1 |
104 |
markom |
/* Matsushita 10300 specific support for 32-bit ELF
|
2 |
|
|
Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
19 |
|
|
|
20 |
|
|
#include "bfd.h"
|
21 |
|
|
#include "sysdep.h"
|
22 |
|
|
#include "libbfd.h"
|
23 |
|
|
#include "elf-bfd.h"
|
24 |
|
|
#include "elf/mn10300.h"
|
25 |
|
|
|
26 |
|
|
struct elf32_mn10300_link_hash_entry
|
27 |
|
|
{
|
28 |
|
|
/* The basic elf link hash table entry. */
|
29 |
|
|
struct elf_link_hash_entry root;
|
30 |
|
|
|
31 |
|
|
/* For function symbols, the number of times this function is
|
32 |
|
|
called directly (ie by name). */
|
33 |
|
|
unsigned int direct_calls;
|
34 |
|
|
|
35 |
|
|
/* For function symbols, the size of this function's stack
|
36 |
|
|
(if <= 255 bytes). We stuff this into "call" instructions
|
37 |
|
|
to this target when it's valid and profitable to do so.
|
38 |
|
|
|
39 |
|
|
This does not include stack allocated by movm! */
|
40 |
|
|
unsigned char stack_size;
|
41 |
|
|
|
42 |
|
|
/* For function symbols, arguments (if any) for movm instruction
|
43 |
|
|
in the prologue. We stuff this value into "call" instructions
|
44 |
|
|
to the target when it's valid and profitable to do so. */
|
45 |
|
|
unsigned char movm_args;
|
46 |
|
|
|
47 |
|
|
/* For funtion symbols, the amount of stack space that would be allocated
|
48 |
|
|
by the movm instruction. This is redundant with movm_args, but we
|
49 |
|
|
add it to the hash table to avoid computing it over and over. */
|
50 |
|
|
unsigned char movm_stack_size;
|
51 |
|
|
|
52 |
|
|
/* When set, convert all "call" instructions to this target into "calls"
|
53 |
|
|
instructions. */
|
54 |
|
|
#define MN10300_CONVERT_CALL_TO_CALLS 0x1
|
55 |
|
|
|
56 |
|
|
/* Used to mark functions which have had redundant parts of their
|
57 |
|
|
prologue deleted. */
|
58 |
|
|
#define MN10300_DELETED_PROLOGUE_BYTES 0x2
|
59 |
|
|
unsigned char flags;
|
60 |
|
|
};
|
61 |
|
|
|
62 |
|
|
/* We derive a hash table from the main elf linker hash table so
|
63 |
|
|
we can store state variables and a secondary hash table without
|
64 |
|
|
resorting to global variables. */
|
65 |
|
|
struct elf32_mn10300_link_hash_table
|
66 |
|
|
{
|
67 |
|
|
/* The main hash table. */
|
68 |
|
|
struct elf_link_hash_table root;
|
69 |
|
|
|
70 |
|
|
/* A hash table for static functions. We could derive a new hash table
|
71 |
|
|
instead of using the full elf32_mn10300_link_hash_table if we wanted
|
72 |
|
|
to save some memory. */
|
73 |
|
|
struct elf32_mn10300_link_hash_table *static_hash_table;
|
74 |
|
|
|
75 |
|
|
/* Random linker state flags. */
|
76 |
|
|
#define MN10300_HASH_ENTRIES_INITIALIZED 0x1
|
77 |
|
|
char flags;
|
78 |
|
|
};
|
79 |
|
|
|
80 |
|
|
/* For MN10300 linker hash table. */
|
81 |
|
|
|
82 |
|
|
/* Get the MN10300 ELF linker hash table from a link_info structure. */
|
83 |
|
|
|
84 |
|
|
#define elf32_mn10300_hash_table(p) \
|
85 |
|
|
((struct elf32_mn10300_link_hash_table *) ((p)->hash))
|
86 |
|
|
|
87 |
|
|
#define elf32_mn10300_link_hash_traverse(table, func, info) \
|
88 |
|
|
(elf_link_hash_traverse \
|
89 |
|
|
(&(table)->root, \
|
90 |
|
|
(boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
|
91 |
|
|
(info)))
|
92 |
|
|
|
93 |
|
|
static struct bfd_hash_entry *elf32_mn10300_link_hash_newfunc
|
94 |
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
95 |
|
|
static struct bfd_link_hash_table *elf32_mn10300_link_hash_table_create
|
96 |
|
|
PARAMS ((bfd *));
|
97 |
|
|
|
98 |
|
|
static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
|
99 |
|
|
PARAMS ((bfd *abfd, bfd_reloc_code_real_type code));
|
100 |
|
|
static void mn10300_info_to_howto
|
101 |
|
|
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
|
102 |
|
|
static boolean mn10300_elf_check_relocs
|
103 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
104 |
|
|
const Elf_Internal_Rela *));
|
105 |
|
|
static asection *mn10300_elf_gc_mark_hook
|
106 |
|
|
PARAMS ((bfd *, struct bfd_link_info *info, Elf_Internal_Rela *,
|
107 |
|
|
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
108 |
|
|
static boolean mn10300_elf_relax_delete_bytes
|
109 |
|
|
PARAMS ((bfd *, asection *, bfd_vma, int));
|
110 |
|
|
static boolean mn10300_elf_symbol_address_p
|
111 |
|
|
PARAMS ((bfd *, asection *, Elf32_External_Sym *, bfd_vma));
|
112 |
|
|
static boolean elf32_mn10300_finish_hash_table_entry
|
113 |
|
|
PARAMS ((struct bfd_hash_entry *, PTR));
|
114 |
|
|
static void compute_function_info
|
115 |
|
|
PARAMS ((bfd *, struct elf32_mn10300_link_hash_entry *,
|
116 |
|
|
bfd_vma, unsigned char *));
|
117 |
|
|
|
118 |
|
|
/* We have to use RELA instructions since md_apply_fix3 in the assembler
|
119 |
|
|
does absolutely nothing. */
|
120 |
|
|
#define USE_RELA
|
121 |
|
|
|
122 |
|
|
|
123 |
|
|
static reloc_howto_type elf_mn10300_howto_table[] =
|
124 |
|
|
{
|
125 |
|
|
/* Dummy relocation. Does nothing. */
|
126 |
|
|
HOWTO (R_MN10300_NONE,
|
127 |
|
|
0,
|
128 |
|
|
2,
|
129 |
|
|
16,
|
130 |
|
|
false,
|
131 |
|
|
0,
|
132 |
|
|
complain_overflow_bitfield,
|
133 |
|
|
bfd_elf_generic_reloc,
|
134 |
|
|
"R_MN10300_NONE",
|
135 |
|
|
false,
|
136 |
|
|
0,
|
137 |
|
|
0,
|
138 |
|
|
false),
|
139 |
|
|
/* Standard 32 bit reloc. */
|
140 |
|
|
HOWTO (R_MN10300_32,
|
141 |
|
|
0,
|
142 |
|
|
2,
|
143 |
|
|
32,
|
144 |
|
|
false,
|
145 |
|
|
0,
|
146 |
|
|
complain_overflow_bitfield,
|
147 |
|
|
bfd_elf_generic_reloc,
|
148 |
|
|
"R_MN10300_32",
|
149 |
|
|
false,
|
150 |
|
|
0xffffffff,
|
151 |
|
|
0xffffffff,
|
152 |
|
|
false),
|
153 |
|
|
/* Standard 16 bit reloc. */
|
154 |
|
|
HOWTO (R_MN10300_16,
|
155 |
|
|
0,
|
156 |
|
|
1,
|
157 |
|
|
16,
|
158 |
|
|
false,
|
159 |
|
|
0,
|
160 |
|
|
complain_overflow_bitfield,
|
161 |
|
|
bfd_elf_generic_reloc,
|
162 |
|
|
"R_MN10300_16",
|
163 |
|
|
false,
|
164 |
|
|
0xffff,
|
165 |
|
|
0xffff,
|
166 |
|
|
false),
|
167 |
|
|
/* Standard 8 bit reloc. */
|
168 |
|
|
HOWTO (R_MN10300_8,
|
169 |
|
|
0,
|
170 |
|
|
0,
|
171 |
|
|
8,
|
172 |
|
|
false,
|
173 |
|
|
0,
|
174 |
|
|
complain_overflow_bitfield,
|
175 |
|
|
bfd_elf_generic_reloc,
|
176 |
|
|
"R_MN10300_8",
|
177 |
|
|
false,
|
178 |
|
|
0xff,
|
179 |
|
|
0xff,
|
180 |
|
|
false),
|
181 |
|
|
/* Standard 32bit pc-relative reloc. */
|
182 |
|
|
HOWTO (R_MN10300_PCREL32,
|
183 |
|
|
0,
|
184 |
|
|
2,
|
185 |
|
|
32,
|
186 |
|
|
true,
|
187 |
|
|
0,
|
188 |
|
|
complain_overflow_bitfield,
|
189 |
|
|
bfd_elf_generic_reloc,
|
190 |
|
|
"R_MN10300_PCREL32",
|
191 |
|
|
false,
|
192 |
|
|
0xffffffff,
|
193 |
|
|
0xffffffff,
|
194 |
|
|
true),
|
195 |
|
|
/* Standard 16bit pc-relative reloc. */
|
196 |
|
|
HOWTO (R_MN10300_PCREL16,
|
197 |
|
|
0,
|
198 |
|
|
1,
|
199 |
|
|
16,
|
200 |
|
|
true,
|
201 |
|
|
0,
|
202 |
|
|
complain_overflow_bitfield,
|
203 |
|
|
bfd_elf_generic_reloc,
|
204 |
|
|
"R_MN10300_PCREL16",
|
205 |
|
|
false,
|
206 |
|
|
0xffff,
|
207 |
|
|
0xffff,
|
208 |
|
|
true),
|
209 |
|
|
/* Standard 8 pc-relative reloc. */
|
210 |
|
|
HOWTO (R_MN10300_PCREL8,
|
211 |
|
|
0,
|
212 |
|
|
0,
|
213 |
|
|
8,
|
214 |
|
|
true,
|
215 |
|
|
0,
|
216 |
|
|
complain_overflow_bitfield,
|
217 |
|
|
bfd_elf_generic_reloc,
|
218 |
|
|
"R_MN10300_PCREL8",
|
219 |
|
|
false,
|
220 |
|
|
0xff,
|
221 |
|
|
0xff,
|
222 |
|
|
true),
|
223 |
|
|
|
224 |
|
|
/* GNU extension to record C++ vtable hierarchy */
|
225 |
|
|
HOWTO (R_MN10300_GNU_VTINHERIT, /* type */
|
226 |
|
|
0, /* rightshift */
|
227 |
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
228 |
|
|
0, /* bitsize */
|
229 |
|
|
false, /* pc_relative */
|
230 |
|
|
0, /* bitpos */
|
231 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
232 |
|
|
NULL, /* special_function */
|
233 |
|
|
"R_MN10300_GNU_VTINHERIT", /* name */
|
234 |
|
|
false, /* partial_inplace */
|
235 |
|
|
0, /* src_mask */
|
236 |
|
|
0, /* dst_mask */
|
237 |
|
|
false), /* pcrel_offset */
|
238 |
|
|
|
239 |
|
|
/* GNU extension to record C++ vtable member usage */
|
240 |
|
|
HOWTO (R_MN10300_GNU_VTENTRY, /* type */
|
241 |
|
|
0, /* rightshift */
|
242 |
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
243 |
|
|
0, /* bitsize */
|
244 |
|
|
false, /* pc_relative */
|
245 |
|
|
0, /* bitpos */
|
246 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
247 |
|
|
NULL, /* special_function */
|
248 |
|
|
"R_MN10300_GNU_VTENTRY", /* name */
|
249 |
|
|
false, /* partial_inplace */
|
250 |
|
|
0, /* src_mask */
|
251 |
|
|
0, /* dst_mask */
|
252 |
|
|
false), /* pcrel_offset */
|
253 |
|
|
|
254 |
|
|
/* Standard 24 bit reloc. */
|
255 |
|
|
HOWTO (R_MN10300_24,
|
256 |
|
|
0,
|
257 |
|
|
2,
|
258 |
|
|
24,
|
259 |
|
|
false,
|
260 |
|
|
0,
|
261 |
|
|
complain_overflow_bitfield,
|
262 |
|
|
bfd_elf_generic_reloc,
|
263 |
|
|
"R_MN10300_24",
|
264 |
|
|
false,
|
265 |
|
|
0xffffff,
|
266 |
|
|
0xffffff,
|
267 |
|
|
false),
|
268 |
|
|
|
269 |
|
|
};
|
270 |
|
|
|
271 |
|
|
struct mn10300_reloc_map
|
272 |
|
|
{
|
273 |
|
|
bfd_reloc_code_real_type bfd_reloc_val;
|
274 |
|
|
unsigned char elf_reloc_val;
|
275 |
|
|
};
|
276 |
|
|
|
277 |
|
|
static const struct mn10300_reloc_map mn10300_reloc_map[] =
|
278 |
|
|
{
|
279 |
|
|
{ BFD_RELOC_NONE, R_MN10300_NONE, },
|
280 |
|
|
{ BFD_RELOC_32, R_MN10300_32, },
|
281 |
|
|
{ BFD_RELOC_16, R_MN10300_16, },
|
282 |
|
|
{ BFD_RELOC_8, R_MN10300_8, },
|
283 |
|
|
{ BFD_RELOC_32_PCREL, R_MN10300_PCREL32, },
|
284 |
|
|
{ BFD_RELOC_16_PCREL, R_MN10300_PCREL16, },
|
285 |
|
|
{ BFD_RELOC_8_PCREL, R_MN10300_PCREL8, },
|
286 |
|
|
{ BFD_RELOC_24, R_MN10300_24, },
|
287 |
|
|
{ BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT },
|
288 |
|
|
{ BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY },
|
289 |
|
|
};
|
290 |
|
|
|
291 |
|
|
static reloc_howto_type *
|
292 |
|
|
bfd_elf32_bfd_reloc_type_lookup (abfd, code)
|
293 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
294 |
|
|
bfd_reloc_code_real_type code;
|
295 |
|
|
{
|
296 |
|
|
unsigned int i;
|
297 |
|
|
|
298 |
|
|
for (i = 0;
|
299 |
|
|
i < sizeof (mn10300_reloc_map) / sizeof (struct mn10300_reloc_map);
|
300 |
|
|
i++)
|
301 |
|
|
{
|
302 |
|
|
if (mn10300_reloc_map[i].bfd_reloc_val == code)
|
303 |
|
|
return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val];
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
return NULL;
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
/* Set the howto pointer for an MN10300 ELF reloc. */
|
310 |
|
|
|
311 |
|
|
static void
|
312 |
|
|
mn10300_info_to_howto (abfd, cache_ptr, dst)
|
313 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
314 |
|
|
arelent *cache_ptr;
|
315 |
|
|
Elf32_Internal_Rela *dst;
|
316 |
|
|
{
|
317 |
|
|
unsigned int r_type;
|
318 |
|
|
|
319 |
|
|
r_type = ELF32_R_TYPE (dst->r_info);
|
320 |
|
|
BFD_ASSERT (r_type < (unsigned int) R_MN10300_MAX);
|
321 |
|
|
cache_ptr->howto = &elf_mn10300_howto_table[r_type];
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
/* Look through the relocs for a section during the first phase.
|
325 |
|
|
Since we don't do .gots or .plts, we just need to consider the
|
326 |
|
|
virtual table relocs for gc. */
|
327 |
|
|
|
328 |
|
|
static boolean
|
329 |
|
|
mn10300_elf_check_relocs (abfd, info, sec, relocs)
|
330 |
|
|
bfd *abfd;
|
331 |
|
|
struct bfd_link_info *info;
|
332 |
|
|
asection *sec;
|
333 |
|
|
const Elf_Internal_Rela *relocs;
|
334 |
|
|
{
|
335 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
336 |
|
|
struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
|
337 |
|
|
const Elf_Internal_Rela *rel;
|
338 |
|
|
const Elf_Internal_Rela *rel_end;
|
339 |
|
|
|
340 |
|
|
if (info->relocateable)
|
341 |
|
|
return true;
|
342 |
|
|
|
343 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
344 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
345 |
|
|
sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf32_External_Sym);
|
346 |
|
|
if (!elf_bad_symtab (abfd))
|
347 |
|
|
sym_hashes_end -= symtab_hdr->sh_info;
|
348 |
|
|
|
349 |
|
|
rel_end = relocs + sec->reloc_count;
|
350 |
|
|
for (rel = relocs; rel < rel_end; rel++)
|
351 |
|
|
{
|
352 |
|
|
struct elf_link_hash_entry *h;
|
353 |
|
|
unsigned long r_symndx;
|
354 |
|
|
|
355 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
356 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
357 |
|
|
h = NULL;
|
358 |
|
|
else
|
359 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
360 |
|
|
|
361 |
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
362 |
|
|
{
|
363 |
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
364 |
|
|
Reconstruct it for later use during GC. */
|
365 |
|
|
case R_MN10300_GNU_VTINHERIT:
|
366 |
|
|
if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
367 |
|
|
return false;
|
368 |
|
|
break;
|
369 |
|
|
|
370 |
|
|
/* This relocation describes which C++ vtable entries are actually
|
371 |
|
|
used. Record for later use during GC. */
|
372 |
|
|
case R_MN10300_GNU_VTENTRY:
|
373 |
|
|
if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
374 |
|
|
return false;
|
375 |
|
|
break;
|
376 |
|
|
}
|
377 |
|
|
}
|
378 |
|
|
|
379 |
|
|
return true;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
/* Return the section that should be marked against GC for a given
|
383 |
|
|
relocation. */
|
384 |
|
|
|
385 |
|
|
static asection *
|
386 |
|
|
mn10300_elf_gc_mark_hook (abfd, info, rel, h, sym)
|
387 |
|
|
bfd *abfd;
|
388 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
389 |
|
|
Elf_Internal_Rela *rel;
|
390 |
|
|
struct elf_link_hash_entry *h;
|
391 |
|
|
Elf_Internal_Sym *sym;
|
392 |
|
|
{
|
393 |
|
|
if (h != NULL)
|
394 |
|
|
{
|
395 |
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
396 |
|
|
{
|
397 |
|
|
case R_MN10300_GNU_VTINHERIT:
|
398 |
|
|
case R_MN10300_GNU_VTENTRY:
|
399 |
|
|
break;
|
400 |
|
|
|
401 |
|
|
default:
|
402 |
|
|
switch (h->root.type)
|
403 |
|
|
{
|
404 |
|
|
case bfd_link_hash_defined:
|
405 |
|
|
case bfd_link_hash_defweak:
|
406 |
|
|
return h->root.u.def.section;
|
407 |
|
|
|
408 |
|
|
case bfd_link_hash_common:
|
409 |
|
|
return h->root.u.c.p->section;
|
410 |
|
|
|
411 |
|
|
default:
|
412 |
|
|
break;
|
413 |
|
|
}
|
414 |
|
|
}
|
415 |
|
|
}
|
416 |
|
|
else
|
417 |
|
|
{
|
418 |
|
|
if (!(elf_bad_symtab (abfd)
|
419 |
|
|
&& ELF_ST_BIND (sym->st_info) != STB_LOCAL)
|
420 |
|
|
&& ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
|
421 |
|
|
&& sym->st_shndx != SHN_COMMON))
|
422 |
|
|
{
|
423 |
|
|
return bfd_section_from_elf_index (abfd, sym->st_shndx);
|
424 |
|
|
}
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
return NULL;
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
/* Perform a relocation as part of a final link. */
|
431 |
|
|
static bfd_reloc_status_type
|
432 |
|
|
mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
|
433 |
|
|
input_section, contents, offset, value,
|
434 |
|
|
addend, info, sym_sec, is_local)
|
435 |
|
|
reloc_howto_type *howto;
|
436 |
|
|
bfd *input_bfd;
|
437 |
|
|
bfd *output_bfd ATTRIBUTE_UNUSED;
|
438 |
|
|
asection *input_section;
|
439 |
|
|
bfd_byte *contents;
|
440 |
|
|
bfd_vma offset;
|
441 |
|
|
bfd_vma value;
|
442 |
|
|
bfd_vma addend;
|
443 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
444 |
|
|
asection *sym_sec ATTRIBUTE_UNUSED;
|
445 |
|
|
int is_local ATTRIBUTE_UNUSED;
|
446 |
|
|
{
|
447 |
|
|
unsigned long r_type = howto->type;
|
448 |
|
|
bfd_byte *hit_data = contents + offset;
|
449 |
|
|
|
450 |
|
|
switch (r_type)
|
451 |
|
|
{
|
452 |
|
|
case R_MN10300_NONE:
|
453 |
|
|
return bfd_reloc_ok;
|
454 |
|
|
|
455 |
|
|
case R_MN10300_32:
|
456 |
|
|
value += addend;
|
457 |
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
458 |
|
|
return bfd_reloc_ok;
|
459 |
|
|
|
460 |
|
|
case R_MN10300_24:
|
461 |
|
|
value += addend;
|
462 |
|
|
|
463 |
|
|
if ((long)value > 0x7fffff || (long)value < -0x800000)
|
464 |
|
|
return bfd_reloc_overflow;
|
465 |
|
|
|
466 |
|
|
bfd_put_8 (input_bfd, value & 0xff, hit_data);
|
467 |
|
|
bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
|
468 |
|
|
bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
|
469 |
|
|
return bfd_reloc_ok;
|
470 |
|
|
|
471 |
|
|
case R_MN10300_16:
|
472 |
|
|
value += addend;
|
473 |
|
|
|
474 |
|
|
if ((long)value > 0x7fff || (long)value < -0x8000)
|
475 |
|
|
return bfd_reloc_overflow;
|
476 |
|
|
|
477 |
|
|
bfd_put_16 (input_bfd, value, hit_data);
|
478 |
|
|
return bfd_reloc_ok;
|
479 |
|
|
|
480 |
|
|
case R_MN10300_8:
|
481 |
|
|
value += addend;
|
482 |
|
|
|
483 |
|
|
if ((long)value > 0x7f || (long)value < -0x80)
|
484 |
|
|
return bfd_reloc_overflow;
|
485 |
|
|
|
486 |
|
|
bfd_put_8 (input_bfd, value, hit_data);
|
487 |
|
|
return bfd_reloc_ok;
|
488 |
|
|
|
489 |
|
|
case R_MN10300_PCREL8:
|
490 |
|
|
value -= (input_section->output_section->vma
|
491 |
|
|
+ input_section->output_offset);
|
492 |
|
|
value -= offset;
|
493 |
|
|
value += addend;
|
494 |
|
|
|
495 |
|
|
if ((long)value > 0xff || (long)value < -0x100)
|
496 |
|
|
return bfd_reloc_overflow;
|
497 |
|
|
|
498 |
|
|
bfd_put_8 (input_bfd, value, hit_data);
|
499 |
|
|
return bfd_reloc_ok;
|
500 |
|
|
|
501 |
|
|
case R_MN10300_PCREL16:
|
502 |
|
|
value -= (input_section->output_section->vma
|
503 |
|
|
+ input_section->output_offset);
|
504 |
|
|
value -= offset;
|
505 |
|
|
value += addend;
|
506 |
|
|
|
507 |
|
|
if ((long)value > 0xffff || (long)value < -0x10000)
|
508 |
|
|
return bfd_reloc_overflow;
|
509 |
|
|
|
510 |
|
|
bfd_put_16 (input_bfd, value, hit_data);
|
511 |
|
|
return bfd_reloc_ok;
|
512 |
|
|
|
513 |
|
|
case R_MN10300_PCREL32:
|
514 |
|
|
value -= (input_section->output_section->vma
|
515 |
|
|
+ input_section->output_offset);
|
516 |
|
|
value -= offset;
|
517 |
|
|
value += addend;
|
518 |
|
|
|
519 |
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
520 |
|
|
return bfd_reloc_ok;
|
521 |
|
|
|
522 |
|
|
case R_MN10300_GNU_VTINHERIT:
|
523 |
|
|
case R_MN10300_GNU_VTENTRY:
|
524 |
|
|
return bfd_reloc_ok;
|
525 |
|
|
|
526 |
|
|
default:
|
527 |
|
|
return bfd_reloc_notsupported;
|
528 |
|
|
}
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
|
532 |
|
|
/* Relocate an MN10300 ELF section. */
|
533 |
|
|
static boolean
|
534 |
|
|
mn10300_elf_relocate_section (output_bfd, info, input_bfd, input_section,
|
535 |
|
|
contents, relocs, local_syms, local_sections)
|
536 |
|
|
bfd *output_bfd;
|
537 |
|
|
struct bfd_link_info *info;
|
538 |
|
|
bfd *input_bfd;
|
539 |
|
|
asection *input_section;
|
540 |
|
|
bfd_byte *contents;
|
541 |
|
|
Elf_Internal_Rela *relocs;
|
542 |
|
|
Elf_Internal_Sym *local_syms;
|
543 |
|
|
asection **local_sections;
|
544 |
|
|
{
|
545 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
546 |
|
|
struct elf32_mn10300_link_hash_entry **sym_hashes;
|
547 |
|
|
Elf_Internal_Rela *rel, *relend;
|
548 |
|
|
|
549 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
550 |
|
|
sym_hashes = (struct elf32_mn10300_link_hash_entry **)
|
551 |
|
|
(elf_sym_hashes (input_bfd));
|
552 |
|
|
|
553 |
|
|
rel = relocs;
|
554 |
|
|
relend = relocs + input_section->reloc_count;
|
555 |
|
|
for (; rel < relend; rel++)
|
556 |
|
|
{
|
557 |
|
|
int r_type;
|
558 |
|
|
reloc_howto_type *howto;
|
559 |
|
|
unsigned long r_symndx;
|
560 |
|
|
Elf_Internal_Sym *sym;
|
561 |
|
|
asection *sec;
|
562 |
|
|
struct elf32_mn10300_link_hash_entry *h;
|
563 |
|
|
bfd_vma relocation;
|
564 |
|
|
bfd_reloc_status_type r;
|
565 |
|
|
|
566 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
567 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
568 |
|
|
howto = elf_mn10300_howto_table + r_type;
|
569 |
|
|
|
570 |
|
|
/* Just skip the vtable gc relocs. */
|
571 |
|
|
if (r_type == R_MN10300_GNU_VTINHERIT
|
572 |
|
|
|| r_type == R_MN10300_GNU_VTENTRY)
|
573 |
|
|
continue;
|
574 |
|
|
|
575 |
|
|
if (info->relocateable)
|
576 |
|
|
{
|
577 |
|
|
/* This is a relocateable link. We don't have to change
|
578 |
|
|
anything, unless the reloc is against a section symbol,
|
579 |
|
|
in which case we have to adjust according to where the
|
580 |
|
|
section symbol winds up in the output section. */
|
581 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
582 |
|
|
{
|
583 |
|
|
sym = local_syms + r_symndx;
|
584 |
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
585 |
|
|
{
|
586 |
|
|
sec = local_sections[r_symndx];
|
587 |
|
|
rel->r_addend += sec->output_offset + sym->st_value;
|
588 |
|
|
}
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
continue;
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
/* This is a final link. */
|
595 |
|
|
h = NULL;
|
596 |
|
|
sym = NULL;
|
597 |
|
|
sec = NULL;
|
598 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
599 |
|
|
{
|
600 |
|
|
sym = local_syms + r_symndx;
|
601 |
|
|
sec = local_sections[r_symndx];
|
602 |
|
|
relocation = (sec->output_section->vma
|
603 |
|
|
+ sec->output_offset
|
604 |
|
|
+ sym->st_value);
|
605 |
|
|
}
|
606 |
|
|
else
|
607 |
|
|
{
|
608 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
609 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
610 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
611 |
|
|
h = (struct elf32_mn10300_link_hash_entry *) h->root.root.u.i.link;
|
612 |
|
|
if (h->root.root.type == bfd_link_hash_defined
|
613 |
|
|
|| h->root.root.type == bfd_link_hash_defweak)
|
614 |
|
|
{
|
615 |
|
|
sec = h->root.root.u.def.section;
|
616 |
|
|
relocation = (h->root.root.u.def.value
|
617 |
|
|
+ sec->output_section->vma
|
618 |
|
|
+ sec->output_offset);
|
619 |
|
|
}
|
620 |
|
|
else if (h->root.root.type == bfd_link_hash_undefweak)
|
621 |
|
|
relocation = 0;
|
622 |
|
|
else
|
623 |
|
|
{
|
624 |
|
|
if (! ((*info->callbacks->undefined_symbol)
|
625 |
|
|
(info, h->root.root.root.string, input_bfd,
|
626 |
|
|
input_section, rel->r_offset, true)))
|
627 |
|
|
return false;
|
628 |
|
|
relocation = 0;
|
629 |
|
|
}
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
|
633 |
|
|
input_section,
|
634 |
|
|
contents, rel->r_offset,
|
635 |
|
|
relocation, rel->r_addend,
|
636 |
|
|
info, sec, h == NULL);
|
637 |
|
|
|
638 |
|
|
if (r != bfd_reloc_ok)
|
639 |
|
|
{
|
640 |
|
|
const char *name;
|
641 |
|
|
const char *msg = (const char *)0;
|
642 |
|
|
|
643 |
|
|
if (h != NULL)
|
644 |
|
|
name = h->root.root.root.string;
|
645 |
|
|
else
|
646 |
|
|
{
|
647 |
|
|
name = (bfd_elf_string_from_elf_section
|
648 |
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
649 |
|
|
if (name == NULL || *name == '\0')
|
650 |
|
|
name = bfd_section_name (input_bfd, sec);
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
switch (r)
|
654 |
|
|
{
|
655 |
|
|
case bfd_reloc_overflow:
|
656 |
|
|
if (! ((*info->callbacks->reloc_overflow)
|
657 |
|
|
(info, name, howto->name, (bfd_vma) 0,
|
658 |
|
|
input_bfd, input_section, rel->r_offset)))
|
659 |
|
|
return false;
|
660 |
|
|
break;
|
661 |
|
|
|
662 |
|
|
case bfd_reloc_undefined:
|
663 |
|
|
if (! ((*info->callbacks->undefined_symbol)
|
664 |
|
|
(info, name, input_bfd, input_section,
|
665 |
|
|
rel->r_offset, true)))
|
666 |
|
|
return false;
|
667 |
|
|
break;
|
668 |
|
|
|
669 |
|
|
case bfd_reloc_outofrange:
|
670 |
|
|
msg = _("internal error: out of range error");
|
671 |
|
|
goto common_error;
|
672 |
|
|
|
673 |
|
|
case bfd_reloc_notsupported:
|
674 |
|
|
msg = _("internal error: unsupported relocation error");
|
675 |
|
|
goto common_error;
|
676 |
|
|
|
677 |
|
|
case bfd_reloc_dangerous:
|
678 |
|
|
msg = _("internal error: dangerous error");
|
679 |
|
|
goto common_error;
|
680 |
|
|
|
681 |
|
|
default:
|
682 |
|
|
msg = _("internal error: unknown error");
|
683 |
|
|
/* fall through */
|
684 |
|
|
|
685 |
|
|
common_error:
|
686 |
|
|
if (!((*info->callbacks->warning)
|
687 |
|
|
(info, msg, name, input_bfd, input_section,
|
688 |
|
|
rel->r_offset)))
|
689 |
|
|
return false;
|
690 |
|
|
break;
|
691 |
|
|
}
|
692 |
|
|
}
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
return true;
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
/* Finish initializing one hash table entry. */
|
699 |
|
|
static boolean
|
700 |
|
|
elf32_mn10300_finish_hash_table_entry (gen_entry, in_args)
|
701 |
|
|
struct bfd_hash_entry *gen_entry;
|
702 |
|
|
PTR in_args ATTRIBUTE_UNUSED;
|
703 |
|
|
{
|
704 |
|
|
struct elf32_mn10300_link_hash_entry *entry;
|
705 |
|
|
unsigned int byte_count = 0;
|
706 |
|
|
|
707 |
|
|
entry = (struct elf32_mn10300_link_hash_entry *)gen_entry;
|
708 |
|
|
|
709 |
|
|
/* If we already know we want to convert "call" to "calls" for calls
|
710 |
|
|
to this symbol, then return now. */
|
711 |
|
|
if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS)
|
712 |
|
|
return true;
|
713 |
|
|
|
714 |
|
|
/* If there are no named calls to this symbol, or there's nothing we
|
715 |
|
|
can move from the function itself into the "call" instruction, then
|
716 |
|
|
note that all "call" instructions should be converted into "calls"
|
717 |
|
|
instructions and return. */
|
718 |
|
|
if (entry->direct_calls == 0
|
719 |
|
|
|| (entry->stack_size == 0 && entry->movm_args == 0))
|
720 |
|
|
{
|
721 |
|
|
/* Make a note that we should convert "call" instructions to "calls"
|
722 |
|
|
instructions for calls to this symbol. */
|
723 |
|
|
entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
724 |
|
|
return true;
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
/* We may be able to move some instructions from the function itself into
|
728 |
|
|
the "call" instruction. Count how many bytes we might be able to
|
729 |
|
|
eliminate in the function itself. */
|
730 |
|
|
|
731 |
|
|
/* A movm instruction is two bytes. */
|
732 |
|
|
if (entry->movm_args)
|
733 |
|
|
byte_count += 2;
|
734 |
|
|
|
735 |
|
|
/* Count the insn to allocate stack space too. */
|
736 |
|
|
if (entry->stack_size > 0 && entry->stack_size <= 128)
|
737 |
|
|
byte_count += 3;
|
738 |
|
|
else if (entry->stack_size > 0 && entry->stack_size < 256)
|
739 |
|
|
byte_count += 4;
|
740 |
|
|
|
741 |
|
|
/* If using "call" will result in larger code, then turn all
|
742 |
|
|
the associated "call" instructions into "calls" instrutions. */
|
743 |
|
|
if (byte_count < entry->direct_calls)
|
744 |
|
|
entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
745 |
|
|
|
746 |
|
|
/* This routine never fails. */
|
747 |
|
|
return true;
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
/* This function handles relaxing for the mn10300.
|
751 |
|
|
|
752 |
|
|
There's quite a few relaxing opportunites available on the mn10300:
|
753 |
|
|
|
754 |
|
|
* calls:32 -> calls:16 2 bytes
|
755 |
|
|
* call:32 -> call:16 2 bytes
|
756 |
|
|
|
757 |
|
|
* call:32 -> calls:32 1 byte
|
758 |
|
|
* call:16 -> calls:16 1 byte
|
759 |
|
|
* These are done anytime using "calls" would result
|
760 |
|
|
in smaller code, or when necessary to preserve the
|
761 |
|
|
meaning of the program.
|
762 |
|
|
|
763 |
|
|
* call:32 varies
|
764 |
|
|
* call:16
|
765 |
|
|
* In some circumstances we can move instructions
|
766 |
|
|
from a function prologue into a "call" instruction.
|
767 |
|
|
This is only done if the resulting code is no larger
|
768 |
|
|
than the original code.
|
769 |
|
|
|
770 |
|
|
|
771 |
|
|
* jmp:32 -> jmp:16 2 bytes
|
772 |
|
|
* jmp:16 -> bra:8 1 byte
|
773 |
|
|
|
774 |
|
|
* If the previous instruction is a conditional branch
|
775 |
|
|
around the jump/bra, we may be able to reverse its condition
|
776 |
|
|
and change its target to the jump's target. The jump/bra
|
777 |
|
|
can then be deleted. 2 bytes
|
778 |
|
|
|
779 |
|
|
* mov abs32 -> mov abs16 1 or 2 bytes
|
780 |
|
|
|
781 |
|
|
* Most instructions which accept imm32 can relax to imm16 1 or 2 bytes
|
782 |
|
|
- Most instructions which accept imm16 can relax to imm8 1 or 2 bytes
|
783 |
|
|
|
784 |
|
|
* Most instructions which accept d32 can relax to d16 1 or 2 bytes
|
785 |
|
|
- Most instructions which accept d16 can relax to d8 1 or 2 bytes
|
786 |
|
|
|
787 |
|
|
We don't handle imm16->imm8 or d16->d8 as they're very rare
|
788 |
|
|
and somewhat more difficult to support. */
|
789 |
|
|
|
790 |
|
|
static boolean
|
791 |
|
|
mn10300_elf_relax_section (abfd, sec, link_info, again)
|
792 |
|
|
bfd *abfd;
|
793 |
|
|
asection *sec;
|
794 |
|
|
struct bfd_link_info *link_info;
|
795 |
|
|
boolean *again;
|
796 |
|
|
{
|
797 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
798 |
|
|
Elf_Internal_Rela *internal_relocs = NULL;
|
799 |
|
|
Elf_Internal_Rela *free_relocs = NULL;
|
800 |
|
|
Elf_Internal_Rela *irel, *irelend;
|
801 |
|
|
bfd_byte *contents = NULL;
|
802 |
|
|
bfd_byte *free_contents = NULL;
|
803 |
|
|
Elf32_External_Sym *extsyms = NULL;
|
804 |
|
|
Elf32_External_Sym *free_extsyms = NULL;
|
805 |
|
|
struct elf32_mn10300_link_hash_table *hash_table;
|
806 |
|
|
|
807 |
|
|
/* Assume nothing changes. */
|
808 |
|
|
*again = false;
|
809 |
|
|
|
810 |
|
|
/* We need a pointer to the mn10300 specific hash table. */
|
811 |
|
|
hash_table = elf32_mn10300_hash_table (link_info);
|
812 |
|
|
|
813 |
|
|
/* Initialize fields in each hash table entry the first time through. */
|
814 |
|
|
if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0)
|
815 |
|
|
{
|
816 |
|
|
bfd *input_bfd;
|
817 |
|
|
|
818 |
|
|
/* Iterate over all the input bfds. */
|
819 |
|
|
for (input_bfd = link_info->input_bfds;
|
820 |
|
|
input_bfd != NULL;
|
821 |
|
|
input_bfd = input_bfd->link_next)
|
822 |
|
|
{
|
823 |
|
|
asection *section;
|
824 |
|
|
|
825 |
|
|
/* We're going to need all the symbols for each bfd. */
|
826 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
827 |
|
|
|
828 |
|
|
/* Get cached copy if it exists. */
|
829 |
|
|
if (symtab_hdr->contents != NULL)
|
830 |
|
|
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
831 |
|
|
else
|
832 |
|
|
{
|
833 |
|
|
/* Go get them off disk. */
|
834 |
|
|
extsyms = ((Elf32_External_Sym *)
|
835 |
|
|
bfd_malloc (symtab_hdr->sh_size));
|
836 |
|
|
if (extsyms == NULL)
|
837 |
|
|
goto error_return;
|
838 |
|
|
free_extsyms = extsyms;
|
839 |
|
|
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
840 |
|
|
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, input_bfd)
|
841 |
|
|
!= symtab_hdr->sh_size))
|
842 |
|
|
goto error_return;
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
/* Iterate over each section in this bfd. */
|
846 |
|
|
for (section = input_bfd->sections;
|
847 |
|
|
section != NULL;
|
848 |
|
|
section = section->next)
|
849 |
|
|
{
|
850 |
|
|
struct elf32_mn10300_link_hash_entry *hash;
|
851 |
|
|
Elf_Internal_Sym *sym;
|
852 |
|
|
asection *sym_sec = NULL;
|
853 |
|
|
const char *sym_name;
|
854 |
|
|
char *new_name;
|
855 |
|
|
|
856 |
|
|
/* Get cached copy of section contents if it exists. */
|
857 |
|
|
if (elf_section_data (section)->this_hdr.contents != NULL)
|
858 |
|
|
contents = elf_section_data (section)->this_hdr.contents;
|
859 |
|
|
else if (section->_raw_size != 0)
|
860 |
|
|
{
|
861 |
|
|
/* Go get them off disk. */
|
862 |
|
|
contents = (bfd_byte *)bfd_malloc (section->_raw_size);
|
863 |
|
|
if (contents == NULL)
|
864 |
|
|
goto error_return;
|
865 |
|
|
free_contents = contents;
|
866 |
|
|
|
867 |
|
|
if (!bfd_get_section_contents (input_bfd, section,
|
868 |
|
|
contents, (file_ptr) 0,
|
869 |
|
|
section->_raw_size))
|
870 |
|
|
goto error_return;
|
871 |
|
|
}
|
872 |
|
|
else
|
873 |
|
|
{
|
874 |
|
|
contents = NULL;
|
875 |
|
|
free_contents = NULL;
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
/* If there aren't any relocs, then there's nothing to do. */
|
879 |
|
|
if ((section->flags & SEC_RELOC) != 0
|
880 |
|
|
&& section->reloc_count != 0)
|
881 |
|
|
{
|
882 |
|
|
|
883 |
|
|
/* Get a copy of the native relocations. */
|
884 |
|
|
internal_relocs = (_bfd_elf32_link_read_relocs
|
885 |
|
|
(input_bfd, section, (PTR) NULL,
|
886 |
|
|
(Elf_Internal_Rela *) NULL,
|
887 |
|
|
link_info->keep_memory));
|
888 |
|
|
if (internal_relocs == NULL)
|
889 |
|
|
goto error_return;
|
890 |
|
|
if (! link_info->keep_memory)
|
891 |
|
|
free_relocs = internal_relocs;
|
892 |
|
|
|
893 |
|
|
/* Now examine each relocation. */
|
894 |
|
|
irel = internal_relocs;
|
895 |
|
|
irelend = irel + section->reloc_count;
|
896 |
|
|
for (; irel < irelend; irel++)
|
897 |
|
|
{
|
898 |
|
|
long r_type;
|
899 |
|
|
unsigned long r_index;
|
900 |
|
|
unsigned char code;
|
901 |
|
|
|
902 |
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
903 |
|
|
r_index = ELF32_R_SYM (irel->r_info);
|
904 |
|
|
|
905 |
|
|
if (r_type < 0 || r_type >= (int)R_MN10300_MAX)
|
906 |
|
|
goto error_return;
|
907 |
|
|
|
908 |
|
|
/* We need the name and hash table entry of the target
|
909 |
|
|
symbol! */
|
910 |
|
|
hash = NULL;
|
911 |
|
|
sym = NULL;
|
912 |
|
|
sym_sec = NULL;
|
913 |
|
|
|
914 |
|
|
if (r_index < symtab_hdr->sh_info)
|
915 |
|
|
{
|
916 |
|
|
/* A local symbol. */
|
917 |
|
|
Elf_Internal_Sym isym;
|
918 |
|
|
|
919 |
|
|
bfd_elf32_swap_symbol_in (input_bfd,
|
920 |
|
|
extsyms + r_index, &isym);
|
921 |
|
|
|
922 |
|
|
if (isym.st_shndx == SHN_UNDEF)
|
923 |
|
|
sym_sec = bfd_und_section_ptr;
|
924 |
|
|
else if (isym.st_shndx > 0
|
925 |
|
|
&& isym.st_shndx < SHN_LORESERVE)
|
926 |
|
|
sym_sec
|
927 |
|
|
= bfd_section_from_elf_index (input_bfd,
|
928 |
|
|
isym.st_shndx);
|
929 |
|
|
else if (isym.st_shndx == SHN_ABS)
|
930 |
|
|
sym_sec = bfd_abs_section_ptr;
|
931 |
|
|
else if (isym.st_shndx == SHN_COMMON)
|
932 |
|
|
sym_sec = bfd_com_section_ptr;
|
933 |
|
|
|
934 |
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
935 |
|
|
symtab_hdr->sh_link,
|
936 |
|
|
isym.st_name);
|
937 |
|
|
|
938 |
|
|
/* If it isn't a function, then we don't care
|
939 |
|
|
about it. */
|
940 |
|
|
if (r_index < symtab_hdr->sh_info
|
941 |
|
|
&& ELF_ST_TYPE (isym.st_info) != STT_FUNC)
|
942 |
|
|
continue;
|
943 |
|
|
|
944 |
|
|
/* Tack on an ID so we can uniquely identify this
|
945 |
|
|
local symbol in the global hash table. */
|
946 |
|
|
new_name = bfd_malloc (strlen (sym_name) + 10);
|
947 |
|
|
if (new_name == 0)
|
948 |
|
|
goto error_return;
|
949 |
|
|
|
950 |
|
|
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
951 |
|
|
sym_name = new_name;
|
952 |
|
|
|
953 |
|
|
hash = (struct elf32_mn10300_link_hash_entry *)
|
954 |
|
|
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
955 |
|
|
sym_name, true,
|
956 |
|
|
true, false);
|
957 |
|
|
free (new_name);
|
958 |
|
|
}
|
959 |
|
|
else
|
960 |
|
|
{
|
961 |
|
|
r_index -= symtab_hdr->sh_info;
|
962 |
|
|
hash = (struct elf32_mn10300_link_hash_entry *)
|
963 |
|
|
elf_sym_hashes (input_bfd)[r_index];
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
/* If this is not a "call" instruction, then we
|
967 |
|
|
should convert "call" instructions to "calls"
|
968 |
|
|
instructions. */
|
969 |
|
|
code = bfd_get_8 (input_bfd,
|
970 |
|
|
contents + irel->r_offset - 1);
|
971 |
|
|
if (code != 0xdd && code != 0xcd)
|
972 |
|
|
hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
973 |
|
|
|
974 |
|
|
/* If this is a jump/call, then bump the direct_calls
|
975 |
|
|
counter. Else force "call" to "calls" conversions. */
|
976 |
|
|
if (r_type == R_MN10300_PCREL32
|
977 |
|
|
|| r_type == R_MN10300_PCREL16)
|
978 |
|
|
hash->direct_calls++;
|
979 |
|
|
else
|
980 |
|
|
hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
981 |
|
|
}
|
982 |
|
|
}
|
983 |
|
|
|
984 |
|
|
/* Now look at the actual contents to get the stack size,
|
985 |
|
|
and a list of what registers were saved in the prologue
|
986 |
|
|
(ie movm_args). */
|
987 |
|
|
if ((section->flags & SEC_CODE) != 0)
|
988 |
|
|
{
|
989 |
|
|
|
990 |
|
|
Elf32_External_Sym *esym, *esymend;
|
991 |
|
|
int idx, shndx;
|
992 |
|
|
|
993 |
|
|
shndx = _bfd_elf_section_from_bfd_section (input_bfd,
|
994 |
|
|
section);
|
995 |
|
|
|
996 |
|
|
|
997 |
|
|
/* Look at each function defined in this section and
|
998 |
|
|
update info for that function. */
|
999 |
|
|
esym = extsyms;
|
1000 |
|
|
esymend = esym + symtab_hdr->sh_info;
|
1001 |
|
|
for (; esym < esymend; esym++)
|
1002 |
|
|
{
|
1003 |
|
|
Elf_Internal_Sym isym;
|
1004 |
|
|
|
1005 |
|
|
bfd_elf32_swap_symbol_in (input_bfd, esym, &isym);
|
1006 |
|
|
if (isym.st_shndx == shndx
|
1007 |
|
|
&& ELF_ST_TYPE (isym.st_info) == STT_FUNC)
|
1008 |
|
|
{
|
1009 |
|
|
if (isym.st_shndx == SHN_UNDEF)
|
1010 |
|
|
sym_sec = bfd_und_section_ptr;
|
1011 |
|
|
else if (isym.st_shndx > 0
|
1012 |
|
|
&& isym.st_shndx < SHN_LORESERVE)
|
1013 |
|
|
sym_sec
|
1014 |
|
|
= bfd_section_from_elf_index (input_bfd,
|
1015 |
|
|
isym.st_shndx);
|
1016 |
|
|
else if (isym.st_shndx == SHN_ABS)
|
1017 |
|
|
sym_sec = bfd_abs_section_ptr;
|
1018 |
|
|
else if (isym.st_shndx == SHN_COMMON)
|
1019 |
|
|
sym_sec = bfd_com_section_ptr;
|
1020 |
|
|
|
1021 |
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
1022 |
|
|
symtab_hdr->sh_link,
|
1023 |
|
|
isym.st_name);
|
1024 |
|
|
|
1025 |
|
|
/* Tack on an ID so we can uniquely identify this
|
1026 |
|
|
local symbol in the global hash table. */
|
1027 |
|
|
new_name = bfd_malloc (strlen (sym_name) + 10);
|
1028 |
|
|
if (new_name == 0)
|
1029 |
|
|
goto error_return;
|
1030 |
|
|
|
1031 |
|
|
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
1032 |
|
|
sym_name = new_name;
|
1033 |
|
|
|
1034 |
|
|
hash = (struct elf32_mn10300_link_hash_entry *)
|
1035 |
|
|
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
1036 |
|
|
sym_name, true,
|
1037 |
|
|
true, false);
|
1038 |
|
|
free (new_name);
|
1039 |
|
|
compute_function_info (input_bfd, hash,
|
1040 |
|
|
isym.st_value, contents);
|
1041 |
|
|
}
|
1042 |
|
|
}
|
1043 |
|
|
|
1044 |
|
|
esym = extsyms + symtab_hdr->sh_info;
|
1045 |
|
|
esymend = extsyms + (symtab_hdr->sh_size
|
1046 |
|
|
/ sizeof (Elf32_External_Sym));
|
1047 |
|
|
for (idx = 0; esym < esymend; esym++, idx++)
|
1048 |
|
|
{
|
1049 |
|
|
Elf_Internal_Sym isym;
|
1050 |
|
|
|
1051 |
|
|
bfd_elf32_swap_symbol_in (input_bfd, esym, &isym);
|
1052 |
|
|
hash = (struct elf32_mn10300_link_hash_entry *)
|
1053 |
|
|
elf_sym_hashes (input_bfd)[idx];
|
1054 |
|
|
if (isym.st_shndx == shndx
|
1055 |
|
|
&& ELF_ST_TYPE (isym.st_info) == STT_FUNC
|
1056 |
|
|
&& (hash)->root.root.u.def.section == section
|
1057 |
|
|
&& ((hash)->root.root.type == bfd_link_hash_defined
|
1058 |
|
|
|| (hash)->root.root.type == bfd_link_hash_defweak))
|
1059 |
|
|
compute_function_info (input_bfd, hash,
|
1060 |
|
|
(hash)->root.root.u.def.value,
|
1061 |
|
|
contents);
|
1062 |
|
|
}
|
1063 |
|
|
}
|
1064 |
|
|
|
1065 |
|
|
/* Cache or free any memory we allocated for the relocs. */
|
1066 |
|
|
if (free_relocs != NULL)
|
1067 |
|
|
{
|
1068 |
|
|
free (free_relocs);
|
1069 |
|
|
free_relocs = NULL;
|
1070 |
|
|
}
|
1071 |
|
|
|
1072 |
|
|
/* Cache or free any memory we allocated for the contents. */
|
1073 |
|
|
if (free_contents != NULL)
|
1074 |
|
|
{
|
1075 |
|
|
if (! link_info->keep_memory)
|
1076 |
|
|
free (free_contents);
|
1077 |
|
|
else
|
1078 |
|
|
{
|
1079 |
|
|
/* Cache the section contents for elf_link_input_bfd. */
|
1080 |
|
|
elf_section_data (section)->this_hdr.contents = contents;
|
1081 |
|
|
}
|
1082 |
|
|
free_contents = NULL;
|
1083 |
|
|
}
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
/* Cache or free any memory we allocated for the symbols. */
|
1087 |
|
|
if (free_extsyms != NULL)
|
1088 |
|
|
{
|
1089 |
|
|
if (! link_info->keep_memory)
|
1090 |
|
|
free (free_extsyms);
|
1091 |
|
|
else
|
1092 |
|
|
{
|
1093 |
|
|
/* Cache the symbols for elf_link_input_bfd. */
|
1094 |
|
|
symtab_hdr->contents = extsyms;
|
1095 |
|
|
}
|
1096 |
|
|
free_extsyms = NULL;
|
1097 |
|
|
}
|
1098 |
|
|
}
|
1099 |
|
|
|
1100 |
|
|
/* Now iterate on each symbol in the hash table and perform
|
1101 |
|
|
the final initialization steps on each. */
|
1102 |
|
|
elf32_mn10300_link_hash_traverse (hash_table,
|
1103 |
|
|
elf32_mn10300_finish_hash_table_entry,
|
1104 |
|
|
NULL);
|
1105 |
|
|
elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
|
1106 |
|
|
elf32_mn10300_finish_hash_table_entry,
|
1107 |
|
|
NULL);
|
1108 |
|
|
|
1109 |
|
|
/* All entries in the hash table are fully initialized. */
|
1110 |
|
|
hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED;
|
1111 |
|
|
|
1112 |
|
|
/* Now that everything has been initialized, go through each
|
1113 |
|
|
code section and delete any prologue insns which will be
|
1114 |
|
|
redundant because their operations will be performed by
|
1115 |
|
|
a "call" instruction. */
|
1116 |
|
|
for (input_bfd = link_info->input_bfds;
|
1117 |
|
|
input_bfd != NULL;
|
1118 |
|
|
input_bfd = input_bfd->link_next)
|
1119 |
|
|
{
|
1120 |
|
|
asection *section;
|
1121 |
|
|
|
1122 |
|
|
/* We're going to need all the symbols for each bfd. */
|
1123 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
1124 |
|
|
|
1125 |
|
|
/* Get cached copy if it exists. */
|
1126 |
|
|
if (symtab_hdr->contents != NULL)
|
1127 |
|
|
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
1128 |
|
|
else
|
1129 |
|
|
{
|
1130 |
|
|
/* Go get them off disk. */
|
1131 |
|
|
extsyms = ((Elf32_External_Sym *)
|
1132 |
|
|
bfd_malloc (symtab_hdr->sh_size));
|
1133 |
|
|
if (extsyms == NULL)
|
1134 |
|
|
goto error_return;
|
1135 |
|
|
free_extsyms = extsyms;
|
1136 |
|
|
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
1137 |
|
|
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, input_bfd)
|
1138 |
|
|
!= symtab_hdr->sh_size))
|
1139 |
|
|
goto error_return;
|
1140 |
|
|
}
|
1141 |
|
|
|
1142 |
|
|
/* Walk over each section in this bfd. */
|
1143 |
|
|
for (section = input_bfd->sections;
|
1144 |
|
|
section != NULL;
|
1145 |
|
|
section = section->next)
|
1146 |
|
|
{
|
1147 |
|
|
int shndx;
|
1148 |
|
|
Elf32_External_Sym *esym, *esymend;
|
1149 |
|
|
int idx;
|
1150 |
|
|
|
1151 |
|
|
/* Skip non-code sections and empty sections. */
|
1152 |
|
|
if ((section->flags & SEC_CODE) == 0 || section->_raw_size == 0)
|
1153 |
|
|
continue;
|
1154 |
|
|
|
1155 |
|
|
if (section->reloc_count != 0)
|
1156 |
|
|
{
|
1157 |
|
|
/* Get a copy of the native relocations. */
|
1158 |
|
|
internal_relocs = (_bfd_elf32_link_read_relocs
|
1159 |
|
|
(input_bfd, section, (PTR) NULL,
|
1160 |
|
|
(Elf_Internal_Rela *) NULL,
|
1161 |
|
|
link_info->keep_memory));
|
1162 |
|
|
if (internal_relocs == NULL)
|
1163 |
|
|
goto error_return;
|
1164 |
|
|
if (! link_info->keep_memory)
|
1165 |
|
|
free_relocs = internal_relocs;
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
/* Get cached copy of section contents if it exists. */
|
1169 |
|
|
if (elf_section_data (section)->this_hdr.contents != NULL)
|
1170 |
|
|
contents = elf_section_data (section)->this_hdr.contents;
|
1171 |
|
|
else
|
1172 |
|
|
{
|
1173 |
|
|
/* Go get them off disk. */
|
1174 |
|
|
contents = (bfd_byte *)bfd_malloc (section->_raw_size);
|
1175 |
|
|
if (contents == NULL)
|
1176 |
|
|
goto error_return;
|
1177 |
|
|
free_contents = contents;
|
1178 |
|
|
|
1179 |
|
|
if (!bfd_get_section_contents (input_bfd, section,
|
1180 |
|
|
contents, (file_ptr) 0,
|
1181 |
|
|
section->_raw_size))
|
1182 |
|
|
goto error_return;
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
|
1186 |
|
|
shndx = _bfd_elf_section_from_bfd_section (input_bfd, section);
|
1187 |
|
|
|
1188 |
|
|
/* Now look for any function in this section which needs
|
1189 |
|
|
insns deleted from its prologue. */
|
1190 |
|
|
esym = extsyms;
|
1191 |
|
|
esymend = esym + symtab_hdr->sh_info;
|
1192 |
|
|
for (; esym < esymend; esym++)
|
1193 |
|
|
{
|
1194 |
|
|
Elf_Internal_Sym isym;
|
1195 |
|
|
struct elf32_mn10300_link_hash_entry *sym_hash;
|
1196 |
|
|
asection *sym_sec = NULL;
|
1197 |
|
|
const char *sym_name;
|
1198 |
|
|
char *new_name;
|
1199 |
|
|
|
1200 |
|
|
bfd_elf32_swap_symbol_in (input_bfd, esym, &isym);
|
1201 |
|
|
|
1202 |
|
|
if (isym.st_shndx != shndx)
|
1203 |
|
|
continue;
|
1204 |
|
|
|
1205 |
|
|
if (isym.st_shndx == SHN_UNDEF)
|
1206 |
|
|
sym_sec = bfd_und_section_ptr;
|
1207 |
|
|
else if (isym.st_shndx > 0 && isym.st_shndx < SHN_LORESERVE)
|
1208 |
|
|
sym_sec
|
1209 |
|
|
= bfd_section_from_elf_index (input_bfd, isym.st_shndx);
|
1210 |
|
|
else if (isym.st_shndx == SHN_ABS)
|
1211 |
|
|
sym_sec = bfd_abs_section_ptr;
|
1212 |
|
|
else if (isym.st_shndx == SHN_COMMON)
|
1213 |
|
|
sym_sec = bfd_com_section_ptr;
|
1214 |
|
|
else
|
1215 |
|
|
abort ();
|
1216 |
|
|
|
1217 |
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
1218 |
|
|
symtab_hdr->sh_link,
|
1219 |
|
|
isym.st_name);
|
1220 |
|
|
|
1221 |
|
|
/* Tack on an ID so we can uniquely identify this
|
1222 |
|
|
local symbol in the global hash table. */
|
1223 |
|
|
new_name = bfd_malloc (strlen (sym_name) + 10);
|
1224 |
|
|
if (new_name == 0)
|
1225 |
|
|
goto error_return;
|
1226 |
|
|
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
1227 |
|
|
sym_name = new_name;
|
1228 |
|
|
|
1229 |
|
|
sym_hash = (struct elf32_mn10300_link_hash_entry *)
|
1230 |
|
|
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
1231 |
|
|
sym_name, false,
|
1232 |
|
|
false, false);
|
1233 |
|
|
|
1234 |
|
|
free (new_name);
|
1235 |
|
|
if (sym_hash == NULL)
|
1236 |
|
|
continue;
|
1237 |
|
|
|
1238 |
|
|
if (! ((sym_hash)->flags & MN10300_CONVERT_CALL_TO_CALLS)
|
1239 |
|
|
&& ! ((sym_hash)->flags & MN10300_DELETED_PROLOGUE_BYTES))
|
1240 |
|
|
{
|
1241 |
|
|
int bytes = 0;
|
1242 |
|
|
|
1243 |
|
|
/* Note that we've changed things. */
|
1244 |
|
|
elf_section_data (section)->relocs = internal_relocs;
|
1245 |
|
|
free_relocs = NULL;
|
1246 |
|
|
|
1247 |
|
|
elf_section_data (section)->this_hdr.contents = contents;
|
1248 |
|
|
free_contents = NULL;
|
1249 |
|
|
|
1250 |
|
|
symtab_hdr->contents = (bfd_byte *)extsyms;
|
1251 |
|
|
free_extsyms = NULL;
|
1252 |
|
|
|
1253 |
|
|
/* Count how many bytes we're going to delete. */
|
1254 |
|
|
if (sym_hash->movm_args)
|
1255 |
|
|
bytes += 2;
|
1256 |
|
|
|
1257 |
|
|
if (sym_hash->stack_size && sym_hash->stack_size <= 128)
|
1258 |
|
|
bytes += 3;
|
1259 |
|
|
else if (sym_hash->stack_size
|
1260 |
|
|
&& sym_hash->stack_size < 256)
|
1261 |
|
|
bytes += 4;
|
1262 |
|
|
|
1263 |
|
|
/* Note that we've deleted prologue bytes for this
|
1264 |
|
|
function. */
|
1265 |
|
|
sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
|
1266 |
|
|
|
1267 |
|
|
/* Actually delete the bytes. */
|
1268 |
|
|
if (!mn10300_elf_relax_delete_bytes (input_bfd,
|
1269 |
|
|
section,
|
1270 |
|
|
isym.st_value,
|
1271 |
|
|
bytes))
|
1272 |
|
|
goto error_return;
|
1273 |
|
|
|
1274 |
|
|
/* Something changed. Not strictly necessary, but
|
1275 |
|
|
may lead to more relaxing opportunities. */
|
1276 |
|
|
*again = true;
|
1277 |
|
|
}
|
1278 |
|
|
}
|
1279 |
|
|
|
1280 |
|
|
/* Look for any global functions in this section which
|
1281 |
|
|
need insns deleted from their prologues. */
|
1282 |
|
|
esym = extsyms + symtab_hdr->sh_info;
|
1283 |
|
|
esymend = extsyms + (symtab_hdr->sh_size
|
1284 |
|
|
/ sizeof (Elf32_External_Sym));
|
1285 |
|
|
for (idx = 0; esym < esymend; esym++, idx++)
|
1286 |
|
|
{
|
1287 |
|
|
Elf_Internal_Sym isym;
|
1288 |
|
|
struct elf32_mn10300_link_hash_entry *sym_hash;
|
1289 |
|
|
|
1290 |
|
|
bfd_elf32_swap_symbol_in (input_bfd, esym, &isym);
|
1291 |
|
|
sym_hash = (struct elf32_mn10300_link_hash_entry *)
|
1292 |
|
|
(elf_sym_hashes (input_bfd)[idx]);
|
1293 |
|
|
if (isym.st_shndx == shndx
|
1294 |
|
|
&& (sym_hash)->root.root.u.def.section == section
|
1295 |
|
|
&& ! ((sym_hash)->flags & MN10300_CONVERT_CALL_TO_CALLS)
|
1296 |
|
|
&& ! ((sym_hash)->flags & MN10300_DELETED_PROLOGUE_BYTES))
|
1297 |
|
|
{
|
1298 |
|
|
int bytes = 0;
|
1299 |
|
|
|
1300 |
|
|
/* Note that we've changed things. */
|
1301 |
|
|
elf_section_data (section)->relocs = internal_relocs;
|
1302 |
|
|
free_relocs = NULL;
|
1303 |
|
|
|
1304 |
|
|
elf_section_data (section)->this_hdr.contents = contents;
|
1305 |
|
|
free_contents = NULL;
|
1306 |
|
|
|
1307 |
|
|
symtab_hdr->contents = (bfd_byte *)extsyms;
|
1308 |
|
|
free_extsyms = NULL;
|
1309 |
|
|
|
1310 |
|
|
/* Count how many bytes we're going to delete. */
|
1311 |
|
|
if (sym_hash->movm_args)
|
1312 |
|
|
bytes += 2;
|
1313 |
|
|
|
1314 |
|
|
if (sym_hash->stack_size && sym_hash->stack_size <= 128)
|
1315 |
|
|
bytes += 3;
|
1316 |
|
|
else if (sym_hash->stack_size
|
1317 |
|
|
&& sym_hash->stack_size < 256)
|
1318 |
|
|
bytes += 4;
|
1319 |
|
|
|
1320 |
|
|
/* Note that we've deleted prologue bytes for this
|
1321 |
|
|
function. */
|
1322 |
|
|
sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
|
1323 |
|
|
|
1324 |
|
|
/* Actually delete the bytes. */
|
1325 |
|
|
if (!mn10300_elf_relax_delete_bytes (input_bfd,
|
1326 |
|
|
section,
|
1327 |
|
|
(sym_hash)->root.root.u.def.value,
|
1328 |
|
|
bytes))
|
1329 |
|
|
goto error_return;
|
1330 |
|
|
|
1331 |
|
|
/* Something changed. Not strictly necessary, but
|
1332 |
|
|
may lead to more relaxing opportunities. */
|
1333 |
|
|
*again = true;
|
1334 |
|
|
}
|
1335 |
|
|
}
|
1336 |
|
|
|
1337 |
|
|
/* Cache or free any memory we allocated for the relocs. */
|
1338 |
|
|
if (free_relocs != NULL)
|
1339 |
|
|
{
|
1340 |
|
|
free (free_relocs);
|
1341 |
|
|
free_relocs = NULL;
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
/* Cache or free any memory we allocated for the contents. */
|
1345 |
|
|
if (free_contents != NULL)
|
1346 |
|
|
{
|
1347 |
|
|
if (! link_info->keep_memory)
|
1348 |
|
|
free (free_contents);
|
1349 |
|
|
else
|
1350 |
|
|
{
|
1351 |
|
|
/* Cache the section contents for elf_link_input_bfd. */
|
1352 |
|
|
elf_section_data (section)->this_hdr.contents = contents;
|
1353 |
|
|
}
|
1354 |
|
|
free_contents = NULL;
|
1355 |
|
|
}
|
1356 |
|
|
}
|
1357 |
|
|
|
1358 |
|
|
/* Cache or free any memory we allocated for the symbols. */
|
1359 |
|
|
if (free_extsyms != NULL)
|
1360 |
|
|
{
|
1361 |
|
|
if (! link_info->keep_memory)
|
1362 |
|
|
free (free_extsyms);
|
1363 |
|
|
else
|
1364 |
|
|
{
|
1365 |
|
|
/* Cache the symbols for elf_link_input_bfd. */
|
1366 |
|
|
symtab_hdr->contents = extsyms;
|
1367 |
|
|
}
|
1368 |
|
|
free_extsyms = NULL;
|
1369 |
|
|
}
|
1370 |
|
|
}
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
|
1374 |
|
|
/* (Re)initialize for the basic instruction shortening/relaxing pass. */
|
1375 |
|
|
contents = NULL;
|
1376 |
|
|
extsyms = NULL;
|
1377 |
|
|
internal_relocs = NULL;
|
1378 |
|
|
free_relocs = NULL;
|
1379 |
|
|
free_contents = NULL;
|
1380 |
|
|
free_extsyms = NULL;
|
1381 |
|
|
|
1382 |
|
|
/* We don't have to do anything for a relocateable link, if
|
1383 |
|
|
this section does not have relocs, or if this is not a
|
1384 |
|
|
code section. */
|
1385 |
|
|
if (link_info->relocateable
|
1386 |
|
|
|| (sec->flags & SEC_RELOC) == 0
|
1387 |
|
|
|| sec->reloc_count == 0
|
1388 |
|
|
|| (sec->flags & SEC_CODE) == 0)
|
1389 |
|
|
return true;
|
1390 |
|
|
|
1391 |
|
|
/* If this is the first time we have been called for this section,
|
1392 |
|
|
initialize the cooked size. */
|
1393 |
|
|
if (sec->_cooked_size == 0)
|
1394 |
|
|
sec->_cooked_size = sec->_raw_size;
|
1395 |
|
|
|
1396 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
1397 |
|
|
|
1398 |
|
|
/* Get a copy of the native relocations. */
|
1399 |
|
|
internal_relocs = (_bfd_elf32_link_read_relocs
|
1400 |
|
|
(abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
|
1401 |
|
|
link_info->keep_memory));
|
1402 |
|
|
if (internal_relocs == NULL)
|
1403 |
|
|
goto error_return;
|
1404 |
|
|
if (! link_info->keep_memory)
|
1405 |
|
|
free_relocs = internal_relocs;
|
1406 |
|
|
|
1407 |
|
|
/* Walk through them looking for relaxing opportunities. */
|
1408 |
|
|
irelend = internal_relocs + sec->reloc_count;
|
1409 |
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
1410 |
|
|
{
|
1411 |
|
|
bfd_vma symval;
|
1412 |
|
|
struct elf32_mn10300_link_hash_entry *h = NULL;
|
1413 |
|
|
|
1414 |
|
|
/* If this isn't something that can be relaxed, then ignore
|
1415 |
|
|
this reloc. */
|
1416 |
|
|
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE
|
1417 |
|
|
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8
|
1418 |
|
|
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX)
|
1419 |
|
|
continue;
|
1420 |
|
|
|
1421 |
|
|
/* Get the section contents if we haven't done so already. */
|
1422 |
|
|
if (contents == NULL)
|
1423 |
|
|
{
|
1424 |
|
|
/* Get cached copy if it exists. */
|
1425 |
|
|
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
1426 |
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
1427 |
|
|
else
|
1428 |
|
|
{
|
1429 |
|
|
/* Go get them off disk. */
|
1430 |
|
|
contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
|
1431 |
|
|
if (contents == NULL)
|
1432 |
|
|
goto error_return;
|
1433 |
|
|
free_contents = contents;
|
1434 |
|
|
|
1435 |
|
|
if (! bfd_get_section_contents (abfd, sec, contents,
|
1436 |
|
|
(file_ptr) 0, sec->_raw_size))
|
1437 |
|
|
goto error_return;
|
1438 |
|
|
}
|
1439 |
|
|
}
|
1440 |
|
|
|
1441 |
|
|
/* Read this BFD's symbols if we haven't done so already. */
|
1442 |
|
|
if (extsyms == NULL)
|
1443 |
|
|
{
|
1444 |
|
|
/* Get cached copy if it exists. */
|
1445 |
|
|
if (symtab_hdr->contents != NULL)
|
1446 |
|
|
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
1447 |
|
|
else
|
1448 |
|
|
{
|
1449 |
|
|
/* Go get them off disk. */
|
1450 |
|
|
extsyms = ((Elf32_External_Sym *)
|
1451 |
|
|
bfd_malloc (symtab_hdr->sh_size));
|
1452 |
|
|
if (extsyms == NULL)
|
1453 |
|
|
goto error_return;
|
1454 |
|
|
free_extsyms = extsyms;
|
1455 |
|
|
if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
1456 |
|
|
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
|
1457 |
|
|
!= symtab_hdr->sh_size))
|
1458 |
|
|
goto error_return;
|
1459 |
|
|
}
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
/* Get the value of the symbol referred to by the reloc. */
|
1463 |
|
|
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
1464 |
|
|
{
|
1465 |
|
|
Elf_Internal_Sym isym;
|
1466 |
|
|
asection *sym_sec = NULL;
|
1467 |
|
|
const char *sym_name;
|
1468 |
|
|
char *new_name;
|
1469 |
|
|
|
1470 |
|
|
/* A local symbol. */
|
1471 |
|
|
bfd_elf32_swap_symbol_in (abfd,
|
1472 |
|
|
extsyms + ELF32_R_SYM (irel->r_info),
|
1473 |
|
|
&isym);
|
1474 |
|
|
|
1475 |
|
|
if (isym.st_shndx == SHN_UNDEF)
|
1476 |
|
|
sym_sec = bfd_und_section_ptr;
|
1477 |
|
|
else if (isym.st_shndx > 0 && isym.st_shndx < SHN_LORESERVE)
|
1478 |
|
|
sym_sec = bfd_section_from_elf_index (abfd, isym.st_shndx);
|
1479 |
|
|
else if (isym.st_shndx == SHN_ABS)
|
1480 |
|
|
sym_sec = bfd_abs_section_ptr;
|
1481 |
|
|
else if (isym.st_shndx == SHN_COMMON)
|
1482 |
|
|
sym_sec = bfd_com_section_ptr;
|
1483 |
|
|
else
|
1484 |
|
|
abort ();
|
1485 |
|
|
|
1486 |
|
|
symval = (isym.st_value
|
1487 |
|
|
+ sym_sec->output_section->vma
|
1488 |
|
|
+ sym_sec->output_offset);
|
1489 |
|
|
sym_name = bfd_elf_string_from_elf_section (abfd,
|
1490 |
|
|
symtab_hdr->sh_link,
|
1491 |
|
|
isym.st_name);
|
1492 |
|
|
|
1493 |
|
|
/* Tack on an ID so we can uniquely identify this
|
1494 |
|
|
local symbol in the global hash table. */
|
1495 |
|
|
new_name = bfd_malloc (strlen (sym_name) + 10);
|
1496 |
|
|
if (new_name == 0)
|
1497 |
|
|
goto error_return;
|
1498 |
|
|
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
1499 |
|
|
sym_name = new_name;
|
1500 |
|
|
|
1501 |
|
|
h = (struct elf32_mn10300_link_hash_entry *)
|
1502 |
|
|
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
1503 |
|
|
sym_name, false, false, false);
|
1504 |
|
|
free (new_name);
|
1505 |
|
|
}
|
1506 |
|
|
else
|
1507 |
|
|
{
|
1508 |
|
|
unsigned long indx;
|
1509 |
|
|
|
1510 |
|
|
/* An external symbol. */
|
1511 |
|
|
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
1512 |
|
|
h = (struct elf32_mn10300_link_hash_entry *)
|
1513 |
|
|
(elf_sym_hashes (abfd)[indx]);
|
1514 |
|
|
BFD_ASSERT (h != NULL);
|
1515 |
|
|
if (h->root.root.type != bfd_link_hash_defined
|
1516 |
|
|
&& h->root.root.type != bfd_link_hash_defweak)
|
1517 |
|
|
{
|
1518 |
|
|
/* This appears to be a reference to an undefined
|
1519 |
|
|
symbol. Just ignore it--it will be caught by the
|
1520 |
|
|
regular reloc processing. */
|
1521 |
|
|
continue;
|
1522 |
|
|
}
|
1523 |
|
|
|
1524 |
|
|
symval = (h->root.root.u.def.value
|
1525 |
|
|
+ h->root.root.u.def.section->output_section->vma
|
1526 |
|
|
+ h->root.root.u.def.section->output_offset);
|
1527 |
|
|
}
|
1528 |
|
|
|
1529 |
|
|
/* For simplicity of coding, we are going to modify the section
|
1530 |
|
|
contents, the section relocs, and the BFD symbol table. We
|
1531 |
|
|
must tell the rest of the code not to free up this
|
1532 |
|
|
information. It would be possible to instead create a table
|
1533 |
|
|
of changes which have to be made, as is done in coff-mips.c;
|
1534 |
|
|
that would be more work, but would require less memory when
|
1535 |
|
|
the linker is run. */
|
1536 |
|
|
|
1537 |
|
|
/* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative
|
1538 |
|
|
branch/call, also deal with "call" -> "calls" conversions and
|
1539 |
|
|
insertion of prologue data into "call" instructions. */
|
1540 |
|
|
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32)
|
1541 |
|
|
{
|
1542 |
|
|
bfd_vma value = symval;
|
1543 |
|
|
|
1544 |
|
|
/* If we've got a "call" instruction that needs to be turned
|
1545 |
|
|
into a "calls" instruction, do so now. It saves a byte. */
|
1546 |
|
|
if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
|
1547 |
|
|
{
|
1548 |
|
|
unsigned char code;
|
1549 |
|
|
|
1550 |
|
|
/* Get the opcode. */
|
1551 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
1552 |
|
|
|
1553 |
|
|
/* Make sure we're working with a "call" instruction! */
|
1554 |
|
|
if (code == 0xdd)
|
1555 |
|
|
{
|
1556 |
|
|
/* Note that we've changed the relocs, section contents,
|
1557 |
|
|
etc. */
|
1558 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
1559 |
|
|
free_relocs = NULL;
|
1560 |
|
|
|
1561 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
1562 |
|
|
free_contents = NULL;
|
1563 |
|
|
|
1564 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
1565 |
|
|
free_extsyms = NULL;
|
1566 |
|
|
|
1567 |
|
|
/* Fix the opcode. */
|
1568 |
|
|
bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1);
|
1569 |
|
|
bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
|
1570 |
|
|
|
1571 |
|
|
/* Fix irel->r_offset and irel->r_addend. */
|
1572 |
|
|
irel->r_offset += 1;
|
1573 |
|
|
irel->r_addend += 1;
|
1574 |
|
|
|
1575 |
|
|
/* Delete one byte of data. */
|
1576 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
1577 |
|
|
irel->r_offset + 3, 1))
|
1578 |
|
|
goto error_return;
|
1579 |
|
|
|
1580 |
|
|
/* That will change things, so, we should relax again.
|
1581 |
|
|
Note that this is not required, and it may be slow. */
|
1582 |
|
|
*again = true;
|
1583 |
|
|
}
|
1584 |
|
|
}
|
1585 |
|
|
else if (h)
|
1586 |
|
|
{
|
1587 |
|
|
/* We've got a "call" instruction which needs some data
|
1588 |
|
|
from target function filled in. */
|
1589 |
|
|
unsigned char code;
|
1590 |
|
|
|
1591 |
|
|
/* Get the opcode. */
|
1592 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
1593 |
|
|
|
1594 |
|
|
/* Insert data from the target function into the "call"
|
1595 |
|
|
instruction if needed. */
|
1596 |
|
|
if (code == 0xdd)
|
1597 |
|
|
{
|
1598 |
|
|
bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4);
|
1599 |
|
|
bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
|
1600 |
|
|
contents + irel->r_offset + 5);
|
1601 |
|
|
}
|
1602 |
|
|
}
|
1603 |
|
|
|
1604 |
|
|
/* Deal with pc-relative gunk. */
|
1605 |
|
|
value -= (sec->output_section->vma + sec->output_offset);
|
1606 |
|
|
value -= irel->r_offset;
|
1607 |
|
|
value += irel->r_addend;
|
1608 |
|
|
|
1609 |
|
|
/* See if the value will fit in 16 bits, note the high value is
|
1610 |
|
|
0x7fff + 2 as the target will be two bytes closer if we are
|
1611 |
|
|
able to relax. */
|
1612 |
|
|
if ((long)value < 0x8001 && (long)value > -0x8000)
|
1613 |
|
|
{
|
1614 |
|
|
unsigned char code;
|
1615 |
|
|
|
1616 |
|
|
/* Get the opcode. */
|
1617 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
1618 |
|
|
|
1619 |
|
|
if (code != 0xdc && code != 0xdd && code != 0xff)
|
1620 |
|
|
continue;
|
1621 |
|
|
|
1622 |
|
|
/* Note that we've changed the relocs, section contents, etc. */
|
1623 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
1624 |
|
|
free_relocs = NULL;
|
1625 |
|
|
|
1626 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
1627 |
|
|
free_contents = NULL;
|
1628 |
|
|
|
1629 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
1630 |
|
|
free_extsyms = NULL;
|
1631 |
|
|
|
1632 |
|
|
/* Fix the opcode. */
|
1633 |
|
|
if (code == 0xdc)
|
1634 |
|
|
bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1);
|
1635 |
|
|
else if (code == 0xdd)
|
1636 |
|
|
bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1);
|
1637 |
|
|
else if (code == 0xff)
|
1638 |
|
|
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
1639 |
|
|
|
1640 |
|
|
/* Fix the relocation's type. */
|
1641 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
1642 |
|
|
R_MN10300_PCREL16);
|
1643 |
|
|
|
1644 |
|
|
/* Delete two bytes of data. */
|
1645 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
1646 |
|
|
irel->r_offset + 1, 2))
|
1647 |
|
|
goto error_return;
|
1648 |
|
|
|
1649 |
|
|
/* That will change things, so, we should relax again.
|
1650 |
|
|
Note that this is not required, and it may be slow. */
|
1651 |
|
|
*again = true;
|
1652 |
|
|
}
|
1653 |
|
|
}
|
1654 |
|
|
|
1655 |
|
|
/* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
|
1656 |
|
|
branch. */
|
1657 |
|
|
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16)
|
1658 |
|
|
{
|
1659 |
|
|
bfd_vma value = symval;
|
1660 |
|
|
|
1661 |
|
|
/* If we've got a "call" instruction that needs to be turned
|
1662 |
|
|
into a "calls" instruction, do so now. It saves a byte. */
|
1663 |
|
|
if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
|
1664 |
|
|
{
|
1665 |
|
|
unsigned char code;
|
1666 |
|
|
|
1667 |
|
|
/* Get the opcode. */
|
1668 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
1669 |
|
|
|
1670 |
|
|
/* Make sure we're working with a "call" instruction! */
|
1671 |
|
|
if (code == 0xcd)
|
1672 |
|
|
{
|
1673 |
|
|
/* Note that we've changed the relocs, section contents,
|
1674 |
|
|
etc. */
|
1675 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
1676 |
|
|
free_relocs = NULL;
|
1677 |
|
|
|
1678 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
1679 |
|
|
free_contents = NULL;
|
1680 |
|
|
|
1681 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
1682 |
|
|
free_extsyms = NULL;
|
1683 |
|
|
|
1684 |
|
|
/* Fix the opcode. */
|
1685 |
|
|
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1);
|
1686 |
|
|
bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
|
1687 |
|
|
|
1688 |
|
|
/* Fix irel->r_offset and irel->r_addend. */
|
1689 |
|
|
irel->r_offset += 1;
|
1690 |
|
|
irel->r_addend += 1;
|
1691 |
|
|
|
1692 |
|
|
/* Delete one byte of data. */
|
1693 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
1694 |
|
|
irel->r_offset + 1, 1))
|
1695 |
|
|
goto error_return;
|
1696 |
|
|
|
1697 |
|
|
/* That will change things, so, we should relax again.
|
1698 |
|
|
Note that this is not required, and it may be slow. */
|
1699 |
|
|
*again = true;
|
1700 |
|
|
}
|
1701 |
|
|
}
|
1702 |
|
|
else if (h)
|
1703 |
|
|
{
|
1704 |
|
|
unsigned char code;
|
1705 |
|
|
|
1706 |
|
|
/* Get the opcode. */
|
1707 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
1708 |
|
|
|
1709 |
|
|
/* Insert data from the target function into the "call"
|
1710 |
|
|
instruction if needed. */
|
1711 |
|
|
if (code == 0xcd)
|
1712 |
|
|
{
|
1713 |
|
|
bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2);
|
1714 |
|
|
bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
|
1715 |
|
|
contents + irel->r_offset + 3);
|
1716 |
|
|
}
|
1717 |
|
|
}
|
1718 |
|
|
|
1719 |
|
|
/* Deal with pc-relative gunk. */
|
1720 |
|
|
value -= (sec->output_section->vma + sec->output_offset);
|
1721 |
|
|
value -= irel->r_offset;
|
1722 |
|
|
value += irel->r_addend;
|
1723 |
|
|
|
1724 |
|
|
/* See if the value will fit in 8 bits, note the high value is
|
1725 |
|
|
0x7f + 1 as the target will be one bytes closer if we are
|
1726 |
|
|
able to relax. */
|
1727 |
|
|
if ((long)value < 0x80 && (long)value > -0x80)
|
1728 |
|
|
{
|
1729 |
|
|
unsigned char code;
|
1730 |
|
|
|
1731 |
|
|
/* Get the opcode. */
|
1732 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
1733 |
|
|
|
1734 |
|
|
if (code != 0xcc)
|
1735 |
|
|
continue;
|
1736 |
|
|
|
1737 |
|
|
/* Note that we've changed the relocs, section contents, etc. */
|
1738 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
1739 |
|
|
free_relocs = NULL;
|
1740 |
|
|
|
1741 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
1742 |
|
|
free_contents = NULL;
|
1743 |
|
|
|
1744 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
1745 |
|
|
free_extsyms = NULL;
|
1746 |
|
|
|
1747 |
|
|
/* Fix the opcode. */
|
1748 |
|
|
bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1);
|
1749 |
|
|
|
1750 |
|
|
/* Fix the relocation's type. */
|
1751 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
1752 |
|
|
R_MN10300_PCREL8);
|
1753 |
|
|
|
1754 |
|
|
/* Delete one byte of data. */
|
1755 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
1756 |
|
|
irel->r_offset + 1, 1))
|
1757 |
|
|
goto error_return;
|
1758 |
|
|
|
1759 |
|
|
/* That will change things, so, we should relax again.
|
1760 |
|
|
Note that this is not required, and it may be slow. */
|
1761 |
|
|
*again = true;
|
1762 |
|
|
}
|
1763 |
|
|
}
|
1764 |
|
|
|
1765 |
|
|
/* Try to eliminate an unconditional 8 bit pc-relative branch
|
1766 |
|
|
which immediately follows a conditional 8 bit pc-relative
|
1767 |
|
|
branch around the unconditional branch.
|
1768 |
|
|
|
1769 |
|
|
original: new:
|
1770 |
|
|
bCC lab1 bCC' lab2
|
1771 |
|
|
bra lab2
|
1772 |
|
|
lab1: lab1:
|
1773 |
|
|
|
1774 |
|
|
|
1775 |
|
|
This happens when the bCC can't reach lab2 at assembly time,
|
1776 |
|
|
but due to other relaxations it can reach at link time. */
|
1777 |
|
|
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8)
|
1778 |
|
|
{
|
1779 |
|
|
Elf_Internal_Rela *nrel;
|
1780 |
|
|
bfd_vma value = symval;
|
1781 |
|
|
unsigned char code;
|
1782 |
|
|
|
1783 |
|
|
/* Deal with pc-relative gunk. */
|
1784 |
|
|
value -= (sec->output_section->vma + sec->output_offset);
|
1785 |
|
|
value -= irel->r_offset;
|
1786 |
|
|
value += irel->r_addend;
|
1787 |
|
|
|
1788 |
|
|
/* Do nothing if this reloc is the last byte in the section. */
|
1789 |
|
|
if (irel->r_offset == sec->_cooked_size)
|
1790 |
|
|
continue;
|
1791 |
|
|
|
1792 |
|
|
/* See if the next instruction is an unconditional pc-relative
|
1793 |
|
|
branch, more often than not this test will fail, so we
|
1794 |
|
|
test it first to speed things up. */
|
1795 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
|
1796 |
|
|
if (code != 0xca)
|
1797 |
|
|
continue;
|
1798 |
|
|
|
1799 |
|
|
/* Also make sure the next relocation applies to the next
|
1800 |
|
|
instruction and that it's a pc-relative 8 bit branch. */
|
1801 |
|
|
nrel = irel + 1;
|
1802 |
|
|
if (nrel == irelend
|
1803 |
|
|
|| irel->r_offset + 2 != nrel->r_offset
|
1804 |
|
|
|| ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8)
|
1805 |
|
|
continue;
|
1806 |
|
|
|
1807 |
|
|
/* Make sure our destination immediately follows the
|
1808 |
|
|
unconditional branch. */
|
1809 |
|
|
if (symval != (sec->output_section->vma + sec->output_offset
|
1810 |
|
|
+ irel->r_offset + 3))
|
1811 |
|
|
continue;
|
1812 |
|
|
|
1813 |
|
|
/* Now make sure we are a conditional branch. This may not
|
1814 |
|
|
be necessary, but why take the chance.
|
1815 |
|
|
|
1816 |
|
|
Note these checks assume that R_MN10300_PCREL8 relocs
|
1817 |
|
|
only occur on bCC and bCCx insns. If they occured
|
1818 |
|
|
elsewhere, we'd need to know the start of this insn
|
1819 |
|
|
for this check to be accurate. */
|
1820 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
1821 |
|
|
if (code != 0xc0 && code != 0xc1 && code != 0xc2
|
1822 |
|
|
&& code != 0xc3 && code != 0xc4 && code != 0xc5
|
1823 |
|
|
&& code != 0xc6 && code != 0xc7 && code != 0xc8
|
1824 |
|
|
&& code != 0xc9 && code != 0xe8 && code != 0xe9
|
1825 |
|
|
&& code != 0xea && code != 0xeb)
|
1826 |
|
|
continue;
|
1827 |
|
|
|
1828 |
|
|
/* We also have to be sure there is no symbol/label
|
1829 |
|
|
at the unconditional branch. */
|
1830 |
|
|
if (mn10300_elf_symbol_address_p (abfd, sec, extsyms,
|
1831 |
|
|
irel->r_offset + 1))
|
1832 |
|
|
continue;
|
1833 |
|
|
|
1834 |
|
|
/* Note that we've changed the relocs, section contents, etc. */
|
1835 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
1836 |
|
|
free_relocs = NULL;
|
1837 |
|
|
|
1838 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
1839 |
|
|
free_contents = NULL;
|
1840 |
|
|
|
1841 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
1842 |
|
|
free_extsyms = NULL;
|
1843 |
|
|
|
1844 |
|
|
/* Reverse the condition of the first branch. */
|
1845 |
|
|
switch (code)
|
1846 |
|
|
{
|
1847 |
|
|
case 0xc8:
|
1848 |
|
|
code = 0xc9;
|
1849 |
|
|
break;
|
1850 |
|
|
case 0xc9:
|
1851 |
|
|
code = 0xc8;
|
1852 |
|
|
break;
|
1853 |
|
|
case 0xc0:
|
1854 |
|
|
code = 0xc2;
|
1855 |
|
|
break;
|
1856 |
|
|
case 0xc2:
|
1857 |
|
|
code = 0xc0;
|
1858 |
|
|
break;
|
1859 |
|
|
case 0xc3:
|
1860 |
|
|
code = 0xc1;
|
1861 |
|
|
break;
|
1862 |
|
|
case 0xc1:
|
1863 |
|
|
code = 0xc3;
|
1864 |
|
|
break;
|
1865 |
|
|
case 0xc4:
|
1866 |
|
|
code = 0xc6;
|
1867 |
|
|
break;
|
1868 |
|
|
case 0xc6:
|
1869 |
|
|
code = 0xc4;
|
1870 |
|
|
break;
|
1871 |
|
|
case 0xc7:
|
1872 |
|
|
code = 0xc5;
|
1873 |
|
|
break;
|
1874 |
|
|
case 0xc5:
|
1875 |
|
|
code = 0xc7;
|
1876 |
|
|
break;
|
1877 |
|
|
case 0xe8:
|
1878 |
|
|
code = 0xe9;
|
1879 |
|
|
break;
|
1880 |
|
|
case 0x9d:
|
1881 |
|
|
code = 0xe8;
|
1882 |
|
|
break;
|
1883 |
|
|
case 0xea:
|
1884 |
|
|
code = 0xeb;
|
1885 |
|
|
break;
|
1886 |
|
|
case 0xeb:
|
1887 |
|
|
code = 0xea;
|
1888 |
|
|
break;
|
1889 |
|
|
}
|
1890 |
|
|
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
1891 |
|
|
|
1892 |
|
|
/* Set the reloc type and symbol for the first branch
|
1893 |
|
|
from the second branch. */
|
1894 |
|
|
irel->r_info = nrel->r_info;
|
1895 |
|
|
|
1896 |
|
|
/* Make the reloc for the second branch a null reloc. */
|
1897 |
|
|
nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
|
1898 |
|
|
R_MN10300_NONE);
|
1899 |
|
|
|
1900 |
|
|
/* Delete two bytes of data. */
|
1901 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
1902 |
|
|
irel->r_offset + 1, 2))
|
1903 |
|
|
goto error_return;
|
1904 |
|
|
|
1905 |
|
|
/* That will change things, so, we should relax again.
|
1906 |
|
|
Note that this is not required, and it may be slow. */
|
1907 |
|
|
*again = true;
|
1908 |
|
|
}
|
1909 |
|
|
|
1910 |
|
|
/* Try to turn a 24 immediate, displacement or absolute address
|
1911 |
|
|
into a 8 immediate, displacement or absolute address. */
|
1912 |
|
|
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24)
|
1913 |
|
|
{
|
1914 |
|
|
bfd_vma value = symval;
|
1915 |
|
|
value += irel->r_addend;
|
1916 |
|
|
|
1917 |
|
|
/* See if the value will fit in 8 bits. */
|
1918 |
|
|
if ((long)value < 0x7f && (long)value > -0x80)
|
1919 |
|
|
{
|
1920 |
|
|
unsigned char code;
|
1921 |
|
|
|
1922 |
|
|
/* AM33 insns which have 24 operands are 6 bytes long and
|
1923 |
|
|
will have 0xfd as the first byte. */
|
1924 |
|
|
|
1925 |
|
|
/* Get the first opcode. */
|
1926 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
|
1927 |
|
|
|
1928 |
|
|
if (code == 0xfd)
|
1929 |
|
|
{
|
1930 |
|
|
/* Get the second opcode. */
|
1931 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
1932 |
|
|
|
1933 |
|
|
/* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
|
1934 |
|
|
equivalent instructions exists. */
|
1935 |
|
|
if (code != 0x6b && code != 0x7b
|
1936 |
|
|
&& code != 0x8b && code != 0x9b
|
1937 |
|
|
&& ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
|
1938 |
|
|
|| (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
|
1939 |
|
|
|| (code & 0x0f) == 0x0e))
|
1940 |
|
|
{
|
1941 |
|
|
/* Not safe if the high bit is on as relaxing may
|
1942 |
|
|
move the value out of high mem and thus not fit
|
1943 |
|
|
in a signed 8bit value. This is currently over
|
1944 |
|
|
conservative. */
|
1945 |
|
|
if ((value & 0x80) == 0)
|
1946 |
|
|
{
|
1947 |
|
|
/* Note that we've changed the relocation contents,
|
1948 |
|
|
etc. */
|
1949 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
1950 |
|
|
free_relocs = NULL;
|
1951 |
|
|
|
1952 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
1953 |
|
|
free_contents = NULL;
|
1954 |
|
|
|
1955 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
1956 |
|
|
free_extsyms = NULL;
|
1957 |
|
|
|
1958 |
|
|
/* Fix the opcode. */
|
1959 |
|
|
bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3);
|
1960 |
|
|
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
1961 |
|
|
|
1962 |
|
|
/* Fix the relocation's type. */
|
1963 |
|
|
irel->r_info
|
1964 |
|
|
= ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
1965 |
|
|
R_MN10300_8);
|
1966 |
|
|
|
1967 |
|
|
/* Delete two bytes of data. */
|
1968 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
1969 |
|
|
irel->r_offset + 1, 2))
|
1970 |
|
|
goto error_return;
|
1971 |
|
|
|
1972 |
|
|
/* That will change things, so, we should relax
|
1973 |
|
|
again. Note that this is not required, and it
|
1974 |
|
|
may be slow. */
|
1975 |
|
|
*again = true;
|
1976 |
|
|
break;
|
1977 |
|
|
}
|
1978 |
|
|
}
|
1979 |
|
|
|
1980 |
|
|
}
|
1981 |
|
|
}
|
1982 |
|
|
}
|
1983 |
|
|
|
1984 |
|
|
/* Try to turn a 32bit immediate, displacement or absolute address
|
1985 |
|
|
into a 16bit immediate, displacement or absolute address. */
|
1986 |
|
|
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32)
|
1987 |
|
|
{
|
1988 |
|
|
bfd_vma value = symval;
|
1989 |
|
|
value += irel->r_addend;
|
1990 |
|
|
|
1991 |
|
|
/* See if the value will fit in 24 bits.
|
1992 |
|
|
We allow any 16bit match here. We prune those we can't
|
1993 |
|
|
handle below. */
|
1994 |
|
|
if ((long)value < 0x7fffff && (long)value > -0x800000)
|
1995 |
|
|
{
|
1996 |
|
|
unsigned char code;
|
1997 |
|
|
|
1998 |
|
|
/* AM33 insns which have 32bit operands are 7 bytes long and
|
1999 |
|
|
will have 0xfe as the first byte. */
|
2000 |
|
|
|
2001 |
|
|
/* Get the first opcode. */
|
2002 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
|
2003 |
|
|
|
2004 |
|
|
if (code == 0xfe)
|
2005 |
|
|
{
|
2006 |
|
|
/* Get the second opcode. */
|
2007 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
2008 |
|
|
|
2009 |
|
|
/* All the am33 32 -> 24 relaxing possibilities. */
|
2010 |
|
|
/* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
|
2011 |
|
|
equivalent instructions exists. */
|
2012 |
|
|
if (code != 0x6b && code != 0x7b
|
2013 |
|
|
&& code != 0x8b && code != 0x9b
|
2014 |
|
|
&& ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
|
2015 |
|
|
|| (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
|
2016 |
|
|
|| (code & 0x0f) == 0x0e))
|
2017 |
|
|
{
|
2018 |
|
|
/* Not safe if the high bit is on as relaxing may
|
2019 |
|
|
move the value out of high mem and thus not fit
|
2020 |
|
|
in a signed 16bit value. This is currently over
|
2021 |
|
|
conservative. */
|
2022 |
|
|
if ((value & 0x8000) == 0)
|
2023 |
|
|
{
|
2024 |
|
|
/* Note that we've changed the relocation contents,
|
2025 |
|
|
etc. */
|
2026 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
2027 |
|
|
free_relocs = NULL;
|
2028 |
|
|
|
2029 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2030 |
|
|
free_contents = NULL;
|
2031 |
|
|
|
2032 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
2033 |
|
|
free_extsyms = NULL;
|
2034 |
|
|
|
2035 |
|
|
/* Fix the opcode. */
|
2036 |
|
|
bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3);
|
2037 |
|
|
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
2038 |
|
|
|
2039 |
|
|
/* Fix the relocation's type. */
|
2040 |
|
|
irel->r_info
|
2041 |
|
|
= ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
2042 |
|
|
R_MN10300_24);
|
2043 |
|
|
|
2044 |
|
|
/* Delete one byte of data. */
|
2045 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
2046 |
|
|
irel->r_offset + 3, 1))
|
2047 |
|
|
goto error_return;
|
2048 |
|
|
|
2049 |
|
|
/* That will change things, so, we should relax
|
2050 |
|
|
again. Note that this is not required, and it
|
2051 |
|
|
may be slow. */
|
2052 |
|
|
*again = true;
|
2053 |
|
|
break;
|
2054 |
|
|
}
|
2055 |
|
|
}
|
2056 |
|
|
|
2057 |
|
|
}
|
2058 |
|
|
}
|
2059 |
|
|
|
2060 |
|
|
/* See if the value will fit in 16 bits.
|
2061 |
|
|
We allow any 16bit match here. We prune those we can't
|
2062 |
|
|
handle below. */
|
2063 |
|
|
if ((long)value < 0x7fff && (long)value > -0x8000)
|
2064 |
|
|
{
|
2065 |
|
|
unsigned char code;
|
2066 |
|
|
|
2067 |
|
|
/* Most insns which have 32bit operands are 6 bytes long;
|
2068 |
|
|
exceptions are pcrel insns and bit insns.
|
2069 |
|
|
|
2070 |
|
|
We handle pcrel insns above. We don't bother trying
|
2071 |
|
|
to handle the bit insns here.
|
2072 |
|
|
|
2073 |
|
|
The first byte of the remaining insns will be 0xfc. */
|
2074 |
|
|
|
2075 |
|
|
/* Get the first opcode. */
|
2076 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
2077 |
|
|
|
2078 |
|
|
if (code != 0xfc)
|
2079 |
|
|
continue;
|
2080 |
|
|
|
2081 |
|
|
/* Get the second opcode. */
|
2082 |
|
|
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
2083 |
|
|
|
2084 |
|
|
if ((code & 0xf0) < 0x80)
|
2085 |
|
|
switch (code & 0xf0)
|
2086 |
|
|
{
|
2087 |
|
|
/* mov (d32,am),dn -> mov (d32,am),dn
|
2088 |
|
|
mov dm,(d32,am) -> mov dn,(d32,am)
|
2089 |
|
|
mov (d32,am),an -> mov (d32,am),an
|
2090 |
|
|
mov dm,(d32,am) -> mov dn,(d32,am)
|
2091 |
|
|
movbu (d32,am),dn -> movbu (d32,am),dn
|
2092 |
|
|
movbu dm,(d32,am) -> movbu dn,(d32,am)
|
2093 |
|
|
movhu (d32,am),dn -> movhu (d32,am),dn
|
2094 |
|
|
movhu dm,(d32,am) -> movhu dn,(d32,am) */
|
2095 |
|
|
case 0x00:
|
2096 |
|
|
case 0x10:
|
2097 |
|
|
case 0x20:
|
2098 |
|
|
case 0x30:
|
2099 |
|
|
case 0x40:
|
2100 |
|
|
case 0x50:
|
2101 |
|
|
case 0x60:
|
2102 |
|
|
case 0x70:
|
2103 |
|
|
/* Not safe if the high bit is on as relaxing may
|
2104 |
|
|
move the value out of high mem and thus not fit
|
2105 |
|
|
in a signed 16bit value. */
|
2106 |
|
|
if (code == 0xcc
|
2107 |
|
|
&& (value & 0x8000))
|
2108 |
|
|
continue;
|
2109 |
|
|
|
2110 |
|
|
/* Note that we've changed the relocation contents, etc. */
|
2111 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
2112 |
|
|
free_relocs = NULL;
|
2113 |
|
|
|
2114 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2115 |
|
|
free_contents = NULL;
|
2116 |
|
|
|
2117 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
2118 |
|
|
free_extsyms = NULL;
|
2119 |
|
|
|
2120 |
|
|
/* Fix the opcode. */
|
2121 |
|
|
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
2122 |
|
|
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
2123 |
|
|
|
2124 |
|
|
/* Fix the relocation's type. */
|
2125 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
2126 |
|
|
R_MN10300_16);
|
2127 |
|
|
|
2128 |
|
|
/* Delete two bytes of data. */
|
2129 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
2130 |
|
|
irel->r_offset + 2, 2))
|
2131 |
|
|
goto error_return;
|
2132 |
|
|
|
2133 |
|
|
/* That will change things, so, we should relax again.
|
2134 |
|
|
Note that this is not required, and it may be slow. */
|
2135 |
|
|
*again = true;
|
2136 |
|
|
break;
|
2137 |
|
|
}
|
2138 |
|
|
else if ((code & 0xf0) == 0x80
|
2139 |
|
|
|| (code & 0xf0) == 0x90)
|
2140 |
|
|
switch (code & 0xf3)
|
2141 |
|
|
{
|
2142 |
|
|
/* mov dn,(abs32) -> mov dn,(abs16)
|
2143 |
|
|
movbu dn,(abs32) -> movbu dn,(abs16)
|
2144 |
|
|
movhu dn,(abs32) -> movhu dn,(abs16) */
|
2145 |
|
|
case 0x81:
|
2146 |
|
|
case 0x82:
|
2147 |
|
|
case 0x83:
|
2148 |
|
|
/* Note that we've changed the relocation contents, etc. */
|
2149 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
2150 |
|
|
free_relocs = NULL;
|
2151 |
|
|
|
2152 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2153 |
|
|
free_contents = NULL;
|
2154 |
|
|
|
2155 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
2156 |
|
|
free_extsyms = NULL;
|
2157 |
|
|
|
2158 |
|
|
if ((code & 0xf3) == 0x81)
|
2159 |
|
|
code = 0x01 + (code & 0x0c);
|
2160 |
|
|
else if ((code & 0xf3) == 0x82)
|
2161 |
|
|
code = 0x02 + (code & 0x0c);
|
2162 |
|
|
else if ((code & 0xf3) == 0x83)
|
2163 |
|
|
code = 0x03 + (code & 0x0c);
|
2164 |
|
|
else
|
2165 |
|
|
abort ();
|
2166 |
|
|
|
2167 |
|
|
/* Fix the opcode. */
|
2168 |
|
|
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
2169 |
|
|
|
2170 |
|
|
/* Fix the relocation's type. */
|
2171 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
2172 |
|
|
R_MN10300_16);
|
2173 |
|
|
|
2174 |
|
|
/* The opcode got shorter too, so we have to fix the
|
2175 |
|
|
addend and offset too! */
|
2176 |
|
|
irel->r_offset -= 1;
|
2177 |
|
|
|
2178 |
|
|
/* Delete three bytes of data. */
|
2179 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
2180 |
|
|
irel->r_offset + 1, 3))
|
2181 |
|
|
goto error_return;
|
2182 |
|
|
|
2183 |
|
|
/* That will change things, so, we should relax again.
|
2184 |
|
|
Note that this is not required, and it may be slow. */
|
2185 |
|
|
*again = true;
|
2186 |
|
|
break;
|
2187 |
|
|
|
2188 |
|
|
/* mov am,(abs32) -> mov am,(abs16)
|
2189 |
|
|
mov am,(d32,sp) -> mov am,(d16,sp)
|
2190 |
|
|
mov dm,(d32,sp) -> mov dm,(d32,sp)
|
2191 |
|
|
movbu dm,(d32,sp) -> movbu dm,(d32,sp)
|
2192 |
|
|
movhu dm,(d32,sp) -> movhu dm,(d32,sp) */
|
2193 |
|
|
case 0x80:
|
2194 |
|
|
case 0x90:
|
2195 |
|
|
case 0x91:
|
2196 |
|
|
case 0x92:
|
2197 |
|
|
case 0x93:
|
2198 |
|
|
/* Note that we've changed the relocation contents, etc. */
|
2199 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
2200 |
|
|
free_relocs = NULL;
|
2201 |
|
|
|
2202 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2203 |
|
|
free_contents = NULL;
|
2204 |
|
|
|
2205 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
2206 |
|
|
free_extsyms = NULL;
|
2207 |
|
|
|
2208 |
|
|
/* Fix the opcode. */
|
2209 |
|
|
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
2210 |
|
|
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
2211 |
|
|
|
2212 |
|
|
/* Fix the relocation's type. */
|
2213 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
2214 |
|
|
R_MN10300_16);
|
2215 |
|
|
|
2216 |
|
|
/* Delete two bytes of data. */
|
2217 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
2218 |
|
|
irel->r_offset + 2, 2))
|
2219 |
|
|
goto error_return;
|
2220 |
|
|
|
2221 |
|
|
/* That will change things, so, we should relax again.
|
2222 |
|
|
Note that this is not required, and it may be slow. */
|
2223 |
|
|
*again = true;
|
2224 |
|
|
break;
|
2225 |
|
|
}
|
2226 |
|
|
else if ((code & 0xf0) < 0xf0)
|
2227 |
|
|
switch (code & 0xfc)
|
2228 |
|
|
{
|
2229 |
|
|
/* mov imm32,dn -> mov imm16,dn
|
2230 |
|
|
mov imm32,an -> mov imm16,an
|
2231 |
|
|
mov (abs32),dn -> mov (abs16),dn
|
2232 |
|
|
movbu (abs32),dn -> movbu (abs16),dn
|
2233 |
|
|
movhu (abs32),dn -> movhu (abs16),dn */
|
2234 |
|
|
case 0xcc:
|
2235 |
|
|
case 0xdc:
|
2236 |
|
|
case 0xa4:
|
2237 |
|
|
case 0xa8:
|
2238 |
|
|
case 0xac:
|
2239 |
|
|
/* Not safe if the high bit is on as relaxing may
|
2240 |
|
|
move the value out of high mem and thus not fit
|
2241 |
|
|
in a signed 16bit value. */
|
2242 |
|
|
if (code == 0xcc
|
2243 |
|
|
&& (value & 0x8000))
|
2244 |
|
|
continue;
|
2245 |
|
|
|
2246 |
|
|
/* Note that we've changed the relocation contents, etc. */
|
2247 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
2248 |
|
|
free_relocs = NULL;
|
2249 |
|
|
|
2250 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2251 |
|
|
free_contents = NULL;
|
2252 |
|
|
|
2253 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
2254 |
|
|
free_extsyms = NULL;
|
2255 |
|
|
|
2256 |
|
|
if ((code & 0xfc) == 0xcc)
|
2257 |
|
|
code = 0x2c + (code & 0x03);
|
2258 |
|
|
else if ((code & 0xfc) == 0xdc)
|
2259 |
|
|
code = 0x24 + (code & 0x03);
|
2260 |
|
|
else if ((code & 0xfc) == 0xa4)
|
2261 |
|
|
code = 0x30 + (code & 0x03);
|
2262 |
|
|
else if ((code & 0xfc) == 0xa8)
|
2263 |
|
|
code = 0x34 + (code & 0x03);
|
2264 |
|
|
else if ((code & 0xfc) == 0xac)
|
2265 |
|
|
code = 0x38 + (code & 0x03);
|
2266 |
|
|
else
|
2267 |
|
|
abort ();
|
2268 |
|
|
|
2269 |
|
|
/* Fix the opcode. */
|
2270 |
|
|
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
2271 |
|
|
|
2272 |
|
|
/* Fix the relocation's type. */
|
2273 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
2274 |
|
|
R_MN10300_16);
|
2275 |
|
|
|
2276 |
|
|
/* The opcode got shorter too, so we have to fix the
|
2277 |
|
|
addend and offset too! */
|
2278 |
|
|
irel->r_offset -= 1;
|
2279 |
|
|
|
2280 |
|
|
/* Delete three bytes of data. */
|
2281 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
2282 |
|
|
irel->r_offset + 1, 3))
|
2283 |
|
|
goto error_return;
|
2284 |
|
|
|
2285 |
|
|
/* That will change things, so, we should relax again.
|
2286 |
|
|
Note that this is not required, and it may be slow. */
|
2287 |
|
|
*again = true;
|
2288 |
|
|
break;
|
2289 |
|
|
|
2290 |
|
|
/* mov (abs32),an -> mov (abs16),an
|
2291 |
|
|
mov (d32,sp),an -> mov (d32,sp),an
|
2292 |
|
|
mov (d32,sp),dn -> mov (d32,sp),dn
|
2293 |
|
|
movbu (d32,sp),dn -> movbu (d32,sp),dn
|
2294 |
|
|
movhu (d32,sp),dn -> movhu (d32,sp),dn
|
2295 |
|
|
add imm32,dn -> add imm16,dn
|
2296 |
|
|
cmp imm32,dn -> cmp imm16,dn
|
2297 |
|
|
add imm32,an -> add imm16,an
|
2298 |
|
|
cmp imm32,an -> cmp imm16,an
|
2299 |
|
|
and imm32,dn -> and imm32,dn
|
2300 |
|
|
or imm32,dn -> or imm32,dn
|
2301 |
|
|
xor imm32,dn -> xor imm32,dn
|
2302 |
|
|
btst imm32,dn -> btst imm32,dn */
|
2303 |
|
|
|
2304 |
|
|
case 0xa0:
|
2305 |
|
|
case 0xb0:
|
2306 |
|
|
case 0xb1:
|
2307 |
|
|
case 0xb2:
|
2308 |
|
|
case 0xb3:
|
2309 |
|
|
case 0xc0:
|
2310 |
|
|
case 0xc8:
|
2311 |
|
|
|
2312 |
|
|
case 0xd0:
|
2313 |
|
|
case 0xd8:
|
2314 |
|
|
case 0xe0:
|
2315 |
|
|
case 0xe1:
|
2316 |
|
|
case 0xe2:
|
2317 |
|
|
case 0xe3:
|
2318 |
|
|
/* Note that we've changed the relocation contents, etc. */
|
2319 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
2320 |
|
|
free_relocs = NULL;
|
2321 |
|
|
|
2322 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2323 |
|
|
free_contents = NULL;
|
2324 |
|
|
|
2325 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
2326 |
|
|
free_extsyms = NULL;
|
2327 |
|
|
|
2328 |
|
|
/* Fix the opcode. */
|
2329 |
|
|
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
2330 |
|
|
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
2331 |
|
|
|
2332 |
|
|
/* Fix the relocation's type. */
|
2333 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
2334 |
|
|
R_MN10300_16);
|
2335 |
|
|
|
2336 |
|
|
/* Delete two bytes of data. */
|
2337 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
2338 |
|
|
irel->r_offset + 2, 2))
|
2339 |
|
|
goto error_return;
|
2340 |
|
|
|
2341 |
|
|
/* That will change things, so, we should relax again.
|
2342 |
|
|
Note that this is not required, and it may be slow. */
|
2343 |
|
|
*again = true;
|
2344 |
|
|
break;
|
2345 |
|
|
}
|
2346 |
|
|
else if (code == 0xfe)
|
2347 |
|
|
{
|
2348 |
|
|
/* add imm32,sp -> add imm16,sp */
|
2349 |
|
|
|
2350 |
|
|
/* Note that we've changed the relocation contents, etc. */
|
2351 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
2352 |
|
|
free_relocs = NULL;
|
2353 |
|
|
|
2354 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2355 |
|
|
free_contents = NULL;
|
2356 |
|
|
|
2357 |
|
|
symtab_hdr->contents = (bfd_byte *) extsyms;
|
2358 |
|
|
free_extsyms = NULL;
|
2359 |
|
|
|
2360 |
|
|
/* Fix the opcode. */
|
2361 |
|
|
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
2362 |
|
|
bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1);
|
2363 |
|
|
|
2364 |
|
|
/* Fix the relocation's type. */
|
2365 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
2366 |
|
|
R_MN10300_16);
|
2367 |
|
|
|
2368 |
|
|
/* Delete two bytes of data. */
|
2369 |
|
|
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
2370 |
|
|
irel->r_offset + 2, 2))
|
2371 |
|
|
goto error_return;
|
2372 |
|
|
|
2373 |
|
|
/* That will change things, so, we should relax again.
|
2374 |
|
|
Note that this is not required, and it may be slow. */
|
2375 |
|
|
*again = true;
|
2376 |
|
|
break;
|
2377 |
|
|
}
|
2378 |
|
|
}
|
2379 |
|
|
}
|
2380 |
|
|
}
|
2381 |
|
|
|
2382 |
|
|
if (free_relocs != NULL)
|
2383 |
|
|
{
|
2384 |
|
|
free (free_relocs);
|
2385 |
|
|
free_relocs = NULL;
|
2386 |
|
|
}
|
2387 |
|
|
|
2388 |
|
|
if (free_contents != NULL)
|
2389 |
|
|
{
|
2390 |
|
|
if (! link_info->keep_memory)
|
2391 |
|
|
free (free_contents);
|
2392 |
|
|
else
|
2393 |
|
|
{
|
2394 |
|
|
/* Cache the section contents for elf_link_input_bfd. */
|
2395 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
2396 |
|
|
}
|
2397 |
|
|
free_contents = NULL;
|
2398 |
|
|
}
|
2399 |
|
|
|
2400 |
|
|
if (free_extsyms != NULL)
|
2401 |
|
|
{
|
2402 |
|
|
if (! link_info->keep_memory)
|
2403 |
|
|
free (free_extsyms);
|
2404 |
|
|
else
|
2405 |
|
|
{
|
2406 |
|
|
/* Cache the symbols for elf_link_input_bfd. */
|
2407 |
|
|
symtab_hdr->contents = extsyms;
|
2408 |
|
|
}
|
2409 |
|
|
free_extsyms = NULL;
|
2410 |
|
|
}
|
2411 |
|
|
|
2412 |
|
|
return true;
|
2413 |
|
|
|
2414 |
|
|
error_return:
|
2415 |
|
|
if (free_relocs != NULL)
|
2416 |
|
|
free (free_relocs);
|
2417 |
|
|
if (free_contents != NULL)
|
2418 |
|
|
free (free_contents);
|
2419 |
|
|
if (free_extsyms != NULL)
|
2420 |
|
|
free (free_extsyms);
|
2421 |
|
|
return false;
|
2422 |
|
|
}
|
2423 |
|
|
|
2424 |
|
|
/* Compute the stack size and movm arguments for the function
|
2425 |
|
|
referred to by HASH at address ADDR in section with
|
2426 |
|
|
contents CONTENTS, store the information in the hash table. */
|
2427 |
|
|
static void
|
2428 |
|
|
compute_function_info (abfd, hash, addr, contents)
|
2429 |
|
|
bfd *abfd;
|
2430 |
|
|
struct elf32_mn10300_link_hash_entry *hash;
|
2431 |
|
|
bfd_vma addr;
|
2432 |
|
|
unsigned char *contents;
|
2433 |
|
|
{
|
2434 |
|
|
unsigned char byte1, byte2;
|
2435 |
|
|
/* We only care about a very small subset of the possible prologue
|
2436 |
|
|
sequences here. Basically we look for:
|
2437 |
|
|
|
2438 |
|
|
movm [d2,d3,a2,a3],sp (optional)
|
2439 |
|
|
add <size>,sp (optional, and only for sizes which fit in an unsigned
|
2440 |
|
|
8 bit number)
|
2441 |
|
|
|
2442 |
|
|
If we find anything else, we quit. */
|
2443 |
|
|
|
2444 |
|
|
/* Look for movm [regs],sp */
|
2445 |
|
|
byte1 = bfd_get_8 (abfd, contents + addr);
|
2446 |
|
|
byte2 = bfd_get_8 (abfd, contents + addr + 1);
|
2447 |
|
|
|
2448 |
|
|
if (byte1 == 0xcf)
|
2449 |
|
|
{
|
2450 |
|
|
hash->movm_args = byte2;
|
2451 |
|
|
addr += 2;
|
2452 |
|
|
byte1 = bfd_get_8 (abfd, contents + addr);
|
2453 |
|
|
byte2 = bfd_get_8 (abfd, contents + addr + 1);
|
2454 |
|
|
}
|
2455 |
|
|
|
2456 |
|
|
/* Now figure out how much stack space will be allocated by the movm
|
2457 |
|
|
instruction. We need this kept separate from the funtion's normal
|
2458 |
|
|
stack space. */
|
2459 |
|
|
if (hash->movm_args)
|
2460 |
|
|
{
|
2461 |
|
|
/* Space for d2. */
|
2462 |
|
|
if (hash->movm_args & 0x80)
|
2463 |
|
|
hash->movm_stack_size += 4;
|
2464 |
|
|
|
2465 |
|
|
/* Space for d3. */
|
2466 |
|
|
if (hash->movm_args & 0x40)
|
2467 |
|
|
hash->movm_stack_size += 4;
|
2468 |
|
|
|
2469 |
|
|
/* Space for a2. */
|
2470 |
|
|
if (hash->movm_args & 0x20)
|
2471 |
|
|
hash->movm_stack_size += 4;
|
2472 |
|
|
|
2473 |
|
|
/* Space for a3. */
|
2474 |
|
|
if (hash->movm_args & 0x10)
|
2475 |
|
|
hash->movm_stack_size += 4;
|
2476 |
|
|
|
2477 |
|
|
/* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */
|
2478 |
|
|
if (hash->movm_args & 0x08)
|
2479 |
|
|
hash->movm_stack_size += 8 * 4;
|
2480 |
|
|
|
2481 |
|
|
if (bfd_get_mach (abfd) == bfd_mach_am33)
|
2482 |
|
|
{
|
2483 |
|
|
/* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */
|
2484 |
|
|
if (hash->movm_args & 0x1)
|
2485 |
|
|
hash->movm_stack_size += 6 * 4;
|
2486 |
|
|
|
2487 |
|
|
/* exreg1 space. e4, e5, e6, e7 */
|
2488 |
|
|
if (hash->movm_args & 0x2)
|
2489 |
|
|
hash->movm_stack_size += 4 * 4;
|
2490 |
|
|
|
2491 |
|
|
/* exreg0 space. e2, e3 */
|
2492 |
|
|
if (hash->movm_args & 0x4)
|
2493 |
|
|
hash->movm_stack_size += 2 * 4;
|
2494 |
|
|
}
|
2495 |
|
|
}
|
2496 |
|
|
|
2497 |
|
|
/* Now look for the two stack adjustment variants. */
|
2498 |
|
|
if (byte1 == 0xf8 && byte2 == 0xfe)
|
2499 |
|
|
{
|
2500 |
|
|
int temp = bfd_get_8 (abfd, contents + addr + 2);
|
2501 |
|
|
temp = ((temp & 0xff) ^ (~0x7f)) + 0x80;
|
2502 |
|
|
|
2503 |
|
|
hash->stack_size = -temp;
|
2504 |
|
|
}
|
2505 |
|
|
else if (byte1 == 0xfa && byte2 == 0xfe)
|
2506 |
|
|
{
|
2507 |
|
|
int temp = bfd_get_16 (abfd, contents + addr + 2);
|
2508 |
|
|
temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000;
|
2509 |
|
|
temp = -temp;
|
2510 |
|
|
|
2511 |
|
|
if (temp < 255)
|
2512 |
|
|
hash->stack_size = temp;
|
2513 |
|
|
}
|
2514 |
|
|
|
2515 |
|
|
/* If the total stack to be allocated by the call instruction is more
|
2516 |
|
|
than 255 bytes, then we can't remove the stack adjustment by using
|
2517 |
|
|
"call" (we might still be able to remove the "movm" instruction. */
|
2518 |
|
|
if (hash->stack_size + hash->movm_stack_size > 255)
|
2519 |
|
|
hash->stack_size = 0;
|
2520 |
|
|
|
2521 |
|
|
return;
|
2522 |
|
|
}
|
2523 |
|
|
|
2524 |
|
|
/* Delete some bytes from a section while relaxing. */
|
2525 |
|
|
|
2526 |
|
|
static boolean
|
2527 |
|
|
mn10300_elf_relax_delete_bytes (abfd, sec, addr, count)
|
2528 |
|
|
bfd *abfd;
|
2529 |
|
|
asection *sec;
|
2530 |
|
|
bfd_vma addr;
|
2531 |
|
|
int count;
|
2532 |
|
|
{
|
2533 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2534 |
|
|
Elf32_External_Sym *extsyms;
|
2535 |
|
|
int shndx, index;
|
2536 |
|
|
bfd_byte *contents;
|
2537 |
|
|
Elf_Internal_Rela *irel, *irelend;
|
2538 |
|
|
Elf_Internal_Rela *irelalign;
|
2539 |
|
|
bfd_vma toaddr;
|
2540 |
|
|
Elf32_External_Sym *esym, *esymend;
|
2541 |
|
|
struct elf32_mn10300_link_hash_entry *sym_hash;
|
2542 |
|
|
|
2543 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
2544 |
|
|
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
2545 |
|
|
|
2546 |
|
|
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
2547 |
|
|
|
2548 |
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
2549 |
|
|
|
2550 |
|
|
/* The deletion must stop at the next ALIGN reloc for an aligment
|
2551 |
|
|
power larger than the number of bytes we are deleting. */
|
2552 |
|
|
|
2553 |
|
|
irelalign = NULL;
|
2554 |
|
|
toaddr = sec->_cooked_size;
|
2555 |
|
|
|
2556 |
|
|
irel = elf_section_data (sec)->relocs;
|
2557 |
|
|
irelend = irel + sec->reloc_count;
|
2558 |
|
|
|
2559 |
|
|
/* Actually delete the bytes. */
|
2560 |
|
|
memmove (contents + addr, contents + addr + count, toaddr - addr - count);
|
2561 |
|
|
sec->_cooked_size -= count;
|
2562 |
|
|
|
2563 |
|
|
/* Adjust all the relocs. */
|
2564 |
|
|
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
|
2565 |
|
|
{
|
2566 |
|
|
/* Get the new reloc address. */
|
2567 |
|
|
if ((irel->r_offset > addr
|
2568 |
|
|
&& irel->r_offset < toaddr))
|
2569 |
|
|
irel->r_offset -= count;
|
2570 |
|
|
}
|
2571 |
|
|
|
2572 |
|
|
/* Adjust the local symbols defined in this section. */
|
2573 |
|
|
esym = extsyms;
|
2574 |
|
|
esymend = esym + symtab_hdr->sh_info;
|
2575 |
|
|
for (; esym < esymend; esym++)
|
2576 |
|
|
{
|
2577 |
|
|
Elf_Internal_Sym isym;
|
2578 |
|
|
|
2579 |
|
|
bfd_elf32_swap_symbol_in (abfd, esym, &isym);
|
2580 |
|
|
|
2581 |
|
|
if (isym.st_shndx == shndx
|
2582 |
|
|
&& isym.st_value > addr
|
2583 |
|
|
&& isym.st_value < toaddr)
|
2584 |
|
|
{
|
2585 |
|
|
isym.st_value -= count;
|
2586 |
|
|
bfd_elf32_swap_symbol_out (abfd, &isym, esym);
|
2587 |
|
|
}
|
2588 |
|
|
}
|
2589 |
|
|
|
2590 |
|
|
/* Now adjust the global symbols defined in this section. */
|
2591 |
|
|
esym = extsyms + symtab_hdr->sh_info;
|
2592 |
|
|
esymend = extsyms + (symtab_hdr->sh_size / sizeof (Elf32_External_Sym));
|
2593 |
|
|
for (index = 0; esym < esymend; esym++, index++)
|
2594 |
|
|
{
|
2595 |
|
|
Elf_Internal_Sym isym;
|
2596 |
|
|
|
2597 |
|
|
bfd_elf32_swap_symbol_in (abfd, esym, &isym);
|
2598 |
|
|
sym_hash = (struct elf32_mn10300_link_hash_entry *)
|
2599 |
|
|
(elf_sym_hashes (abfd)[index]);
|
2600 |
|
|
if (isym.st_shndx == shndx
|
2601 |
|
|
&& ((sym_hash)->root.root.type == bfd_link_hash_defined
|
2602 |
|
|
|| (sym_hash)->root.root.type == bfd_link_hash_defweak)
|
2603 |
|
|
&& (sym_hash)->root.root.u.def.section == sec
|
2604 |
|
|
&& (sym_hash)->root.root.u.def.value > addr
|
2605 |
|
|
&& (sym_hash)->root.root.u.def.value < toaddr)
|
2606 |
|
|
{
|
2607 |
|
|
(sym_hash)->root.root.u.def.value -= count;
|
2608 |
|
|
}
|
2609 |
|
|
}
|
2610 |
|
|
|
2611 |
|
|
return true;
|
2612 |
|
|
}
|
2613 |
|
|
|
2614 |
|
|
/* Return true if a symbol exists at the given address, else return
|
2615 |
|
|
false. */
|
2616 |
|
|
static boolean
|
2617 |
|
|
mn10300_elf_symbol_address_p (abfd, sec, extsyms, addr)
|
2618 |
|
|
bfd *abfd;
|
2619 |
|
|
asection *sec;
|
2620 |
|
|
Elf32_External_Sym *extsyms;
|
2621 |
|
|
bfd_vma addr;
|
2622 |
|
|
{
|
2623 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2624 |
|
|
int shndx;
|
2625 |
|
|
Elf32_External_Sym *esym, *esymend;
|
2626 |
|
|
struct elf32_mn10300_link_hash_entry **sym_hash, **sym_hash_end;
|
2627 |
|
|
|
2628 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
2629 |
|
|
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
2630 |
|
|
|
2631 |
|
|
/* Examine all the symbols. */
|
2632 |
|
|
esym = extsyms;
|
2633 |
|
|
esymend = esym + symtab_hdr->sh_info;
|
2634 |
|
|
for (; esym < esymend; esym++)
|
2635 |
|
|
{
|
2636 |
|
|
Elf_Internal_Sym isym;
|
2637 |
|
|
|
2638 |
|
|
bfd_elf32_swap_symbol_in (abfd, esym, &isym);
|
2639 |
|
|
|
2640 |
|
|
if (isym.st_shndx == shndx
|
2641 |
|
|
&& isym.st_value == addr)
|
2642 |
|
|
return true;
|
2643 |
|
|
}
|
2644 |
|
|
|
2645 |
|
|
sym_hash = (struct elf32_mn10300_link_hash_entry **)(elf_sym_hashes (abfd));
|
2646 |
|
|
sym_hash_end = (sym_hash
|
2647 |
|
|
+ (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
2648 |
|
|
- symtab_hdr->sh_info));
|
2649 |
|
|
for (; sym_hash < sym_hash_end; sym_hash++)
|
2650 |
|
|
{
|
2651 |
|
|
if (((*sym_hash)->root.root.type == bfd_link_hash_defined
|
2652 |
|
|
|| (*sym_hash)->root.root.type == bfd_link_hash_defweak)
|
2653 |
|
|
&& (*sym_hash)->root.root.u.def.section == sec
|
2654 |
|
|
&& (*sym_hash)->root.root.u.def.value == addr)
|
2655 |
|
|
return true;
|
2656 |
|
|
}
|
2657 |
|
|
return false;
|
2658 |
|
|
}
|
2659 |
|
|
|
2660 |
|
|
/* This is a version of bfd_generic_get_relocated_section_contents
|
2661 |
|
|
which uses mn10300_elf_relocate_section. */
|
2662 |
|
|
|
2663 |
|
|
static bfd_byte *
|
2664 |
|
|
mn10300_elf_get_relocated_section_contents (output_bfd, link_info, link_order,
|
2665 |
|
|
data, relocateable, symbols)
|
2666 |
|
|
bfd *output_bfd;
|
2667 |
|
|
struct bfd_link_info *link_info;
|
2668 |
|
|
struct bfd_link_order *link_order;
|
2669 |
|
|
bfd_byte *data;
|
2670 |
|
|
boolean relocateable;
|
2671 |
|
|
asymbol **symbols;
|
2672 |
|
|
{
|
2673 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2674 |
|
|
asection *input_section = link_order->u.indirect.section;
|
2675 |
|
|
bfd *input_bfd = input_section->owner;
|
2676 |
|
|
asection **sections = NULL;
|
2677 |
|
|
Elf_Internal_Rela *internal_relocs = NULL;
|
2678 |
|
|
Elf32_External_Sym *external_syms = NULL;
|
2679 |
|
|
Elf_Internal_Sym *internal_syms = NULL;
|
2680 |
|
|
|
2681 |
|
|
/* We only need to handle the case of relaxing, or of having a
|
2682 |
|
|
particular set of section contents, specially. */
|
2683 |
|
|
if (relocateable
|
2684 |
|
|
|| elf_section_data (input_section)->this_hdr.contents == NULL)
|
2685 |
|
|
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
|
2686 |
|
|
link_order, data,
|
2687 |
|
|
relocateable,
|
2688 |
|
|
symbols);
|
2689 |
|
|
|
2690 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
2691 |
|
|
|
2692 |
|
|
memcpy (data, elf_section_data (input_section)->this_hdr.contents,
|
2693 |
|
|
input_section->_raw_size);
|
2694 |
|
|
|
2695 |
|
|
if ((input_section->flags & SEC_RELOC) != 0
|
2696 |
|
|
&& input_section->reloc_count > 0)
|
2697 |
|
|
{
|
2698 |
|
|
Elf_Internal_Sym *isymp;
|
2699 |
|
|
asection **secpp;
|
2700 |
|
|
Elf32_External_Sym *esym, *esymend;
|
2701 |
|
|
|
2702 |
|
|
if (symtab_hdr->contents != NULL)
|
2703 |
|
|
external_syms = (Elf32_External_Sym *) symtab_hdr->contents;
|
2704 |
|
|
else
|
2705 |
|
|
{
|
2706 |
|
|
external_syms = ((Elf32_External_Sym *)
|
2707 |
|
|
bfd_malloc (symtab_hdr->sh_info
|
2708 |
|
|
* sizeof (Elf32_External_Sym)));
|
2709 |
|
|
if (external_syms == NULL && symtab_hdr->sh_info > 0)
|
2710 |
|
|
goto error_return;
|
2711 |
|
|
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
2712 |
|
|
|| (bfd_read (external_syms, sizeof (Elf32_External_Sym),
|
2713 |
|
|
symtab_hdr->sh_info, input_bfd)
|
2714 |
|
|
!= (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
|
2715 |
|
|
goto error_return;
|
2716 |
|
|
}
|
2717 |
|
|
|
2718 |
|
|
internal_relocs = (_bfd_elf32_link_read_relocs
|
2719 |
|
|
(input_bfd, input_section, (PTR) NULL,
|
2720 |
|
|
(Elf_Internal_Rela *) NULL, false));
|
2721 |
|
|
if (internal_relocs == NULL)
|
2722 |
|
|
goto error_return;
|
2723 |
|
|
|
2724 |
|
|
internal_syms = ((Elf_Internal_Sym *)
|
2725 |
|
|
bfd_malloc (symtab_hdr->sh_info
|
2726 |
|
|
* sizeof (Elf_Internal_Sym)));
|
2727 |
|
|
if (internal_syms == NULL && symtab_hdr->sh_info > 0)
|
2728 |
|
|
goto error_return;
|
2729 |
|
|
|
2730 |
|
|
sections = (asection **) bfd_malloc (symtab_hdr->sh_info
|
2731 |
|
|
* sizeof (asection *));
|
2732 |
|
|
if (sections == NULL && symtab_hdr->sh_info > 0)
|
2733 |
|
|
goto error_return;
|
2734 |
|
|
|
2735 |
|
|
isymp = internal_syms;
|
2736 |
|
|
secpp = sections;
|
2737 |
|
|
esym = external_syms;
|
2738 |
|
|
esymend = esym + symtab_hdr->sh_info;
|
2739 |
|
|
for (; esym < esymend; ++esym, ++isymp, ++secpp)
|
2740 |
|
|
{
|
2741 |
|
|
asection *isec;
|
2742 |
|
|
|
2743 |
|
|
bfd_elf32_swap_symbol_in (input_bfd, esym, isymp);
|
2744 |
|
|
|
2745 |
|
|
if (isymp->st_shndx == SHN_UNDEF)
|
2746 |
|
|
isec = bfd_und_section_ptr;
|
2747 |
|
|
else if (isymp->st_shndx > 0 && isymp->st_shndx < SHN_LORESERVE)
|
2748 |
|
|
isec = bfd_section_from_elf_index (input_bfd, isymp->st_shndx);
|
2749 |
|
|
else if (isymp->st_shndx == SHN_ABS)
|
2750 |
|
|
isec = bfd_abs_section_ptr;
|
2751 |
|
|
else if (isymp->st_shndx == SHN_COMMON)
|
2752 |
|
|
isec = bfd_com_section_ptr;
|
2753 |
|
|
else
|
2754 |
|
|
{
|
2755 |
|
|
/* Who knows? */
|
2756 |
|
|
isec = NULL;
|
2757 |
|
|
}
|
2758 |
|
|
|
2759 |
|
|
*secpp = isec;
|
2760 |
|
|
}
|
2761 |
|
|
|
2762 |
|
|
if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd,
|
2763 |
|
|
input_section, data, internal_relocs,
|
2764 |
|
|
internal_syms, sections))
|
2765 |
|
|
goto error_return;
|
2766 |
|
|
|
2767 |
|
|
if (sections != NULL)
|
2768 |
|
|
free (sections);
|
2769 |
|
|
sections = NULL;
|
2770 |
|
|
if (internal_syms != NULL)
|
2771 |
|
|
free (internal_syms);
|
2772 |
|
|
internal_syms = NULL;
|
2773 |
|
|
if (external_syms != NULL && symtab_hdr->contents == NULL)
|
2774 |
|
|
free (external_syms);
|
2775 |
|
|
external_syms = NULL;
|
2776 |
|
|
if (internal_relocs != elf_section_data (input_section)->relocs)
|
2777 |
|
|
free (internal_relocs);
|
2778 |
|
|
internal_relocs = NULL;
|
2779 |
|
|
}
|
2780 |
|
|
|
2781 |
|
|
return data;
|
2782 |
|
|
|
2783 |
|
|
error_return:
|
2784 |
|
|
if (internal_relocs != NULL
|
2785 |
|
|
&& internal_relocs != elf_section_data (input_section)->relocs)
|
2786 |
|
|
free (internal_relocs);
|
2787 |
|
|
if (external_syms != NULL && symtab_hdr->contents == NULL)
|
2788 |
|
|
free (external_syms);
|
2789 |
|
|
if (internal_syms != NULL)
|
2790 |
|
|
free (internal_syms);
|
2791 |
|
|
if (sections != NULL)
|
2792 |
|
|
free (sections);
|
2793 |
|
|
return NULL;
|
2794 |
|
|
}
|
2795 |
|
|
|
2796 |
|
|
/* Assorted hash table functions. */
|
2797 |
|
|
|
2798 |
|
|
/* Initialize an entry in the link hash table. */
|
2799 |
|
|
|
2800 |
|
|
/* Create an entry in an MN10300 ELF linker hash table. */
|
2801 |
|
|
|
2802 |
|
|
static struct bfd_hash_entry *
|
2803 |
|
|
elf32_mn10300_link_hash_newfunc (entry, table, string)
|
2804 |
|
|
struct bfd_hash_entry *entry;
|
2805 |
|
|
struct bfd_hash_table *table;
|
2806 |
|
|
const char *string;
|
2807 |
|
|
{
|
2808 |
|
|
struct elf32_mn10300_link_hash_entry *ret =
|
2809 |
|
|
(struct elf32_mn10300_link_hash_entry *) entry;
|
2810 |
|
|
|
2811 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
2812 |
|
|
subclass. */
|
2813 |
|
|
if (ret == (struct elf32_mn10300_link_hash_entry *) NULL)
|
2814 |
|
|
ret = ((struct elf32_mn10300_link_hash_entry *)
|
2815 |
|
|
bfd_hash_allocate (table,
|
2816 |
|
|
sizeof (struct elf32_mn10300_link_hash_entry)));
|
2817 |
|
|
if (ret == (struct elf32_mn10300_link_hash_entry *) NULL)
|
2818 |
|
|
return (struct bfd_hash_entry *) ret;
|
2819 |
|
|
|
2820 |
|
|
/* Call the allocation method of the superclass. */
|
2821 |
|
|
ret = ((struct elf32_mn10300_link_hash_entry *)
|
2822 |
|
|
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
2823 |
|
|
table, string));
|
2824 |
|
|
if (ret != (struct elf32_mn10300_link_hash_entry *) NULL)
|
2825 |
|
|
{
|
2826 |
|
|
ret->direct_calls = 0;
|
2827 |
|
|
ret->stack_size = 0;
|
2828 |
|
|
ret->movm_stack_size = 0;
|
2829 |
|
|
ret->flags = 0;
|
2830 |
|
|
ret->movm_args = 0;
|
2831 |
|
|
}
|
2832 |
|
|
|
2833 |
|
|
return (struct bfd_hash_entry *) ret;
|
2834 |
|
|
}
|
2835 |
|
|
|
2836 |
|
|
/* Create an mn10300 ELF linker hash table. */
|
2837 |
|
|
|
2838 |
|
|
static struct bfd_link_hash_table *
|
2839 |
|
|
elf32_mn10300_link_hash_table_create (abfd)
|
2840 |
|
|
bfd *abfd;
|
2841 |
|
|
{
|
2842 |
|
|
struct elf32_mn10300_link_hash_table *ret;
|
2843 |
|
|
|
2844 |
|
|
ret = ((struct elf32_mn10300_link_hash_table *)
|
2845 |
|
|
bfd_alloc (abfd, sizeof (struct elf32_mn10300_link_hash_table)));
|
2846 |
|
|
if (ret == (struct elf32_mn10300_link_hash_table *) NULL)
|
2847 |
|
|
return NULL;
|
2848 |
|
|
|
2849 |
|
|
if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
|
2850 |
|
|
elf32_mn10300_link_hash_newfunc))
|
2851 |
|
|
{
|
2852 |
|
|
bfd_release (abfd, ret);
|
2853 |
|
|
return NULL;
|
2854 |
|
|
}
|
2855 |
|
|
|
2856 |
|
|
ret->flags = 0;
|
2857 |
|
|
ret->static_hash_table
|
2858 |
|
|
= ((struct elf32_mn10300_link_hash_table *)
|
2859 |
|
|
bfd_alloc (abfd, sizeof (struct elf_link_hash_table)));
|
2860 |
|
|
if (ret->static_hash_table == NULL)
|
2861 |
|
|
{
|
2862 |
|
|
bfd_release (abfd, ret);
|
2863 |
|
|
return NULL;
|
2864 |
|
|
}
|
2865 |
|
|
|
2866 |
|
|
if (! _bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd,
|
2867 |
|
|
elf32_mn10300_link_hash_newfunc))
|
2868 |
|
|
{
|
2869 |
|
|
bfd_release (abfd, ret->static_hash_table);
|
2870 |
|
|
bfd_release (abfd, ret);
|
2871 |
|
|
return NULL;
|
2872 |
|
|
}
|
2873 |
|
|
return &ret->root.root;
|
2874 |
|
|
}
|
2875 |
|
|
|
2876 |
|
|
static int
|
2877 |
|
|
elf_mn10300_mach (flags)
|
2878 |
|
|
flagword flags;
|
2879 |
|
|
{
|
2880 |
|
|
switch (flags & EF_MN10300_MACH)
|
2881 |
|
|
{
|
2882 |
|
|
case E_MN10300_MACH_MN10300:
|
2883 |
|
|
default:
|
2884 |
|
|
return bfd_mach_mn10300;
|
2885 |
|
|
|
2886 |
|
|
case E_MN10300_MACH_AM33:
|
2887 |
|
|
return bfd_mach_am33;
|
2888 |
|
|
}
|
2889 |
|
|
}
|
2890 |
|
|
|
2891 |
|
|
/* The final processing done just before writing out a MN10300 ELF object
|
2892 |
|
|
file. This gets the MN10300 architecture right based on the machine
|
2893 |
|
|
number. */
|
2894 |
|
|
|
2895 |
|
|
/*ARGSUSED*/
|
2896 |
|
|
void
|
2897 |
|
|
_bfd_mn10300_elf_final_write_processing (abfd, linker)
|
2898 |
|
|
bfd *abfd;
|
2899 |
|
|
boolean linker ATTRIBUTE_UNUSED;
|
2900 |
|
|
{
|
2901 |
|
|
unsigned long val;
|
2902 |
|
|
|
2903 |
|
|
switch (bfd_get_mach (abfd))
|
2904 |
|
|
{
|
2905 |
|
|
default:
|
2906 |
|
|
case bfd_mach_mn10300:
|
2907 |
|
|
val = E_MN10300_MACH_MN10300;
|
2908 |
|
|
break;
|
2909 |
|
|
|
2910 |
|
|
case bfd_mach_am33:
|
2911 |
|
|
val = E_MN10300_MACH_AM33;
|
2912 |
|
|
break;
|
2913 |
|
|
}
|
2914 |
|
|
|
2915 |
|
|
elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH);
|
2916 |
|
|
elf_elfheader (abfd)->e_flags |= val;
|
2917 |
|
|
}
|
2918 |
|
|
|
2919 |
|
|
boolean
|
2920 |
|
|
_bfd_mn10300_elf_object_p (abfd)
|
2921 |
|
|
bfd *abfd;
|
2922 |
|
|
{
|
2923 |
|
|
bfd_default_set_arch_mach (abfd, bfd_arch_mn10300,
|
2924 |
|
|
elf_mn10300_mach (elf_elfheader (abfd)->e_flags));
|
2925 |
|
|
return true;
|
2926 |
|
|
}
|
2927 |
|
|
|
2928 |
|
|
/* Merge backend specific data from an object file to the output
|
2929 |
|
|
object file when linking. */
|
2930 |
|
|
|
2931 |
|
|
boolean
|
2932 |
|
|
_bfd_mn10300_elf_merge_private_bfd_data (ibfd, obfd)
|
2933 |
|
|
bfd *ibfd;
|
2934 |
|
|
bfd *obfd;
|
2935 |
|
|
{
|
2936 |
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
2937 |
|
|
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
2938 |
|
|
return true;
|
2939 |
|
|
|
2940 |
|
|
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
2941 |
|
|
&& bfd_get_mach (obfd) < bfd_get_mach (ibfd))
|
2942 |
|
|
{
|
2943 |
|
|
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
2944 |
|
|
bfd_get_mach (ibfd)))
|
2945 |
|
|
return false;
|
2946 |
|
|
}
|
2947 |
|
|
|
2948 |
|
|
return true;
|
2949 |
|
|
}
|
2950 |
|
|
|
2951 |
|
|
|
2952 |
|
|
#define TARGET_LITTLE_SYM bfd_elf32_mn10300_vec
|
2953 |
|
|
#define TARGET_LITTLE_NAME "elf32-mn10300"
|
2954 |
|
|
#define ELF_ARCH bfd_arch_mn10300
|
2955 |
|
|
#define ELF_MACHINE_CODE EM_CYGNUS_MN10300
|
2956 |
|
|
#define ELF_MAXPAGESIZE 0x1000
|
2957 |
|
|
|
2958 |
|
|
#define elf_info_to_howto mn10300_info_to_howto
|
2959 |
|
|
#define elf_info_to_howto_rel 0
|
2960 |
|
|
#define elf_backend_can_gc_sections 1
|
2961 |
|
|
#define elf_backend_check_relocs mn10300_elf_check_relocs
|
2962 |
|
|
#define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook
|
2963 |
|
|
#define elf_backend_relocate_section mn10300_elf_relocate_section
|
2964 |
|
|
#define bfd_elf32_bfd_relax_section mn10300_elf_relax_section
|
2965 |
|
|
#define bfd_elf32_bfd_get_relocated_section_contents \
|
2966 |
|
|
mn10300_elf_get_relocated_section_contents
|
2967 |
|
|
#define bfd_elf32_bfd_link_hash_table_create \
|
2968 |
|
|
elf32_mn10300_link_hash_table_create
|
2969 |
|
|
|
2970 |
|
|
#define elf_symbol_leading_char '_'
|
2971 |
|
|
|
2972 |
|
|
/* So we can set bits in e_flags. */
|
2973 |
|
|
#define elf_backend_final_write_processing \
|
2974 |
|
|
_bfd_mn10300_elf_final_write_processing
|
2975 |
|
|
#define elf_backend_object_p _bfd_mn10300_elf_object_p
|
2976 |
|
|
|
2977 |
|
|
#define bfd_elf32_bfd_merge_private_bfd_data \
|
2978 |
|
|
_bfd_mn10300_elf_merge_private_bfd_data
|
2979 |
|
|
|
2980 |
|
|
|
2981 |
|
|
#include "elf32-target.h"
|