);
|
349 |
|
|
}
|
350 |
|
|
|
351 |
|
|
tv.tv_sec = 5;
|
352 |
|
|
tv.tv_usec = 0;
|
353 |
|
|
time_valid = 0;
|
354 |
|
|
status = clnt_call(clnt, RPCBPROC_GETTIME, xdr_void, NULL,
|
355 |
|
|
xdr_u_long, (char *)&thetime, tv);
|
356 |
|
|
/*
|
357 |
|
|
* The only error we check for is anything but success. In
|
358 |
|
|
* fact we could have seen PROGMISMATCH if talking to a 4.1
|
359 |
|
|
* machine (pmap v2) or TIMEDOUT if the net was busy.
|
360 |
|
|
*/
|
361 |
|
|
if (status == RPC_SUCCESS)
|
362 |
|
|
time_valid = 1;
|
363 |
|
|
else {
|
364 |
|
|
int save;
|
365 |
|
|
|
366 |
|
|
/* Blow away possible stale CLNT handle. */
|
367 |
|
|
if (clnt != NULL) {
|
368 |
|
|
clnt_destroy(clnt);
|
369 |
|
|
clnt = NULL;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/*
|
373 |
|
|
* Convert PMAP address into timeservice address
|
374 |
|
|
* We take advantage of the fact that we "know" what
|
375 |
|
|
* the universal address looks like for inet transports.
|
376 |
|
|
*
|
377 |
|
|
* We also know that the internet timeservice is always
|
378 |
|
|
* listening on port 37.
|
379 |
|
|
*/
|
380 |
|
|
sscanf(useua, "%d.%d.%d.%d.", &a1, &a2, &a3, &a4);
|
381 |
|
|
sprintf(ut, "%d.%d.%d.%d.0.37", a1, a2, a3, a4);
|
382 |
|
|
|
383 |
|
|
if (uaddr_to_sockaddr(ut, &sin)) {
|
384 |
|
|
msg("cannot convert timeservice uaddr to sockaddr.");
|
385 |
|
|
goto error;
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
s = socket(AF_INET, type, 0);
|
389 |
|
|
if (s == -1) {
|
390 |
|
|
msg("unable to open fd to network.");
|
391 |
|
|
goto error;
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
/*
|
395 |
|
|
* Now depending on whether or not we're talking to
|
396 |
|
|
* UDP we set a timeout or not.
|
397 |
|
|
*/
|
398 |
|
|
if (type == SOCK_DGRAM) {
|
399 |
|
|
struct timeval timeout = { 20, 0 };
|
400 |
|
|
struct sockaddr_in from;
|
401 |
|
|
fd_set readfds;
|
402 |
|
|
int res;
|
403 |
|
|
|
404 |
|
|
if (sendto(s, &thetime, sizeof(thetime), 0,
|
405 |
|
|
(struct sockaddr *)&sin, sizeof(sin)) == -1) {
|
406 |
|
|
msg("udp : sendto failed.");
|
407 |
|
|
goto error;
|
408 |
|
|
}
|
409 |
|
|
do {
|
410 |
|
|
FD_ZERO(&readfds);
|
411 |
|
|
FD_SET(s, &readfds);
|
412 |
|
|
res = select(_rpc_dtablesize(), &readfds,
|
413 |
|
|
(fd_set *)NULL, (fd_set *)NULL, &timeout);
|
414 |
|
|
} while (res < 0 && errno == EINTR);
|
415 |
|
|
if (res <= 0)
|
416 |
|
|
goto error;
|
417 |
|
|
len = sizeof(from);
|
418 |
|
|
res = recvfrom(s, (char *)&thetime, sizeof(thetime), 0,
|
419 |
|
|
(struct sockaddr *)&from, &len);
|
420 |
|
|
if (res == -1) {
|
421 |
|
|
msg("recvfrom failed on udp transport.");
|
422 |
|
|
goto error;
|
423 |
|
|
}
|
424 |
|
|
time_valid = 1;
|
425 |
|
|
} else {
|
426 |
|
|
int res;
|
427 |
|
|
|
428 |
|
|
oldsig = (void (*)())signal(SIGALRM, alarm_hndler);
|
429 |
|
|
saw_alarm = 0; /* global tracking the alarm */
|
430 |
|
|
alarm(20); /* only wait 20 seconds */
|
431 |
|
|
res = connect(s, (struct sockaddr *)&sin, sizeof(sin));
|
432 |
|
|
if (res == -1) {
|
433 |
|
|
msg("failed to connect to tcp endpoint.");
|
434 |
|
|
goto error;
|
435 |
|
|
}
|
436 |
|
|
if (saw_alarm) {
|
437 |
|
|
msg("alarm caught it, must be unreachable.");
|
438 |
|
|
goto error;
|
439 |
|
|
}
|
440 |
|
|
res = _read(s, (char *)&thetime, sizeof(thetime));
|
441 |
|
|
if (res != sizeof(thetime)) {
|
442 |
|
|
if (saw_alarm)
|
443 |
|
|
msg("timed out TCP call.");
|
444 |
|
|
else
|
445 |
|
|
msg("wrong size of results returned");
|
446 |
|
|
|
447 |
|
|
goto error;
|
448 |
|
|
}
|
449 |
|
|
time_valid = 1;
|
450 |
|
|
}
|
451 |
|
|
save = errno;
|
452 |
|
|
(void)_close(s);
|
453 |
|
|
errno = save;
|
454 |
|
|
s = RPC_ANYSOCK;
|
455 |
|
|
|
456 |
|
|
if (time_valid) {
|
457 |
|
|
thetime = ntohl(thetime);
|
458 |
|
|
thetime = thetime - TOFFSET; /* adjust to UNIX time */
|
459 |
|
|
} else
|
460 |
|
|
thetime = 0;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
gettimeofday(&tv, 0);
|
464 |
|
|
|
465 |
|
|
error:
|
466 |
|
|
/*
|
467 |
|
|
* clean up our allocated data structures.
|
468 |
|
|
*/
|
469 |
|
|
|
470 |
|
|
if (s != RPC_ANYSOCK)
|
471 |
|
|
(void)_close(s);
|
472 |
|
|
|
473 |
|
|
if (clnt != NULL)
|
474 |
|
|
clnt_destroy(clnt);
|
475 |
|
|
|
476 |
|
|
alarm(0); /* reset that alarm if its outstanding */
|
477 |
|
|
if (oldsig) {
|
478 |
|
|
signal(SIGALRM, oldsig);
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
/*
|
482 |
|
|
* note, don't free uaddr strings until after we've made a
|
483 |
|
|
* copy of them.
|
484 |
|
|
*/
|
485 |
|
|
if (time_valid) {
|
486 |
|
|
if (*uaddr == NULL)
|
487 |
|
|
*uaddr = strdup(useua);
|
488 |
|
|
|
489 |
|
|
/* Round to the nearest second */
|
490 |
|
|
tv.tv_sec += (tv.tv_sec > 500000) ? 1 : 0;
|
491 |
|
|
delta = (thetime > tv.tv_sec) ? thetime - tv.tv_sec :
|
492 |
|
|
tv.tv_sec - thetime;
|
493 |
|
|
td->tv_sec = (thetime < tv.tv_sec) ? - delta : delta;
|
494 |
|
|
td->tv_usec = 0;
|
495 |
|
|
} else {
|
496 |
|
|
msg("unable to get the server's time.");
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
if (needfree)
|
500 |
|
|
free_eps(teps, tsrv.ep.ep_len);
|
501 |
|
|
|
502 |
|
|
return (time_valid);
|
503 |
|
|
}
|