1 |
104 |
markom |
/* ELF linker support.
|
2 |
|
|
Copyright 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
19 |
|
|
|
20 |
|
|
/* ELF linker code. */
|
21 |
|
|
|
22 |
|
|
/* This struct is used to pass information to routines called via
|
23 |
|
|
elf_link_hash_traverse which must return failure. */
|
24 |
|
|
|
25 |
|
|
struct elf_info_failed
|
26 |
|
|
{
|
27 |
|
|
boolean failed;
|
28 |
|
|
struct bfd_link_info *info;
|
29 |
|
|
};
|
30 |
|
|
|
31 |
|
|
static boolean elf_link_add_object_symbols
|
32 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
33 |
|
|
static boolean elf_link_add_archive_symbols
|
34 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
35 |
|
|
static boolean elf_merge_symbol
|
36 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
|
37 |
|
|
asection **, bfd_vma *, struct elf_link_hash_entry **,
|
38 |
|
|
boolean *, boolean *, boolean *));
|
39 |
|
|
static boolean elf_export_symbol
|
40 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
41 |
|
|
static boolean elf_fix_symbol_flags
|
42 |
|
|
PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
|
43 |
|
|
static boolean elf_adjust_dynamic_symbol
|
44 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
45 |
|
|
static boolean elf_link_find_version_dependencies
|
46 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
47 |
|
|
static boolean elf_link_find_version_dependencies
|
48 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
49 |
|
|
static boolean elf_link_assign_sym_version
|
50 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
51 |
|
|
static boolean elf_collect_hash_codes
|
52 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
53 |
|
|
static boolean elf_link_read_relocs_from_section
|
54 |
|
|
PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
|
55 |
|
|
static void elf_link_output_relocs
|
56 |
|
|
PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
|
57 |
|
|
static boolean elf_link_size_reloc_section
|
58 |
|
|
PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
|
59 |
|
|
static void elf_link_adjust_relocs
|
60 |
|
|
PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
|
61 |
|
|
struct elf_link_hash_entry **));
|
62 |
|
|
|
63 |
|
|
/* Given an ELF BFD, add symbols to the global hash table as
|
64 |
|
|
appropriate. */
|
65 |
|
|
|
66 |
|
|
boolean
|
67 |
|
|
elf_bfd_link_add_symbols (abfd, info)
|
68 |
|
|
bfd *abfd;
|
69 |
|
|
struct bfd_link_info *info;
|
70 |
|
|
{
|
71 |
|
|
switch (bfd_get_format (abfd))
|
72 |
|
|
{
|
73 |
|
|
case bfd_object:
|
74 |
|
|
return elf_link_add_object_symbols (abfd, info);
|
75 |
|
|
case bfd_archive:
|
76 |
|
|
return elf_link_add_archive_symbols (abfd, info);
|
77 |
|
|
default:
|
78 |
|
|
bfd_set_error (bfd_error_wrong_format);
|
79 |
|
|
return false;
|
80 |
|
|
}
|
81 |
|
|
}
|
82 |
|
|
|
83 |
|
|
/* Return true iff this is a non-common definition of a symbol. */
|
84 |
|
|
static boolean
|
85 |
|
|
is_global_symbol_definition (abfd, sym)
|
86 |
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
87 |
|
|
Elf_Internal_Sym * sym;
|
88 |
|
|
{
|
89 |
|
|
/* Local symbols do not count, but target specific ones might. */
|
90 |
|
|
if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
|
91 |
|
|
&& ELF_ST_BIND (sym->st_info) < STB_LOOS)
|
92 |
|
|
return false;
|
93 |
|
|
|
94 |
|
|
/* If the section is undefined, then so is the symbol. */
|
95 |
|
|
if (sym->st_shndx == SHN_UNDEF)
|
96 |
|
|
return false;
|
97 |
|
|
|
98 |
|
|
/* If the symbol is defined in the common section, then
|
99 |
|
|
it is a common definition and so does not count. */
|
100 |
|
|
if (sym->st_shndx == SHN_COMMON)
|
101 |
|
|
return false;
|
102 |
|
|
|
103 |
|
|
/* If the symbol is in a target specific section then we
|
104 |
|
|
must rely upon the backend to tell us what it is. */
|
105 |
|
|
if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
|
106 |
|
|
/* FIXME - this function is not coded yet:
|
107 |
|
|
|
108 |
|
|
return _bfd_is_global_symbol_definition (abfd, sym);
|
109 |
|
|
|
110 |
|
|
Instead for now assume that the definition is not global,
|
111 |
|
|
Even if this is wrong, at least the linker will behave
|
112 |
|
|
in the same way that it used to do. */
|
113 |
|
|
return false;
|
114 |
|
|
|
115 |
|
|
return true;
|
116 |
|
|
}
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
/* Search the symbol table of the archive element of the archive ABFD
|
120 |
|
|
whoes archove map contains a mention of SYMDEF, and determine if
|
121 |
|
|
the symbol is defined in this element. */
|
122 |
|
|
static boolean
|
123 |
|
|
elf_link_is_defined_archive_symbol (abfd, symdef)
|
124 |
|
|
bfd * abfd;
|
125 |
|
|
carsym * symdef;
|
126 |
|
|
{
|
127 |
|
|
Elf_Internal_Shdr * hdr;
|
128 |
|
|
Elf_External_Sym * esym;
|
129 |
|
|
Elf_External_Sym * esymend;
|
130 |
|
|
Elf_External_Sym * buf = NULL;
|
131 |
|
|
size_t symcount;
|
132 |
|
|
size_t extsymcount;
|
133 |
|
|
size_t extsymoff;
|
134 |
|
|
boolean result = false;
|
135 |
|
|
|
136 |
|
|
abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
|
137 |
|
|
if (abfd == (bfd *) NULL)
|
138 |
|
|
return false;
|
139 |
|
|
|
140 |
|
|
if (! bfd_check_format (abfd, bfd_object))
|
141 |
|
|
return false;
|
142 |
|
|
|
143 |
|
|
/* If we have already included the element containing this symbol in the
|
144 |
|
|
link then we do not need to include it again. Just claim that any symbol
|
145 |
|
|
it contains is not a definition, so that our caller will not decide to
|
146 |
|
|
(re)include this element. */
|
147 |
|
|
if (abfd->archive_pass)
|
148 |
|
|
return false;
|
149 |
|
|
|
150 |
|
|
/* Select the appropriate symbol table. */
|
151 |
|
|
if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
|
152 |
|
|
hdr = &elf_tdata (abfd)->symtab_hdr;
|
153 |
|
|
else
|
154 |
|
|
hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
155 |
|
|
|
156 |
|
|
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
157 |
|
|
|
158 |
|
|
/* The sh_info field of the symtab header tells us where the
|
159 |
|
|
external symbols start. We don't care about the local symbols. */
|
160 |
|
|
if (elf_bad_symtab (abfd))
|
161 |
|
|
{
|
162 |
|
|
extsymcount = symcount;
|
163 |
|
|
extsymoff = 0;
|
164 |
|
|
}
|
165 |
|
|
else
|
166 |
|
|
{
|
167 |
|
|
extsymcount = symcount - hdr->sh_info;
|
168 |
|
|
extsymoff = hdr->sh_info;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
buf = ((Elf_External_Sym *)
|
172 |
|
|
bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
|
173 |
|
|
if (buf == NULL && extsymcount != 0)
|
174 |
|
|
return false;
|
175 |
|
|
|
176 |
|
|
/* Read in the symbol table.
|
177 |
|
|
FIXME: This ought to be cached somewhere. */
|
178 |
|
|
if (bfd_seek (abfd,
|
179 |
|
|
hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
|
180 |
|
|
SEEK_SET) != 0
|
181 |
|
|
|| (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
|
182 |
|
|
!= extsymcount * sizeof (Elf_External_Sym)))
|
183 |
|
|
{
|
184 |
|
|
free (buf);
|
185 |
|
|
return false;
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
/* Scan the symbol table looking for SYMDEF. */
|
189 |
|
|
esymend = buf + extsymcount;
|
190 |
|
|
for (esym = buf;
|
191 |
|
|
esym < esymend;
|
192 |
|
|
esym++)
|
193 |
|
|
{
|
194 |
|
|
Elf_Internal_Sym sym;
|
195 |
|
|
const char * name;
|
196 |
|
|
|
197 |
|
|
elf_swap_symbol_in (abfd, esym, & sym);
|
198 |
|
|
|
199 |
|
|
name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
|
200 |
|
|
if (name == (const char *) NULL)
|
201 |
|
|
break;
|
202 |
|
|
|
203 |
|
|
if (strcmp (name, symdef->name) == 0)
|
204 |
|
|
{
|
205 |
|
|
result = is_global_symbol_definition (abfd, & sym);
|
206 |
|
|
break;
|
207 |
|
|
}
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
free (buf);
|
211 |
|
|
|
212 |
|
|
return result;
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
/* Add symbols from an ELF archive file to the linker hash table. We
|
217 |
|
|
don't use _bfd_generic_link_add_archive_symbols because of a
|
218 |
|
|
problem which arises on UnixWare. The UnixWare libc.so is an
|
219 |
|
|
archive which includes an entry libc.so.1 which defines a bunch of
|
220 |
|
|
symbols. The libc.so archive also includes a number of other
|
221 |
|
|
object files, which also define symbols, some of which are the same
|
222 |
|
|
as those defined in libc.so.1. Correct linking requires that we
|
223 |
|
|
consider each object file in turn, and include it if it defines any
|
224 |
|
|
symbols we need. _bfd_generic_link_add_archive_symbols does not do
|
225 |
|
|
this; it looks through the list of undefined symbols, and includes
|
226 |
|
|
any object file which defines them. When this algorithm is used on
|
227 |
|
|
UnixWare, it winds up pulling in libc.so.1 early and defining a
|
228 |
|
|
bunch of symbols. This means that some of the other objects in the
|
229 |
|
|
archive are not included in the link, which is incorrect since they
|
230 |
|
|
precede libc.so.1 in the archive.
|
231 |
|
|
|
232 |
|
|
Fortunately, ELF archive handling is simpler than that done by
|
233 |
|
|
_bfd_generic_link_add_archive_symbols, which has to allow for a.out
|
234 |
|
|
oddities. In ELF, if we find a symbol in the archive map, and the
|
235 |
|
|
symbol is currently undefined, we know that we must pull in that
|
236 |
|
|
object file.
|
237 |
|
|
|
238 |
|
|
Unfortunately, we do have to make multiple passes over the symbol
|
239 |
|
|
table until nothing further is resolved. */
|
240 |
|
|
|
241 |
|
|
static boolean
|
242 |
|
|
elf_link_add_archive_symbols (abfd, info)
|
243 |
|
|
bfd *abfd;
|
244 |
|
|
struct bfd_link_info *info;
|
245 |
|
|
{
|
246 |
|
|
symindex c;
|
247 |
|
|
boolean *defined = NULL;
|
248 |
|
|
boolean *included = NULL;
|
249 |
|
|
carsym *symdefs;
|
250 |
|
|
boolean loop;
|
251 |
|
|
|
252 |
|
|
if (! bfd_has_map (abfd))
|
253 |
|
|
{
|
254 |
|
|
/* An empty archive is a special case. */
|
255 |
|
|
if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
|
256 |
|
|
return true;
|
257 |
|
|
bfd_set_error (bfd_error_no_armap);
|
258 |
|
|
return false;
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
/* Keep track of all symbols we know to be already defined, and all
|
262 |
|
|
files we know to be already included. This is to speed up the
|
263 |
|
|
second and subsequent passes. */
|
264 |
|
|
c = bfd_ardata (abfd)->symdef_count;
|
265 |
|
|
if (c == 0)
|
266 |
|
|
return true;
|
267 |
|
|
defined = (boolean *) bfd_malloc (c * sizeof (boolean));
|
268 |
|
|
included = (boolean *) bfd_malloc (c * sizeof (boolean));
|
269 |
|
|
if (defined == (boolean *) NULL || included == (boolean *) NULL)
|
270 |
|
|
goto error_return;
|
271 |
|
|
memset (defined, 0, c * sizeof (boolean));
|
272 |
|
|
memset (included, 0, c * sizeof (boolean));
|
273 |
|
|
|
274 |
|
|
symdefs = bfd_ardata (abfd)->symdefs;
|
275 |
|
|
|
276 |
|
|
do
|
277 |
|
|
{
|
278 |
|
|
file_ptr last;
|
279 |
|
|
symindex i;
|
280 |
|
|
carsym *symdef;
|
281 |
|
|
carsym *symdefend;
|
282 |
|
|
|
283 |
|
|
loop = false;
|
284 |
|
|
last = -1;
|
285 |
|
|
|
286 |
|
|
symdef = symdefs;
|
287 |
|
|
symdefend = symdef + c;
|
288 |
|
|
for (i = 0; symdef < symdefend; symdef++, i++)
|
289 |
|
|
{
|
290 |
|
|
struct elf_link_hash_entry *h;
|
291 |
|
|
bfd *element;
|
292 |
|
|
struct bfd_link_hash_entry *undefs_tail;
|
293 |
|
|
symindex mark;
|
294 |
|
|
|
295 |
|
|
if (defined[i] || included[i])
|
296 |
|
|
continue;
|
297 |
|
|
if (symdef->file_offset == last)
|
298 |
|
|
{
|
299 |
|
|
included[i] = true;
|
300 |
|
|
continue;
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
|
304 |
|
|
false, false, false);
|
305 |
|
|
|
306 |
|
|
if (h == NULL)
|
307 |
|
|
{
|
308 |
|
|
char *p, *copy;
|
309 |
|
|
|
310 |
|
|
/* If this is a default version (the name contains @@),
|
311 |
|
|
look up the symbol again without the version. The
|
312 |
|
|
effect is that references to the symbol without the
|
313 |
|
|
version will be matched by the default symbol in the
|
314 |
|
|
archive. */
|
315 |
|
|
|
316 |
|
|
p = strchr (symdef->name, ELF_VER_CHR);
|
317 |
|
|
if (p == NULL || p[1] != ELF_VER_CHR)
|
318 |
|
|
continue;
|
319 |
|
|
|
320 |
|
|
copy = bfd_alloc (abfd, p - symdef->name + 1);
|
321 |
|
|
if (copy == NULL)
|
322 |
|
|
goto error_return;
|
323 |
|
|
memcpy (copy, symdef->name, p - symdef->name);
|
324 |
|
|
copy[p - symdef->name] = '\0';
|
325 |
|
|
|
326 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), copy,
|
327 |
|
|
false, false, false);
|
328 |
|
|
|
329 |
|
|
bfd_release (abfd, copy);
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
if (h == NULL)
|
333 |
|
|
continue;
|
334 |
|
|
|
335 |
|
|
if (h->root.type == bfd_link_hash_common)
|
336 |
|
|
{
|
337 |
|
|
/* We currently have a common symbol. The archive map contains
|
338 |
|
|
a reference to this symbol, so we may want to include it. We
|
339 |
|
|
only want to include it however, if this archive element
|
340 |
|
|
contains a definition of the symbol, not just another common
|
341 |
|
|
declaration of it.
|
342 |
|
|
|
343 |
|
|
Unfortunately some archivers (including GNU ar) will put
|
344 |
|
|
declarations of common symbols into their archive maps, as
|
345 |
|
|
well as real definitions, so we cannot just go by the archive
|
346 |
|
|
map alone. Instead we must read in the element's symbol
|
347 |
|
|
table and check that to see what kind of symbol definition
|
348 |
|
|
this is. */
|
349 |
|
|
if (! elf_link_is_defined_archive_symbol (abfd, symdef))
|
350 |
|
|
continue;
|
351 |
|
|
}
|
352 |
|
|
else if (h->root.type != bfd_link_hash_undefined)
|
353 |
|
|
{
|
354 |
|
|
if (h->root.type != bfd_link_hash_undefweak)
|
355 |
|
|
defined[i] = true;
|
356 |
|
|
continue;
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
/* We need to include this archive member. */
|
360 |
|
|
|
361 |
|
|
element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
|
362 |
|
|
if (element == (bfd *) NULL)
|
363 |
|
|
goto error_return;
|
364 |
|
|
|
365 |
|
|
if (! bfd_check_format (element, bfd_object))
|
366 |
|
|
goto error_return;
|
367 |
|
|
|
368 |
|
|
/* Doublecheck that we have not included this object
|
369 |
|
|
already--it should be impossible, but there may be
|
370 |
|
|
something wrong with the archive. */
|
371 |
|
|
if (element->archive_pass != 0)
|
372 |
|
|
{
|
373 |
|
|
bfd_set_error (bfd_error_bad_value);
|
374 |
|
|
goto error_return;
|
375 |
|
|
}
|
376 |
|
|
element->archive_pass = 1;
|
377 |
|
|
|
378 |
|
|
undefs_tail = info->hash->undefs_tail;
|
379 |
|
|
|
380 |
|
|
if (! (*info->callbacks->add_archive_element) (info, element,
|
381 |
|
|
symdef->name))
|
382 |
|
|
goto error_return;
|
383 |
|
|
if (! elf_link_add_object_symbols (element, info))
|
384 |
|
|
goto error_return;
|
385 |
|
|
|
386 |
|
|
/* If there are any new undefined symbols, we need to make
|
387 |
|
|
another pass through the archive in order to see whether
|
388 |
|
|
they can be defined. FIXME: This isn't perfect, because
|
389 |
|
|
common symbols wind up on undefs_tail and because an
|
390 |
|
|
undefined symbol which is defined later on in this pass
|
391 |
|
|
does not require another pass. This isn't a bug, but it
|
392 |
|
|
does make the code less efficient than it could be. */
|
393 |
|
|
if (undefs_tail != info->hash->undefs_tail)
|
394 |
|
|
loop = true;
|
395 |
|
|
|
396 |
|
|
/* Look backward to mark all symbols from this object file
|
397 |
|
|
which we have already seen in this pass. */
|
398 |
|
|
mark = i;
|
399 |
|
|
do
|
400 |
|
|
{
|
401 |
|
|
included[mark] = true;
|
402 |
|
|
if (mark == 0)
|
403 |
|
|
break;
|
404 |
|
|
--mark;
|
405 |
|
|
}
|
406 |
|
|
while (symdefs[mark].file_offset == symdef->file_offset);
|
407 |
|
|
|
408 |
|
|
/* We mark subsequent symbols from this object file as we go
|
409 |
|
|
on through the loop. */
|
410 |
|
|
last = symdef->file_offset;
|
411 |
|
|
}
|
412 |
|
|
}
|
413 |
|
|
while (loop);
|
414 |
|
|
|
415 |
|
|
free (defined);
|
416 |
|
|
free (included);
|
417 |
|
|
|
418 |
|
|
return true;
|
419 |
|
|
|
420 |
|
|
error_return:
|
421 |
|
|
if (defined != (boolean *) NULL)
|
422 |
|
|
free (defined);
|
423 |
|
|
if (included != (boolean *) NULL)
|
424 |
|
|
free (included);
|
425 |
|
|
return false;
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
/* This function is called when we want to define a new symbol. It
|
429 |
|
|
handles the various cases which arise when we find a definition in
|
430 |
|
|
a dynamic object, or when there is already a definition in a
|
431 |
|
|
dynamic object. The new symbol is described by NAME, SYM, PSEC,
|
432 |
|
|
and PVALUE. We set SYM_HASH to the hash table entry. We set
|
433 |
|
|
OVERRIDE if the old symbol is overriding a new definition. We set
|
434 |
|
|
TYPE_CHANGE_OK if it is OK for the type to change. We set
|
435 |
|
|
SIZE_CHANGE_OK if it is OK for the size to change. By OK to
|
436 |
|
|
change, we mean that we shouldn't warn if the type or size does
|
437 |
|
|
change. */
|
438 |
|
|
|
439 |
|
|
static boolean
|
440 |
|
|
elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
|
441 |
|
|
override, type_change_ok, size_change_ok)
|
442 |
|
|
bfd *abfd;
|
443 |
|
|
struct bfd_link_info *info;
|
444 |
|
|
const char *name;
|
445 |
|
|
Elf_Internal_Sym *sym;
|
446 |
|
|
asection **psec;
|
447 |
|
|
bfd_vma *pvalue;
|
448 |
|
|
struct elf_link_hash_entry **sym_hash;
|
449 |
|
|
boolean *override;
|
450 |
|
|
boolean *type_change_ok;
|
451 |
|
|
boolean *size_change_ok;
|
452 |
|
|
{
|
453 |
|
|
asection *sec;
|
454 |
|
|
struct elf_link_hash_entry *h;
|
455 |
|
|
int bind;
|
456 |
|
|
bfd *oldbfd;
|
457 |
|
|
boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
|
458 |
|
|
|
459 |
|
|
*override = false;
|
460 |
|
|
|
461 |
|
|
sec = *psec;
|
462 |
|
|
bind = ELF_ST_BIND (sym->st_info);
|
463 |
|
|
|
464 |
|
|
if (! bfd_is_und_section (sec))
|
465 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
|
466 |
|
|
else
|
467 |
|
|
h = ((struct elf_link_hash_entry *)
|
468 |
|
|
bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
|
469 |
|
|
if (h == NULL)
|
470 |
|
|
return false;
|
471 |
|
|
*sym_hash = h;
|
472 |
|
|
|
473 |
|
|
/* This code is for coping with dynamic objects, and is only useful
|
474 |
|
|
if we are doing an ELF link. */
|
475 |
|
|
if (info->hash->creator != abfd->xvec)
|
476 |
|
|
return true;
|
477 |
|
|
|
478 |
|
|
/* For merging, we only care about real symbols. */
|
479 |
|
|
|
480 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
481 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
482 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
483 |
|
|
|
484 |
|
|
/* If we just created the symbol, mark it as being an ELF symbol.
|
485 |
|
|
Other than that, there is nothing to do--there is no merge issue
|
486 |
|
|
with a newly defined symbol--so we just return. */
|
487 |
|
|
|
488 |
|
|
if (h->root.type == bfd_link_hash_new)
|
489 |
|
|
{
|
490 |
|
|
h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
|
491 |
|
|
return true;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* OLDBFD is a BFD associated with the existing symbol. */
|
495 |
|
|
|
496 |
|
|
switch (h->root.type)
|
497 |
|
|
{
|
498 |
|
|
default:
|
499 |
|
|
oldbfd = NULL;
|
500 |
|
|
break;
|
501 |
|
|
|
502 |
|
|
case bfd_link_hash_undefined:
|
503 |
|
|
case bfd_link_hash_undefweak:
|
504 |
|
|
oldbfd = h->root.u.undef.abfd;
|
505 |
|
|
break;
|
506 |
|
|
|
507 |
|
|
case bfd_link_hash_defined:
|
508 |
|
|
case bfd_link_hash_defweak:
|
509 |
|
|
oldbfd = h->root.u.def.section->owner;
|
510 |
|
|
break;
|
511 |
|
|
|
512 |
|
|
case bfd_link_hash_common:
|
513 |
|
|
oldbfd = h->root.u.c.p->section->owner;
|
514 |
|
|
break;
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
/* In cases involving weak versioned symbols, we may wind up trying
|
518 |
|
|
to merge a symbol with itself. Catch that here, to avoid the
|
519 |
|
|
confusion that results if we try to override a symbol with
|
520 |
|
|
itself. The additional tests catch cases like
|
521 |
|
|
_GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
|
522 |
|
|
dynamic object, which we do want to handle here. */
|
523 |
|
|
if (abfd == oldbfd
|
524 |
|
|
&& ((abfd->flags & DYNAMIC) == 0
|
525 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
|
526 |
|
|
return true;
|
527 |
|
|
|
528 |
|
|
/* NEWDYN and OLDDYN indicate whether the new or old symbol,
|
529 |
|
|
respectively, is from a dynamic object. */
|
530 |
|
|
|
531 |
|
|
if ((abfd->flags & DYNAMIC) != 0)
|
532 |
|
|
newdyn = true;
|
533 |
|
|
else
|
534 |
|
|
newdyn = false;
|
535 |
|
|
|
536 |
|
|
if (oldbfd != NULL)
|
537 |
|
|
olddyn = (oldbfd->flags & DYNAMIC) != 0;
|
538 |
|
|
else
|
539 |
|
|
{
|
540 |
|
|
asection *hsec;
|
541 |
|
|
|
542 |
|
|
/* This code handles the special SHN_MIPS_{TEXT,DATA} section
|
543 |
|
|
indices used by MIPS ELF. */
|
544 |
|
|
switch (h->root.type)
|
545 |
|
|
{
|
546 |
|
|
default:
|
547 |
|
|
hsec = NULL;
|
548 |
|
|
break;
|
549 |
|
|
|
550 |
|
|
case bfd_link_hash_defined:
|
551 |
|
|
case bfd_link_hash_defweak:
|
552 |
|
|
hsec = h->root.u.def.section;
|
553 |
|
|
break;
|
554 |
|
|
|
555 |
|
|
case bfd_link_hash_common:
|
556 |
|
|
hsec = h->root.u.c.p->section;
|
557 |
|
|
break;
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
if (hsec == NULL)
|
561 |
|
|
olddyn = false;
|
562 |
|
|
else
|
563 |
|
|
olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
|
564 |
|
|
}
|
565 |
|
|
|
566 |
|
|
/* NEWDEF and OLDDEF indicate whether the new or old symbol,
|
567 |
|
|
respectively, appear to be a definition rather than reference. */
|
568 |
|
|
|
569 |
|
|
if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
|
570 |
|
|
newdef = false;
|
571 |
|
|
else
|
572 |
|
|
newdef = true;
|
573 |
|
|
|
574 |
|
|
if (h->root.type == bfd_link_hash_undefined
|
575 |
|
|
|| h->root.type == bfd_link_hash_undefweak
|
576 |
|
|
|| h->root.type == bfd_link_hash_common)
|
577 |
|
|
olddef = false;
|
578 |
|
|
else
|
579 |
|
|
olddef = true;
|
580 |
|
|
|
581 |
|
|
/* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
|
582 |
|
|
symbol, respectively, appears to be a common symbol in a dynamic
|
583 |
|
|
object. If a symbol appears in an uninitialized section, and is
|
584 |
|
|
not weak, and is not a function, then it may be a common symbol
|
585 |
|
|
which was resolved when the dynamic object was created. We want
|
586 |
|
|
to treat such symbols specially, because they raise special
|
587 |
|
|
considerations when setting the symbol size: if the symbol
|
588 |
|
|
appears as a common symbol in a regular object, and the size in
|
589 |
|
|
the regular object is larger, we must make sure that we use the
|
590 |
|
|
larger size. This problematic case can always be avoided in C,
|
591 |
|
|
but it must be handled correctly when using Fortran shared
|
592 |
|
|
libraries.
|
593 |
|
|
|
594 |
|
|
Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
|
595 |
|
|
likewise for OLDDYNCOMMON and OLDDEF.
|
596 |
|
|
|
597 |
|
|
Note that this test is just a heuristic, and that it is quite
|
598 |
|
|
possible to have an uninitialized symbol in a shared object which
|
599 |
|
|
is really a definition, rather than a common symbol. This could
|
600 |
|
|
lead to some minor confusion when the symbol really is a common
|
601 |
|
|
symbol in some regular object. However, I think it will be
|
602 |
|
|
harmless. */
|
603 |
|
|
|
604 |
|
|
if (newdyn
|
605 |
|
|
&& newdef
|
606 |
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
607 |
|
|
&& (sec->flags & SEC_LOAD) == 0
|
608 |
|
|
&& sym->st_size > 0
|
609 |
|
|
&& bind != STB_WEAK
|
610 |
|
|
&& ELF_ST_TYPE (sym->st_info) != STT_FUNC)
|
611 |
|
|
newdyncommon = true;
|
612 |
|
|
else
|
613 |
|
|
newdyncommon = false;
|
614 |
|
|
|
615 |
|
|
if (olddyn
|
616 |
|
|
&& olddef
|
617 |
|
|
&& h->root.type == bfd_link_hash_defined
|
618 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
619 |
|
|
&& (h->root.u.def.section->flags & SEC_ALLOC) != 0
|
620 |
|
|
&& (h->root.u.def.section->flags & SEC_LOAD) == 0
|
621 |
|
|
&& h->size > 0
|
622 |
|
|
&& h->type != STT_FUNC)
|
623 |
|
|
olddyncommon = true;
|
624 |
|
|
else
|
625 |
|
|
olddyncommon = false;
|
626 |
|
|
|
627 |
|
|
/* It's OK to change the type if either the existing symbol or the
|
628 |
|
|
new symbol is weak. */
|
629 |
|
|
|
630 |
|
|
if (h->root.type == bfd_link_hash_defweak
|
631 |
|
|
|| h->root.type == bfd_link_hash_undefweak
|
632 |
|
|
|| bind == STB_WEAK)
|
633 |
|
|
*type_change_ok = true;
|
634 |
|
|
|
635 |
|
|
/* It's OK to change the size if either the existing symbol or the
|
636 |
|
|
new symbol is weak, or if the old symbol is undefined. */
|
637 |
|
|
|
638 |
|
|
if (*type_change_ok
|
639 |
|
|
|| h->root.type == bfd_link_hash_undefined)
|
640 |
|
|
*size_change_ok = true;
|
641 |
|
|
|
642 |
|
|
/* If both the old and the new symbols look like common symbols in a
|
643 |
|
|
dynamic object, set the size of the symbol to the larger of the
|
644 |
|
|
two. */
|
645 |
|
|
|
646 |
|
|
if (olddyncommon
|
647 |
|
|
&& newdyncommon
|
648 |
|
|
&& sym->st_size != h->size)
|
649 |
|
|
{
|
650 |
|
|
/* Since we think we have two common symbols, issue a multiple
|
651 |
|
|
common warning if desired. Note that we only warn if the
|
652 |
|
|
size is different. If the size is the same, we simply let
|
653 |
|
|
the old symbol override the new one as normally happens with
|
654 |
|
|
symbols defined in dynamic objects. */
|
655 |
|
|
|
656 |
|
|
if (! ((*info->callbacks->multiple_common)
|
657 |
|
|
(info, h->root.root.string, oldbfd, bfd_link_hash_common,
|
658 |
|
|
h->size, abfd, bfd_link_hash_common, sym->st_size)))
|
659 |
|
|
return false;
|
660 |
|
|
|
661 |
|
|
if (sym->st_size > h->size)
|
662 |
|
|
h->size = sym->st_size;
|
663 |
|
|
|
664 |
|
|
*size_change_ok = true;
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
/* If we are looking at a dynamic object, and we have found a
|
668 |
|
|
definition, we need to see if the symbol was already defined by
|
669 |
|
|
some other object. If so, we want to use the existing
|
670 |
|
|
definition, and we do not want to report a multiple symbol
|
671 |
|
|
definition error; we do this by clobbering *PSEC to be
|
672 |
|
|
bfd_und_section_ptr.
|
673 |
|
|
|
674 |
|
|
We treat a common symbol as a definition if the symbol in the
|
675 |
|
|
shared library is a function, since common symbols always
|
676 |
|
|
represent variables; this can cause confusion in principle, but
|
677 |
|
|
any such confusion would seem to indicate an erroneous program or
|
678 |
|
|
shared library. We also permit a common symbol in a regular
|
679 |
|
|
object to override a weak symbol in a shared object.
|
680 |
|
|
|
681 |
|
|
We prefer a non-weak definition in a shared library to a weak
|
682 |
|
|
definition in the executable. */
|
683 |
|
|
|
684 |
|
|
if (newdyn
|
685 |
|
|
&& newdef
|
686 |
|
|
&& (olddef
|
687 |
|
|
|| (h->root.type == bfd_link_hash_common
|
688 |
|
|
&& (bind == STB_WEAK
|
689 |
|
|
|| ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
|
690 |
|
|
&& (h->root.type != bfd_link_hash_defweak
|
691 |
|
|
|| bind == STB_WEAK))
|
692 |
|
|
{
|
693 |
|
|
*override = true;
|
694 |
|
|
newdef = false;
|
695 |
|
|
newdyncommon = false;
|
696 |
|
|
|
697 |
|
|
*psec = sec = bfd_und_section_ptr;
|
698 |
|
|
*size_change_ok = true;
|
699 |
|
|
|
700 |
|
|
/* If we get here when the old symbol is a common symbol, then
|
701 |
|
|
we are explicitly letting it override a weak symbol or
|
702 |
|
|
function in a dynamic object, and we don't want to warn about
|
703 |
|
|
a type change. If the old symbol is a defined symbol, a type
|
704 |
|
|
change warning may still be appropriate. */
|
705 |
|
|
|
706 |
|
|
if (h->root.type == bfd_link_hash_common)
|
707 |
|
|
*type_change_ok = true;
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
/* Handle the special case of an old common symbol merging with a
|
711 |
|
|
new symbol which looks like a common symbol in a shared object.
|
712 |
|
|
We change *PSEC and *PVALUE to make the new symbol look like a
|
713 |
|
|
common symbol, and let _bfd_generic_link_add_one_symbol will do
|
714 |
|
|
the right thing. */
|
715 |
|
|
|
716 |
|
|
if (newdyncommon
|
717 |
|
|
&& h->root.type == bfd_link_hash_common)
|
718 |
|
|
{
|
719 |
|
|
*override = true;
|
720 |
|
|
newdef = false;
|
721 |
|
|
newdyncommon = false;
|
722 |
|
|
*pvalue = sym->st_size;
|
723 |
|
|
*psec = sec = bfd_com_section_ptr;
|
724 |
|
|
*size_change_ok = true;
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
/* If the old symbol is from a dynamic object, and the new symbol is
|
728 |
|
|
a definition which is not from a dynamic object, then the new
|
729 |
|
|
symbol overrides the old symbol. Symbols from regular files
|
730 |
|
|
always take precedence over symbols from dynamic objects, even if
|
731 |
|
|
they are defined after the dynamic object in the link.
|
732 |
|
|
|
733 |
|
|
As above, we again permit a common symbol in a regular object to
|
734 |
|
|
override a definition in a shared object if the shared object
|
735 |
|
|
symbol is a function or is weak.
|
736 |
|
|
|
737 |
|
|
As above, we permit a non-weak definition in a shared object to
|
738 |
|
|
override a weak definition in a regular object. */
|
739 |
|
|
|
740 |
|
|
if (! newdyn
|
741 |
|
|
&& (newdef
|
742 |
|
|
|| (bfd_is_com_section (sec)
|
743 |
|
|
&& (h->root.type == bfd_link_hash_defweak
|
744 |
|
|
|| h->type == STT_FUNC)))
|
745 |
|
|
&& olddyn
|
746 |
|
|
&& olddef
|
747 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
748 |
|
|
&& (bind != STB_WEAK
|
749 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
750 |
|
|
{
|
751 |
|
|
/* Change the hash table entry to undefined, and let
|
752 |
|
|
_bfd_generic_link_add_one_symbol do the right thing with the
|
753 |
|
|
new definition. */
|
754 |
|
|
|
755 |
|
|
h->root.type = bfd_link_hash_undefined;
|
756 |
|
|
h->root.u.undef.abfd = h->root.u.def.section->owner;
|
757 |
|
|
*size_change_ok = true;
|
758 |
|
|
|
759 |
|
|
olddef = false;
|
760 |
|
|
olddyncommon = false;
|
761 |
|
|
|
762 |
|
|
/* We again permit a type change when a common symbol may be
|
763 |
|
|
overriding a function. */
|
764 |
|
|
|
765 |
|
|
if (bfd_is_com_section (sec))
|
766 |
|
|
*type_change_ok = true;
|
767 |
|
|
|
768 |
|
|
/* This union may have been set to be non-NULL when this symbol
|
769 |
|
|
was seen in a dynamic object. We must force the union to be
|
770 |
|
|
NULL, so that it is correct for a regular symbol. */
|
771 |
|
|
|
772 |
|
|
h->verinfo.vertree = NULL;
|
773 |
|
|
|
774 |
|
|
/* In this special case, if H is the target of an indirection,
|
775 |
|
|
we want the caller to frob with H rather than with the
|
776 |
|
|
indirect symbol. That will permit the caller to redefine the
|
777 |
|
|
target of the indirection, rather than the indirect symbol
|
778 |
|
|
itself. FIXME: This will break the -y option if we store a
|
779 |
|
|
symbol with a different name. */
|
780 |
|
|
*sym_hash = h;
|
781 |
|
|
}
|
782 |
|
|
|
783 |
|
|
/* Handle the special case of a new common symbol merging with an
|
784 |
|
|
old symbol that looks like it might be a common symbol defined in
|
785 |
|
|
a shared object. Note that we have already handled the case in
|
786 |
|
|
which a new common symbol should simply override the definition
|
787 |
|
|
in the shared library. */
|
788 |
|
|
|
789 |
|
|
if (! newdyn
|
790 |
|
|
&& bfd_is_com_section (sec)
|
791 |
|
|
&& olddyncommon)
|
792 |
|
|
{
|
793 |
|
|
/* It would be best if we could set the hash table entry to a
|
794 |
|
|
common symbol, but we don't know what to use for the section
|
795 |
|
|
or the alignment. */
|
796 |
|
|
if (! ((*info->callbacks->multiple_common)
|
797 |
|
|
(info, h->root.root.string, oldbfd, bfd_link_hash_common,
|
798 |
|
|
h->size, abfd, bfd_link_hash_common, sym->st_size)))
|
799 |
|
|
return false;
|
800 |
|
|
|
801 |
|
|
/* If the predumed common symbol in the dynamic object is
|
802 |
|
|
larger, pretend that the new symbol has its size. */
|
803 |
|
|
|
804 |
|
|
if (h->size > *pvalue)
|
805 |
|
|
*pvalue = h->size;
|
806 |
|
|
|
807 |
|
|
/* FIXME: We no longer know the alignment required by the symbol
|
808 |
|
|
in the dynamic object, so we just wind up using the one from
|
809 |
|
|
the regular object. */
|
810 |
|
|
|
811 |
|
|
olddef = false;
|
812 |
|
|
olddyncommon = false;
|
813 |
|
|
|
814 |
|
|
h->root.type = bfd_link_hash_undefined;
|
815 |
|
|
h->root.u.undef.abfd = h->root.u.def.section->owner;
|
816 |
|
|
|
817 |
|
|
*size_change_ok = true;
|
818 |
|
|
*type_change_ok = true;
|
819 |
|
|
|
820 |
|
|
h->verinfo.vertree = NULL;
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
/* Handle the special case of a weak definition in a regular object
|
824 |
|
|
followed by a non-weak definition in a shared object. In this
|
825 |
|
|
case, we prefer the definition in the shared object. */
|
826 |
|
|
if (olddef
|
827 |
|
|
&& h->root.type == bfd_link_hash_defweak
|
828 |
|
|
&& newdef
|
829 |
|
|
&& newdyn
|
830 |
|
|
&& bind != STB_WEAK)
|
831 |
|
|
{
|
832 |
|
|
/* To make this work we have to frob the flags so that the rest
|
833 |
|
|
of the code does not think we are using the regular
|
834 |
|
|
definition. */
|
835 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
|
836 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
837 |
|
|
else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
|
838 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
|
839 |
|
|
h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
|
840 |
|
|
| ELF_LINK_HASH_DEF_DYNAMIC);
|
841 |
|
|
|
842 |
|
|
/* If H is the target of an indirection, we want the caller to
|
843 |
|
|
use H rather than the indirect symbol. Otherwise if we are
|
844 |
|
|
defining a new indirect symbol we will wind up attaching it
|
845 |
|
|
to the entry we are overriding. */
|
846 |
|
|
*sym_hash = h;
|
847 |
|
|
}
|
848 |
|
|
|
849 |
|
|
/* Handle the special case of a non-weak definition in a shared
|
850 |
|
|
object followed by a weak definition in a regular object. In
|
851 |
|
|
this case we prefer to definition in the shared object. To make
|
852 |
|
|
this work we have to tell the caller to not treat the new symbol
|
853 |
|
|
as a definition. */
|
854 |
|
|
if (olddef
|
855 |
|
|
&& olddyn
|
856 |
|
|
&& h->root.type != bfd_link_hash_defweak
|
857 |
|
|
&& newdef
|
858 |
|
|
&& ! newdyn
|
859 |
|
|
&& bind == STB_WEAK)
|
860 |
|
|
*override = true;
|
861 |
|
|
|
862 |
|
|
return true;
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
/* Add symbols from an ELF object file to the linker hash table. */
|
866 |
|
|
|
867 |
|
|
static boolean
|
868 |
|
|
elf_link_add_object_symbols (abfd, info)
|
869 |
|
|
bfd *abfd;
|
870 |
|
|
struct bfd_link_info *info;
|
871 |
|
|
{
|
872 |
|
|
boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
|
873 |
|
|
const Elf_Internal_Sym *,
|
874 |
|
|
const char **, flagword *,
|
875 |
|
|
asection **, bfd_vma *));
|
876 |
|
|
boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
|
877 |
|
|
asection *, const Elf_Internal_Rela *));
|
878 |
|
|
boolean collect;
|
879 |
|
|
Elf_Internal_Shdr *hdr;
|
880 |
|
|
size_t symcount;
|
881 |
|
|
size_t extsymcount;
|
882 |
|
|
size_t extsymoff;
|
883 |
|
|
Elf_External_Sym *buf = NULL;
|
884 |
|
|
struct elf_link_hash_entry **sym_hash;
|
885 |
|
|
boolean dynamic;
|
886 |
|
|
bfd_byte *dynver = NULL;
|
887 |
|
|
Elf_External_Versym *extversym = NULL;
|
888 |
|
|
Elf_External_Versym *ever;
|
889 |
|
|
Elf_External_Dyn *dynbuf = NULL;
|
890 |
|
|
struct elf_link_hash_entry *weaks;
|
891 |
|
|
Elf_External_Sym *esym;
|
892 |
|
|
Elf_External_Sym *esymend;
|
893 |
|
|
struct elf_backend_data *bed;
|
894 |
|
|
|
895 |
|
|
bed = get_elf_backend_data (abfd);
|
896 |
|
|
add_symbol_hook = bed->elf_add_symbol_hook;
|
897 |
|
|
collect = bed->collect;
|
898 |
|
|
|
899 |
|
|
if ((abfd->flags & DYNAMIC) == 0)
|
900 |
|
|
dynamic = false;
|
901 |
|
|
else
|
902 |
|
|
{
|
903 |
|
|
dynamic = true;
|
904 |
|
|
|
905 |
|
|
/* You can't use -r against a dynamic object. Also, there's no
|
906 |
|
|
hope of using a dynamic object which does not exactly match
|
907 |
|
|
the format of the output file. */
|
908 |
|
|
if (info->relocateable || info->hash->creator != abfd->xvec)
|
909 |
|
|
{
|
910 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
911 |
|
|
goto error_return;
|
912 |
|
|
}
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
/* As a GNU extension, any input sections which are named
|
916 |
|
|
.gnu.warning.SYMBOL are treated as warning symbols for the given
|
917 |
|
|
symbol. This differs from .gnu.warning sections, which generate
|
918 |
|
|
warnings when they are included in an output file. */
|
919 |
|
|
if (! info->shared)
|
920 |
|
|
{
|
921 |
|
|
asection *s;
|
922 |
|
|
|
923 |
|
|
for (s = abfd->sections; s != NULL; s = s->next)
|
924 |
|
|
{
|
925 |
|
|
const char *name;
|
926 |
|
|
|
927 |
|
|
name = bfd_get_section_name (abfd, s);
|
928 |
|
|
if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
|
929 |
|
|
{
|
930 |
|
|
char *msg;
|
931 |
|
|
bfd_size_type sz;
|
932 |
|
|
|
933 |
|
|
name += sizeof ".gnu.warning." - 1;
|
934 |
|
|
|
935 |
|
|
/* If this is a shared object, then look up the symbol
|
936 |
|
|
in the hash table. If it is there, and it is already
|
937 |
|
|
been defined, then we will not be using the entry
|
938 |
|
|
from this shared object, so we don't need to warn.
|
939 |
|
|
FIXME: If we see the definition in a regular object
|
940 |
|
|
later on, we will warn, but we shouldn't. The only
|
941 |
|
|
fix is to keep track of what warnings we are supposed
|
942 |
|
|
to emit, and then handle them all at the end of the
|
943 |
|
|
link. */
|
944 |
|
|
if (dynamic && abfd->xvec == info->hash->creator)
|
945 |
|
|
{
|
946 |
|
|
struct elf_link_hash_entry *h;
|
947 |
|
|
|
948 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
949 |
|
|
false, false, true);
|
950 |
|
|
|
951 |
|
|
/* FIXME: What about bfd_link_hash_common? */
|
952 |
|
|
if (h != NULL
|
953 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
954 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
955 |
|
|
{
|
956 |
|
|
/* We don't want to issue this warning. Clobber
|
957 |
|
|
the section size so that the warning does not
|
958 |
|
|
get copied into the output file. */
|
959 |
|
|
s->_raw_size = 0;
|
960 |
|
|
continue;
|
961 |
|
|
}
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
sz = bfd_section_size (abfd, s);
|
965 |
|
|
msg = (char *) bfd_alloc (abfd, sz + 1);
|
966 |
|
|
if (msg == NULL)
|
967 |
|
|
goto error_return;
|
968 |
|
|
|
969 |
|
|
if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
|
970 |
|
|
goto error_return;
|
971 |
|
|
|
972 |
|
|
msg[sz] = '\0';
|
973 |
|
|
|
974 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
975 |
|
|
(info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
|
976 |
|
|
false, collect, (struct bfd_link_hash_entry **) NULL)))
|
977 |
|
|
goto error_return;
|
978 |
|
|
|
979 |
|
|
if (! info->relocateable)
|
980 |
|
|
{
|
981 |
|
|
/* Clobber the section size so that the warning does
|
982 |
|
|
not get copied into the output file. */
|
983 |
|
|
s->_raw_size = 0;
|
984 |
|
|
}
|
985 |
|
|
}
|
986 |
|
|
}
|
987 |
|
|
}
|
988 |
|
|
|
989 |
|
|
/* If this is a dynamic object, we always link against the .dynsym
|
990 |
|
|
symbol table, not the .symtab symbol table. The dynamic linker
|
991 |
|
|
will only see the .dynsym symbol table, so there is no reason to
|
992 |
|
|
look at .symtab for a dynamic object. */
|
993 |
|
|
|
994 |
|
|
if (! dynamic || elf_dynsymtab (abfd) == 0)
|
995 |
|
|
hdr = &elf_tdata (abfd)->symtab_hdr;
|
996 |
|
|
else
|
997 |
|
|
hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
998 |
|
|
|
999 |
|
|
if (dynamic)
|
1000 |
|
|
{
|
1001 |
|
|
/* Read in any version definitions. */
|
1002 |
|
|
|
1003 |
|
|
if (! _bfd_elf_slurp_version_tables (abfd))
|
1004 |
|
|
goto error_return;
|
1005 |
|
|
|
1006 |
|
|
/* Read in the symbol versions, but don't bother to convert them
|
1007 |
|
|
to internal format. */
|
1008 |
|
|
if (elf_dynversym (abfd) != 0)
|
1009 |
|
|
{
|
1010 |
|
|
Elf_Internal_Shdr *versymhdr;
|
1011 |
|
|
|
1012 |
|
|
versymhdr = &elf_tdata (abfd)->dynversym_hdr;
|
1013 |
|
|
extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
|
1014 |
|
|
if (extversym == NULL)
|
1015 |
|
|
goto error_return;
|
1016 |
|
|
if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
|
1017 |
|
|
|| (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
|
1018 |
|
|
!= versymhdr->sh_size))
|
1019 |
|
|
goto error_return;
|
1020 |
|
|
}
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
1024 |
|
|
|
1025 |
|
|
/* The sh_info field of the symtab header tells us where the
|
1026 |
|
|
external symbols start. We don't care about the local symbols at
|
1027 |
|
|
this point. */
|
1028 |
|
|
if (elf_bad_symtab (abfd))
|
1029 |
|
|
{
|
1030 |
|
|
extsymcount = symcount;
|
1031 |
|
|
extsymoff = 0;
|
1032 |
|
|
}
|
1033 |
|
|
else
|
1034 |
|
|
{
|
1035 |
|
|
extsymcount = symcount - hdr->sh_info;
|
1036 |
|
|
extsymoff = hdr->sh_info;
|
1037 |
|
|
}
|
1038 |
|
|
|
1039 |
|
|
buf = ((Elf_External_Sym *)
|
1040 |
|
|
bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
|
1041 |
|
|
if (buf == NULL && extsymcount != 0)
|
1042 |
|
|
goto error_return;
|
1043 |
|
|
|
1044 |
|
|
/* We store a pointer to the hash table entry for each external
|
1045 |
|
|
symbol. */
|
1046 |
|
|
sym_hash = ((struct elf_link_hash_entry **)
|
1047 |
|
|
bfd_alloc (abfd,
|
1048 |
|
|
extsymcount * sizeof (struct elf_link_hash_entry *)));
|
1049 |
|
|
if (sym_hash == NULL)
|
1050 |
|
|
goto error_return;
|
1051 |
|
|
elf_sym_hashes (abfd) = sym_hash;
|
1052 |
|
|
|
1053 |
|
|
if (! dynamic)
|
1054 |
|
|
{
|
1055 |
|
|
/* If we are creating a shared library, create all the dynamic
|
1056 |
|
|
sections immediately. We need to attach them to something,
|
1057 |
|
|
so we attach them to this BFD, provided it is the right
|
1058 |
|
|
format. FIXME: If there are no input BFD's of the same
|
1059 |
|
|
format as the output, we can't make a shared library. */
|
1060 |
|
|
if (info->shared
|
1061 |
|
|
&& ! elf_hash_table (info)->dynamic_sections_created
|
1062 |
|
|
&& abfd->xvec == info->hash->creator)
|
1063 |
|
|
{
|
1064 |
|
|
if (! elf_link_create_dynamic_sections (abfd, info))
|
1065 |
|
|
goto error_return;
|
1066 |
|
|
}
|
1067 |
|
|
}
|
1068 |
|
|
else
|
1069 |
|
|
{
|
1070 |
|
|
asection *s;
|
1071 |
|
|
boolean add_needed;
|
1072 |
|
|
const char *name;
|
1073 |
|
|
bfd_size_type oldsize;
|
1074 |
|
|
bfd_size_type strindex;
|
1075 |
|
|
|
1076 |
|
|
/* Find the name to use in a DT_NEEDED entry that refers to this
|
1077 |
|
|
object. If the object has a DT_SONAME entry, we use it.
|
1078 |
|
|
Otherwise, if the generic linker stuck something in
|
1079 |
|
|
elf_dt_name, we use that. Otherwise, we just use the file
|
1080 |
|
|
name. If the generic linker put a null string into
|
1081 |
|
|
elf_dt_name, we don't make a DT_NEEDED entry at all, even if
|
1082 |
|
|
there is a DT_SONAME entry. */
|
1083 |
|
|
add_needed = true;
|
1084 |
|
|
name = bfd_get_filename (abfd);
|
1085 |
|
|
if (elf_dt_name (abfd) != NULL)
|
1086 |
|
|
{
|
1087 |
|
|
name = elf_dt_name (abfd);
|
1088 |
|
|
if (*name == '\0')
|
1089 |
|
|
add_needed = false;
|
1090 |
|
|
}
|
1091 |
|
|
s = bfd_get_section_by_name (abfd, ".dynamic");
|
1092 |
|
|
if (s != NULL)
|
1093 |
|
|
{
|
1094 |
|
|
Elf_External_Dyn *extdyn;
|
1095 |
|
|
Elf_External_Dyn *extdynend;
|
1096 |
|
|
int elfsec;
|
1097 |
|
|
unsigned long link;
|
1098 |
|
|
|
1099 |
|
|
dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
|
1100 |
|
|
if (dynbuf == NULL)
|
1101 |
|
|
goto error_return;
|
1102 |
|
|
|
1103 |
|
|
if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
|
1104 |
|
|
(file_ptr) 0, s->_raw_size))
|
1105 |
|
|
goto error_return;
|
1106 |
|
|
|
1107 |
|
|
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
|
1108 |
|
|
if (elfsec == -1)
|
1109 |
|
|
goto error_return;
|
1110 |
|
|
link = elf_elfsections (abfd)[elfsec]->sh_link;
|
1111 |
|
|
|
1112 |
|
|
{
|
1113 |
|
|
/* The shared libraries distributed with hpux11 have a bogus
|
1114 |
|
|
sh_link field for the ".dynamic" section. This code detects
|
1115 |
|
|
when LINK refers to a section that is not a string table and
|
1116 |
|
|
tries to find the string table for the ".dynsym" section
|
1117 |
|
|
instead. */
|
1118 |
|
|
Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
|
1119 |
|
|
if (hdr->sh_type != SHT_STRTAB)
|
1120 |
|
|
{
|
1121 |
|
|
asection *s = bfd_get_section_by_name (abfd, ".dynsym");
|
1122 |
|
|
int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
|
1123 |
|
|
if (elfsec == -1)
|
1124 |
|
|
goto error_return;
|
1125 |
|
|
link = elf_elfsections (abfd)[elfsec]->sh_link;
|
1126 |
|
|
}
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
extdyn = dynbuf;
|
1130 |
|
|
extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
|
1131 |
|
|
for (; extdyn < extdynend; extdyn++)
|
1132 |
|
|
{
|
1133 |
|
|
Elf_Internal_Dyn dyn;
|
1134 |
|
|
|
1135 |
|
|
elf_swap_dyn_in (abfd, extdyn, &dyn);
|
1136 |
|
|
if (dyn.d_tag == DT_SONAME)
|
1137 |
|
|
{
|
1138 |
|
|
name = bfd_elf_string_from_elf_section (abfd, link,
|
1139 |
|
|
dyn.d_un.d_val);
|
1140 |
|
|
if (name == NULL)
|
1141 |
|
|
goto error_return;
|
1142 |
|
|
}
|
1143 |
|
|
if (dyn.d_tag == DT_NEEDED)
|
1144 |
|
|
{
|
1145 |
|
|
struct bfd_link_needed_list *n, **pn;
|
1146 |
|
|
char *fnm, *anm;
|
1147 |
|
|
|
1148 |
|
|
n = ((struct bfd_link_needed_list *)
|
1149 |
|
|
bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
|
1150 |
|
|
fnm = bfd_elf_string_from_elf_section (abfd, link,
|
1151 |
|
|
dyn.d_un.d_val);
|
1152 |
|
|
if (n == NULL || fnm == NULL)
|
1153 |
|
|
goto error_return;
|
1154 |
|
|
anm = bfd_alloc (abfd, strlen (fnm) + 1);
|
1155 |
|
|
if (anm == NULL)
|
1156 |
|
|
goto error_return;
|
1157 |
|
|
strcpy (anm, fnm);
|
1158 |
|
|
n->name = anm;
|
1159 |
|
|
n->by = abfd;
|
1160 |
|
|
n->next = NULL;
|
1161 |
|
|
for (pn = &elf_hash_table (info)->needed;
|
1162 |
|
|
*pn != NULL;
|
1163 |
|
|
pn = &(*pn)->next)
|
1164 |
|
|
;
|
1165 |
|
|
*pn = n;
|
1166 |
|
|
}
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
free (dynbuf);
|
1170 |
|
|
dynbuf = NULL;
|
1171 |
|
|
}
|
1172 |
|
|
|
1173 |
|
|
/* We do not want to include any of the sections in a dynamic
|
1174 |
|
|
object in the output file. We hack by simply clobbering the
|
1175 |
|
|
list of sections in the BFD. This could be handled more
|
1176 |
|
|
cleanly by, say, a new section flag; the existing
|
1177 |
|
|
SEC_NEVER_LOAD flag is not the one we want, because that one
|
1178 |
|
|
still implies that the section takes up space in the output
|
1179 |
|
|
file. */
|
1180 |
|
|
abfd->sections = NULL;
|
1181 |
|
|
abfd->section_count = 0;
|
1182 |
|
|
|
1183 |
|
|
/* If this is the first dynamic object found in the link, create
|
1184 |
|
|
the special sections required for dynamic linking. */
|
1185 |
|
|
if (! elf_hash_table (info)->dynamic_sections_created)
|
1186 |
|
|
{
|
1187 |
|
|
if (! elf_link_create_dynamic_sections (abfd, info))
|
1188 |
|
|
goto error_return;
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
if (add_needed)
|
1192 |
|
|
{
|
1193 |
|
|
/* Add a DT_NEEDED entry for this dynamic object. */
|
1194 |
|
|
oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
1195 |
|
|
strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
|
1196 |
|
|
true, false);
|
1197 |
|
|
if (strindex == (bfd_size_type) -1)
|
1198 |
|
|
goto error_return;
|
1199 |
|
|
|
1200 |
|
|
if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
|
1201 |
|
|
{
|
1202 |
|
|
asection *sdyn;
|
1203 |
|
|
Elf_External_Dyn *dyncon, *dynconend;
|
1204 |
|
|
|
1205 |
|
|
/* The hash table size did not change, which means that
|
1206 |
|
|
the dynamic object name was already entered. If we
|
1207 |
|
|
have already included this dynamic object in the
|
1208 |
|
|
link, just ignore it. There is no reason to include
|
1209 |
|
|
a particular dynamic object more than once. */
|
1210 |
|
|
sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
|
1211 |
|
|
".dynamic");
|
1212 |
|
|
BFD_ASSERT (sdyn != NULL);
|
1213 |
|
|
|
1214 |
|
|
dyncon = (Elf_External_Dyn *) sdyn->contents;
|
1215 |
|
|
dynconend = (Elf_External_Dyn *) (sdyn->contents +
|
1216 |
|
|
sdyn->_raw_size);
|
1217 |
|
|
for (; dyncon < dynconend; dyncon++)
|
1218 |
|
|
{
|
1219 |
|
|
Elf_Internal_Dyn dyn;
|
1220 |
|
|
|
1221 |
|
|
elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
|
1222 |
|
|
&dyn);
|
1223 |
|
|
if (dyn.d_tag == DT_NEEDED
|
1224 |
|
|
&& dyn.d_un.d_val == strindex)
|
1225 |
|
|
{
|
1226 |
|
|
if (buf != NULL)
|
1227 |
|
|
free (buf);
|
1228 |
|
|
if (extversym != NULL)
|
1229 |
|
|
free (extversym);
|
1230 |
|
|
return true;
|
1231 |
|
|
}
|
1232 |
|
|
}
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
|
1236 |
|
|
goto error_return;
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
/* Save the SONAME, if there is one, because sometimes the
|
1240 |
|
|
linker emulation code will need to know it. */
|
1241 |
|
|
if (*name == '\0')
|
1242 |
|
|
name = bfd_get_filename (abfd);
|
1243 |
|
|
elf_dt_name (abfd) = name;
|
1244 |
|
|
}
|
1245 |
|
|
|
1246 |
|
|
if (bfd_seek (abfd,
|
1247 |
|
|
hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
|
1248 |
|
|
SEEK_SET) != 0
|
1249 |
|
|
|| (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
|
1250 |
|
|
!= extsymcount * sizeof (Elf_External_Sym)))
|
1251 |
|
|
goto error_return;
|
1252 |
|
|
|
1253 |
|
|
weaks = NULL;
|
1254 |
|
|
|
1255 |
|
|
ever = extversym != NULL ? extversym + extsymoff : NULL;
|
1256 |
|
|
esymend = buf + extsymcount;
|
1257 |
|
|
for (esym = buf;
|
1258 |
|
|
esym < esymend;
|
1259 |
|
|
esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
|
1260 |
|
|
{
|
1261 |
|
|
Elf_Internal_Sym sym;
|
1262 |
|
|
int bind;
|
1263 |
|
|
bfd_vma value;
|
1264 |
|
|
asection *sec;
|
1265 |
|
|
flagword flags;
|
1266 |
|
|
const char *name;
|
1267 |
|
|
struct elf_link_hash_entry *h;
|
1268 |
|
|
boolean definition;
|
1269 |
|
|
boolean size_change_ok, type_change_ok;
|
1270 |
|
|
boolean new_weakdef;
|
1271 |
|
|
unsigned int old_alignment;
|
1272 |
|
|
|
1273 |
|
|
elf_swap_symbol_in (abfd, esym, &sym);
|
1274 |
|
|
|
1275 |
|
|
flags = BSF_NO_FLAGS;
|
1276 |
|
|
sec = NULL;
|
1277 |
|
|
value = sym.st_value;
|
1278 |
|
|
*sym_hash = NULL;
|
1279 |
|
|
|
1280 |
|
|
bind = ELF_ST_BIND (sym.st_info);
|
1281 |
|
|
if (bind == STB_LOCAL)
|
1282 |
|
|
{
|
1283 |
|
|
/* This should be impossible, since ELF requires that all
|
1284 |
|
|
global symbols follow all local symbols, and that sh_info
|
1285 |
|
|
point to the first global symbol. Unfortunatealy, Irix 5
|
1286 |
|
|
screws this up. */
|
1287 |
|
|
continue;
|
1288 |
|
|
}
|
1289 |
|
|
else if (bind == STB_GLOBAL)
|
1290 |
|
|
{
|
1291 |
|
|
if (sym.st_shndx != SHN_UNDEF
|
1292 |
|
|
&& sym.st_shndx != SHN_COMMON)
|
1293 |
|
|
flags = BSF_GLOBAL;
|
1294 |
|
|
else
|
1295 |
|
|
flags = 0;
|
1296 |
|
|
}
|
1297 |
|
|
else if (bind == STB_WEAK)
|
1298 |
|
|
flags = BSF_WEAK;
|
1299 |
|
|
else
|
1300 |
|
|
{
|
1301 |
|
|
/* Leave it up to the processor backend. */
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
if (sym.st_shndx == SHN_UNDEF)
|
1305 |
|
|
sec = bfd_und_section_ptr;
|
1306 |
|
|
else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
|
1307 |
|
|
{
|
1308 |
|
|
sec = section_from_elf_index (abfd, sym.st_shndx);
|
1309 |
|
|
if (sec == NULL)
|
1310 |
|
|
sec = bfd_abs_section_ptr;
|
1311 |
|
|
else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
|
1312 |
|
|
value -= sec->vma;
|
1313 |
|
|
}
|
1314 |
|
|
else if (sym.st_shndx == SHN_ABS)
|
1315 |
|
|
sec = bfd_abs_section_ptr;
|
1316 |
|
|
else if (sym.st_shndx == SHN_COMMON)
|
1317 |
|
|
{
|
1318 |
|
|
sec = bfd_com_section_ptr;
|
1319 |
|
|
/* What ELF calls the size we call the value. What ELF
|
1320 |
|
|
calls the value we call the alignment. */
|
1321 |
|
|
value = sym.st_size;
|
1322 |
|
|
}
|
1323 |
|
|
else
|
1324 |
|
|
{
|
1325 |
|
|
/* Leave it up to the processor backend. */
|
1326 |
|
|
}
|
1327 |
|
|
|
1328 |
|
|
name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
|
1329 |
|
|
if (name == (const char *) NULL)
|
1330 |
|
|
goto error_return;
|
1331 |
|
|
|
1332 |
|
|
if (add_symbol_hook)
|
1333 |
|
|
{
|
1334 |
|
|
if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
|
1335 |
|
|
&value))
|
1336 |
|
|
goto error_return;
|
1337 |
|
|
|
1338 |
|
|
/* The hook function sets the name to NULL if this symbol
|
1339 |
|
|
should be skipped for some reason. */
|
1340 |
|
|
if (name == (const char *) NULL)
|
1341 |
|
|
continue;
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
/* Sanity check that all possibilities were handled. */
|
1345 |
|
|
if (sec == (asection *) NULL)
|
1346 |
|
|
{
|
1347 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1348 |
|
|
goto error_return;
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
if (bfd_is_und_section (sec)
|
1352 |
|
|
|| bfd_is_com_section (sec))
|
1353 |
|
|
definition = false;
|
1354 |
|
|
else
|
1355 |
|
|
definition = true;
|
1356 |
|
|
|
1357 |
|
|
size_change_ok = false;
|
1358 |
|
|
type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
|
1359 |
|
|
old_alignment = 0;
|
1360 |
|
|
if (info->hash->creator->flavour == bfd_target_elf_flavour)
|
1361 |
|
|
{
|
1362 |
|
|
Elf_Internal_Versym iver;
|
1363 |
|
|
unsigned int vernum = 0;
|
1364 |
|
|
boolean override;
|
1365 |
|
|
|
1366 |
|
|
if (ever != NULL)
|
1367 |
|
|
{
|
1368 |
|
|
_bfd_elf_swap_versym_in (abfd, ever, &iver);
|
1369 |
|
|
vernum = iver.vs_vers & VERSYM_VERSION;
|
1370 |
|
|
|
1371 |
|
|
/* If this is a hidden symbol, or if it is not version
|
1372 |
|
|
1, we append the version name to the symbol name.
|
1373 |
|
|
However, we do not modify a non-hidden absolute
|
1374 |
|
|
symbol, because it might be the version symbol
|
1375 |
|
|
itself. FIXME: What if it isn't? */
|
1376 |
|
|
if ((iver.vs_vers & VERSYM_HIDDEN) != 0
|
1377 |
|
|
|| (vernum > 1 && ! bfd_is_abs_section (sec)))
|
1378 |
|
|
{
|
1379 |
|
|
const char *verstr;
|
1380 |
|
|
int namelen, newlen;
|
1381 |
|
|
char *newname, *p;
|
1382 |
|
|
|
1383 |
|
|
if (sym.st_shndx != SHN_UNDEF)
|
1384 |
|
|
{
|
1385 |
|
|
if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
|
1386 |
|
|
{
|
1387 |
|
|
(*_bfd_error_handler)
|
1388 |
|
|
(_("%s: %s: invalid version %u (max %d)"),
|
1389 |
|
|
bfd_get_filename (abfd), name, vernum,
|
1390 |
|
|
elf_tdata (abfd)->dynverdef_hdr.sh_info);
|
1391 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1392 |
|
|
goto error_return;
|
1393 |
|
|
}
|
1394 |
|
|
else if (vernum > 1)
|
1395 |
|
|
verstr =
|
1396 |
|
|
elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
|
1397 |
|
|
else
|
1398 |
|
|
verstr = "";
|
1399 |
|
|
}
|
1400 |
|
|
else
|
1401 |
|
|
{
|
1402 |
|
|
/* We cannot simply test for the number of
|
1403 |
|
|
entries in the VERNEED section since the
|
1404 |
|
|
numbers for the needed versions do not start
|
1405 |
|
|
at 0. */
|
1406 |
|
|
Elf_Internal_Verneed *t;
|
1407 |
|
|
|
1408 |
|
|
verstr = NULL;
|
1409 |
|
|
for (t = elf_tdata (abfd)->verref;
|
1410 |
|
|
t != NULL;
|
1411 |
|
|
t = t->vn_nextref)
|
1412 |
|
|
{
|
1413 |
|
|
Elf_Internal_Vernaux *a;
|
1414 |
|
|
|
1415 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
1416 |
|
|
{
|
1417 |
|
|
if (a->vna_other == vernum)
|
1418 |
|
|
{
|
1419 |
|
|
verstr = a->vna_nodename;
|
1420 |
|
|
break;
|
1421 |
|
|
}
|
1422 |
|
|
}
|
1423 |
|
|
if (a != NULL)
|
1424 |
|
|
break;
|
1425 |
|
|
}
|
1426 |
|
|
if (verstr == NULL)
|
1427 |
|
|
{
|
1428 |
|
|
(*_bfd_error_handler)
|
1429 |
|
|
(_("%s: %s: invalid needed version %d"),
|
1430 |
|
|
bfd_get_filename (abfd), name, vernum);
|
1431 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1432 |
|
|
goto error_return;
|
1433 |
|
|
}
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
namelen = strlen (name);
|
1437 |
|
|
newlen = namelen + strlen (verstr) + 2;
|
1438 |
|
|
if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
|
1439 |
|
|
++newlen;
|
1440 |
|
|
|
1441 |
|
|
newname = (char *) bfd_alloc (abfd, newlen);
|
1442 |
|
|
if (newname == NULL)
|
1443 |
|
|
goto error_return;
|
1444 |
|
|
strcpy (newname, name);
|
1445 |
|
|
p = newname + namelen;
|
1446 |
|
|
*p++ = ELF_VER_CHR;
|
1447 |
|
|
/* If this is a defined non-hidden version symbol,
|
1448 |
|
|
we add another @ to the name. This indicates the
|
1449 |
|
|
default version of the symbol. */
|
1450 |
|
|
if ((iver.vs_vers & VERSYM_HIDDEN) == 0
|
1451 |
|
|
&& sym.st_shndx != SHN_UNDEF)
|
1452 |
|
|
*p++ = ELF_VER_CHR;
|
1453 |
|
|
strcpy (p, verstr);
|
1454 |
|
|
|
1455 |
|
|
name = newname;
|
1456 |
|
|
}
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
|
1460 |
|
|
sym_hash, &override, &type_change_ok,
|
1461 |
|
|
&size_change_ok))
|
1462 |
|
|
goto error_return;
|
1463 |
|
|
|
1464 |
|
|
if (override)
|
1465 |
|
|
definition = false;
|
1466 |
|
|
|
1467 |
|
|
h = *sym_hash;
|
1468 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
1469 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
1470 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1471 |
|
|
|
1472 |
|
|
/* Remember the old alignment if this is a common symbol, so
|
1473 |
|
|
that we don't reduce the alignment later on. We can't
|
1474 |
|
|
check later, because _bfd_generic_link_add_one_symbol
|
1475 |
|
|
will set a default for the alignment which we want to
|
1476 |
|
|
override. */
|
1477 |
|
|
if (h->root.type == bfd_link_hash_common)
|
1478 |
|
|
old_alignment = h->root.u.c.p->alignment_power;
|
1479 |
|
|
|
1480 |
|
|
if (elf_tdata (abfd)->verdef != NULL
|
1481 |
|
|
&& ! override
|
1482 |
|
|
&& vernum > 1
|
1483 |
|
|
&& definition)
|
1484 |
|
|
h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
|
1485 |
|
|
}
|
1486 |
|
|
|
1487 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
1488 |
|
|
(info, abfd, name, flags, sec, value, (const char *) NULL,
|
1489 |
|
|
false, collect, (struct bfd_link_hash_entry **) sym_hash)))
|
1490 |
|
|
goto error_return;
|
1491 |
|
|
|
1492 |
|
|
h = *sym_hash;
|
1493 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
1494 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
1495 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1496 |
|
|
*sym_hash = h;
|
1497 |
|
|
|
1498 |
|
|
new_weakdef = false;
|
1499 |
|
|
if (dynamic
|
1500 |
|
|
&& definition
|
1501 |
|
|
&& (flags & BSF_WEAK) != 0
|
1502 |
|
|
&& ELF_ST_TYPE (sym.st_info) != STT_FUNC
|
1503 |
|
|
&& info->hash->creator->flavour == bfd_target_elf_flavour
|
1504 |
|
|
&& h->weakdef == NULL)
|
1505 |
|
|
{
|
1506 |
|
|
/* Keep a list of all weak defined non function symbols from
|
1507 |
|
|
a dynamic object, using the weakdef field. Later in this
|
1508 |
|
|
function we will set the weakdef field to the correct
|
1509 |
|
|
value. We only put non-function symbols from dynamic
|
1510 |
|
|
objects on this list, because that happens to be the only
|
1511 |
|
|
time we need to know the normal symbol corresponding to a
|
1512 |
|
|
weak symbol, and the information is time consuming to
|
1513 |
|
|
figure out. If the weakdef field is not already NULL,
|
1514 |
|
|
then this symbol was already defined by some previous
|
1515 |
|
|
dynamic object, and we will be using that previous
|
1516 |
|
|
definition anyhow. */
|
1517 |
|
|
|
1518 |
|
|
h->weakdef = weaks;
|
1519 |
|
|
weaks = h;
|
1520 |
|
|
new_weakdef = true;
|
1521 |
|
|
}
|
1522 |
|
|
|
1523 |
|
|
/* Set the alignment of a common symbol. */
|
1524 |
|
|
if (sym.st_shndx == SHN_COMMON
|
1525 |
|
|
&& h->root.type == bfd_link_hash_common)
|
1526 |
|
|
{
|
1527 |
|
|
unsigned int align;
|
1528 |
|
|
|
1529 |
|
|
align = bfd_log2 (sym.st_value);
|
1530 |
|
|
if (align > old_alignment)
|
1531 |
|
|
h->root.u.c.p->alignment_power = align;
|
1532 |
|
|
}
|
1533 |
|
|
|
1534 |
|
|
if (info->hash->creator->flavour == bfd_target_elf_flavour)
|
1535 |
|
|
{
|
1536 |
|
|
int old_flags;
|
1537 |
|
|
boolean dynsym;
|
1538 |
|
|
int new_flag;
|
1539 |
|
|
|
1540 |
|
|
/* Remember the symbol size and type. */
|
1541 |
|
|
if (sym.st_size != 0
|
1542 |
|
|
&& (definition || h->size == 0))
|
1543 |
|
|
{
|
1544 |
|
|
if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
|
1545 |
|
|
(*_bfd_error_handler)
|
1546 |
|
|
(_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
|
1547 |
|
|
name, (unsigned long) h->size, (unsigned long) sym.st_size,
|
1548 |
|
|
bfd_get_filename (abfd));
|
1549 |
|
|
|
1550 |
|
|
h->size = sym.st_size;
|
1551 |
|
|
}
|
1552 |
|
|
|
1553 |
|
|
/* If this is a common symbol, then we always want H->SIZE
|
1554 |
|
|
to be the size of the common symbol. The code just above
|
1555 |
|
|
won't fix the size if a common symbol becomes larger. We
|
1556 |
|
|
don't warn about a size change here, because that is
|
1557 |
|
|
covered by --warn-common. */
|
1558 |
|
|
if (h->root.type == bfd_link_hash_common)
|
1559 |
|
|
h->size = h->root.u.c.size;
|
1560 |
|
|
|
1561 |
|
|
if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
|
1562 |
|
|
&& (definition || h->type == STT_NOTYPE))
|
1563 |
|
|
{
|
1564 |
|
|
if (h->type != STT_NOTYPE
|
1565 |
|
|
&& h->type != ELF_ST_TYPE (sym.st_info)
|
1566 |
|
|
&& ! type_change_ok)
|
1567 |
|
|
(*_bfd_error_handler)
|
1568 |
|
|
(_("Warning: type of symbol `%s' changed from %d to %d in %s"),
|
1569 |
|
|
name, h->type, ELF_ST_TYPE (sym.st_info),
|
1570 |
|
|
bfd_get_filename (abfd));
|
1571 |
|
|
|
1572 |
|
|
h->type = ELF_ST_TYPE (sym.st_info);
|
1573 |
|
|
}
|
1574 |
|
|
|
1575 |
|
|
/* If st_other has a processor-specific meaning, specific code
|
1576 |
|
|
might be needed here. */
|
1577 |
|
|
if (sym.st_other != 0)
|
1578 |
|
|
{
|
1579 |
|
|
/* Combine visibilities, using the most constraining one. */
|
1580 |
|
|
unsigned char hvis = ELF_ST_VISIBILITY (h->other);
|
1581 |
|
|
unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
|
1582 |
|
|
|
1583 |
|
|
if (symvis && (hvis > symvis || hvis == 0))
|
1584 |
|
|
h->other = sym.st_other;
|
1585 |
|
|
|
1586 |
|
|
/* If neither has visibility, use the st_other of the
|
1587 |
|
|
definition. This is an arbitrary choice, since the
|
1588 |
|
|
other bits have no general meaning. */
|
1589 |
|
|
if (!symvis && !hvis
|
1590 |
|
|
&& (definition || h->other == 0))
|
1591 |
|
|
h->other = sym.st_other;
|
1592 |
|
|
}
|
1593 |
|
|
|
1594 |
|
|
/* Set a flag in the hash table entry indicating the type of
|
1595 |
|
|
reference or definition we just found. Keep a count of
|
1596 |
|
|
the number of dynamic symbols we find. A dynamic symbol
|
1597 |
|
|
is one which is referenced or defined by both a regular
|
1598 |
|
|
object and a shared object. */
|
1599 |
|
|
old_flags = h->elf_link_hash_flags;
|
1600 |
|
|
dynsym = false;
|
1601 |
|
|
if (! dynamic)
|
1602 |
|
|
{
|
1603 |
|
|
if (! definition)
|
1604 |
|
|
{
|
1605 |
|
|
new_flag = ELF_LINK_HASH_REF_REGULAR;
|
1606 |
|
|
if (bind != STB_WEAK)
|
1607 |
|
|
new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
|
1608 |
|
|
}
|
1609 |
|
|
else
|
1610 |
|
|
new_flag = ELF_LINK_HASH_DEF_REGULAR;
|
1611 |
|
|
if (info->shared
|
1612 |
|
|
|| (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
1613 |
|
|
| ELF_LINK_HASH_REF_DYNAMIC)) != 0)
|
1614 |
|
|
dynsym = true;
|
1615 |
|
|
}
|
1616 |
|
|
else
|
1617 |
|
|
{
|
1618 |
|
|
if (! definition)
|
1619 |
|
|
new_flag = ELF_LINK_HASH_REF_DYNAMIC;
|
1620 |
|
|
else
|
1621 |
|
|
new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
|
1622 |
|
|
if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
|
1623 |
|
|
| ELF_LINK_HASH_REF_REGULAR)) != 0
|
1624 |
|
|
|| (h->weakdef != NULL
|
1625 |
|
|
&& ! new_weakdef
|
1626 |
|
|
&& h->weakdef->dynindx != -1))
|
1627 |
|
|
dynsym = true;
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
h->elf_link_hash_flags |= new_flag;
|
1631 |
|
|
|
1632 |
|
|
/* If this symbol has a version, and it is the default
|
1633 |
|
|
version, we create an indirect symbol from the default
|
1634 |
|
|
name to the fully decorated name. This will cause
|
1635 |
|
|
external references which do not specify a version to be
|
1636 |
|
|
bound to this version of the symbol. */
|
1637 |
|
|
if (definition)
|
1638 |
|
|
{
|
1639 |
|
|
char *p;
|
1640 |
|
|
|
1641 |
|
|
p = strchr (name, ELF_VER_CHR);
|
1642 |
|
|
if (p != NULL && p[1] == ELF_VER_CHR)
|
1643 |
|
|
{
|
1644 |
|
|
char *shortname;
|
1645 |
|
|
struct elf_link_hash_entry *hi;
|
1646 |
|
|
boolean override;
|
1647 |
|
|
|
1648 |
|
|
shortname = bfd_hash_allocate (&info->hash->table,
|
1649 |
|
|
p - name + 1);
|
1650 |
|
|
if (shortname == NULL)
|
1651 |
|
|
goto error_return;
|
1652 |
|
|
strncpy (shortname, name, p - name);
|
1653 |
|
|
shortname[p - name] = '\0';
|
1654 |
|
|
|
1655 |
|
|
/* We are going to create a new symbol. Merge it
|
1656 |
|
|
with any existing symbol with this name. For the
|
1657 |
|
|
purposes of the merge, act as though we were
|
1658 |
|
|
defining the symbol we just defined, although we
|
1659 |
|
|
actually going to define an indirect symbol. */
|
1660 |
|
|
type_change_ok = false;
|
1661 |
|
|
size_change_ok = false;
|
1662 |
|
|
if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
|
1663 |
|
|
&value, &hi, &override,
|
1664 |
|
|
&type_change_ok, &size_change_ok))
|
1665 |
|
|
goto error_return;
|
1666 |
|
|
|
1667 |
|
|
if (! override)
|
1668 |
|
|
{
|
1669 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
1670 |
|
|
(info, abfd, shortname, BSF_INDIRECT,
|
1671 |
|
|
bfd_ind_section_ptr, (bfd_vma) 0, name, false,
|
1672 |
|
|
collect, (struct bfd_link_hash_entry **) &hi)))
|
1673 |
|
|
goto error_return;
|
1674 |
|
|
}
|
1675 |
|
|
else
|
1676 |
|
|
{
|
1677 |
|
|
/* In this case the symbol named SHORTNAME is
|
1678 |
|
|
overriding the indirect symbol we want to
|
1679 |
|
|
add. We were planning on making SHORTNAME an
|
1680 |
|
|
indirect symbol referring to NAME. SHORTNAME
|
1681 |
|
|
is the name without a version. NAME is the
|
1682 |
|
|
fully versioned name, and it is the default
|
1683 |
|
|
version.
|
1684 |
|
|
|
1685 |
|
|
Overriding means that we already saw a
|
1686 |
|
|
definition for the symbol SHORTNAME in a
|
1687 |
|
|
regular object, and it is overriding the
|
1688 |
|
|
symbol defined in the dynamic object.
|
1689 |
|
|
|
1690 |
|
|
When this happens, we actually want to change
|
1691 |
|
|
NAME, the symbol we just added, to refer to
|
1692 |
|
|
SHORTNAME. This will cause references to
|
1693 |
|
|
NAME in the shared object to become
|
1694 |
|
|
references to SHORTNAME in the regular
|
1695 |
|
|
object. This is what we expect when we
|
1696 |
|
|
override a function in a shared object: that
|
1697 |
|
|
the references in the shared object will be
|
1698 |
|
|
mapped to the definition in the regular
|
1699 |
|
|
object. */
|
1700 |
|
|
|
1701 |
|
|
while (hi->root.type == bfd_link_hash_indirect
|
1702 |
|
|
|| hi->root.type == bfd_link_hash_warning)
|
1703 |
|
|
hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
|
1704 |
|
|
|
1705 |
|
|
h->root.type = bfd_link_hash_indirect;
|
1706 |
|
|
h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
|
1707 |
|
|
if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
|
1708 |
|
|
{
|
1709 |
|
|
h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
|
1710 |
|
|
hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
|
1711 |
|
|
if (hi->elf_link_hash_flags
|
1712 |
|
|
& (ELF_LINK_HASH_REF_REGULAR
|
1713 |
|
|
| ELF_LINK_HASH_DEF_REGULAR))
|
1714 |
|
|
{
|
1715 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info,
|
1716 |
|
|
hi))
|
1717 |
|
|
goto error_return;
|
1718 |
|
|
}
|
1719 |
|
|
}
|
1720 |
|
|
|
1721 |
|
|
/* Now set HI to H, so that the following code
|
1722 |
|
|
will set the other fields correctly. */
|
1723 |
|
|
hi = h;
|
1724 |
|
|
}
|
1725 |
|
|
|
1726 |
|
|
/* If there is a duplicate definition somewhere,
|
1727 |
|
|
then HI may not point to an indirect symbol. We
|
1728 |
|
|
will have reported an error to the user in that
|
1729 |
|
|
case. */
|
1730 |
|
|
|
1731 |
|
|
if (hi->root.type == bfd_link_hash_indirect)
|
1732 |
|
|
{
|
1733 |
|
|
struct elf_link_hash_entry *ht;
|
1734 |
|
|
|
1735 |
|
|
/* If the symbol became indirect, then we assume
|
1736 |
|
|
that we have not seen a definition before. */
|
1737 |
|
|
BFD_ASSERT ((hi->elf_link_hash_flags
|
1738 |
|
|
& (ELF_LINK_HASH_DEF_DYNAMIC
|
1739 |
|
|
| ELF_LINK_HASH_DEF_REGULAR))
|
1740 |
|
|
== 0);
|
1741 |
|
|
|
1742 |
|
|
ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
|
1743 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (ht, hi);
|
1744 |
|
|
|
1745 |
|
|
/* See if the new flags lead us to realize that
|
1746 |
|
|
the symbol must be dynamic. */
|
1747 |
|
|
if (! dynsym)
|
1748 |
|
|
{
|
1749 |
|
|
if (! dynamic)
|
1750 |
|
|
{
|
1751 |
|
|
if (info->shared
|
1752 |
|
|
|| ((hi->elf_link_hash_flags
|
1753 |
|
|
& ELF_LINK_HASH_REF_DYNAMIC)
|
1754 |
|
|
!= 0))
|
1755 |
|
|
dynsym = true;
|
1756 |
|
|
}
|
1757 |
|
|
else
|
1758 |
|
|
{
|
1759 |
|
|
if ((hi->elf_link_hash_flags
|
1760 |
|
|
& ELF_LINK_HASH_REF_REGULAR) != 0)
|
1761 |
|
|
dynsym = true;
|
1762 |
|
|
}
|
1763 |
|
|
}
|
1764 |
|
|
}
|
1765 |
|
|
|
1766 |
|
|
/* We also need to define an indirection from the
|
1767 |
|
|
nondefault version of the symbol. */
|
1768 |
|
|
|
1769 |
|
|
shortname = bfd_hash_allocate (&info->hash->table,
|
1770 |
|
|
strlen (name));
|
1771 |
|
|
if (shortname == NULL)
|
1772 |
|
|
goto error_return;
|
1773 |
|
|
strncpy (shortname, name, p - name);
|
1774 |
|
|
strcpy (shortname + (p - name), p + 1);
|
1775 |
|
|
|
1776 |
|
|
/* Once again, merge with any existing symbol. */
|
1777 |
|
|
type_change_ok = false;
|
1778 |
|
|
size_change_ok = false;
|
1779 |
|
|
if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
|
1780 |
|
|
&value, &hi, &override,
|
1781 |
|
|
&type_change_ok, &size_change_ok))
|
1782 |
|
|
goto error_return;
|
1783 |
|
|
|
1784 |
|
|
if (override)
|
1785 |
|
|
{
|
1786 |
|
|
/* Here SHORTNAME is a versioned name, so we
|
1787 |
|
|
don't expect to see the type of override we
|
1788 |
|
|
do in the case above. */
|
1789 |
|
|
(*_bfd_error_handler)
|
1790 |
|
|
(_("%s: warning: unexpected redefinition of `%s'"),
|
1791 |
|
|
bfd_get_filename (abfd), shortname);
|
1792 |
|
|
}
|
1793 |
|
|
else
|
1794 |
|
|
{
|
1795 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
1796 |
|
|
(info, abfd, shortname, BSF_INDIRECT,
|
1797 |
|
|
bfd_ind_section_ptr, (bfd_vma) 0, name, false,
|
1798 |
|
|
collect, (struct bfd_link_hash_entry **) &hi)))
|
1799 |
|
|
goto error_return;
|
1800 |
|
|
|
1801 |
|
|
/* If there is a duplicate definition somewhere,
|
1802 |
|
|
then HI may not point to an indirect symbol.
|
1803 |
|
|
We will have reported an error to the user in
|
1804 |
|
|
that case. */
|
1805 |
|
|
|
1806 |
|
|
if (hi->root.type == bfd_link_hash_indirect)
|
1807 |
|
|
{
|
1808 |
|
|
/* If the symbol became indirect, then we
|
1809 |
|
|
assume that we have not seen a definition
|
1810 |
|
|
before. */
|
1811 |
|
|
BFD_ASSERT ((hi->elf_link_hash_flags
|
1812 |
|
|
& (ELF_LINK_HASH_DEF_DYNAMIC
|
1813 |
|
|
| ELF_LINK_HASH_DEF_REGULAR))
|
1814 |
|
|
== 0);
|
1815 |
|
|
|
1816 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (h, hi);
|
1817 |
|
|
|
1818 |
|
|
/* See if the new flags lead us to realize
|
1819 |
|
|
that the symbol must be dynamic. */
|
1820 |
|
|
if (! dynsym)
|
1821 |
|
|
{
|
1822 |
|
|
if (! dynamic)
|
1823 |
|
|
{
|
1824 |
|
|
if (info->shared
|
1825 |
|
|
|| ((hi->elf_link_hash_flags
|
1826 |
|
|
& ELF_LINK_HASH_REF_DYNAMIC)
|
1827 |
|
|
!= 0))
|
1828 |
|
|
dynsym = true;
|
1829 |
|
|
}
|
1830 |
|
|
else
|
1831 |
|
|
{
|
1832 |
|
|
if ((hi->elf_link_hash_flags
|
1833 |
|
|
& ELF_LINK_HASH_REF_REGULAR) != 0)
|
1834 |
|
|
dynsym = true;
|
1835 |
|
|
}
|
1836 |
|
|
}
|
1837 |
|
|
}
|
1838 |
|
|
}
|
1839 |
|
|
}
|
1840 |
|
|
}
|
1841 |
|
|
|
1842 |
|
|
if (dynsym && h->dynindx == -1)
|
1843 |
|
|
{
|
1844 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
1845 |
|
|
goto error_return;
|
1846 |
|
|
if (h->weakdef != NULL
|
1847 |
|
|
&& ! new_weakdef
|
1848 |
|
|
&& h->weakdef->dynindx == -1)
|
1849 |
|
|
{
|
1850 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info,
|
1851 |
|
|
h->weakdef))
|
1852 |
|
|
goto error_return;
|
1853 |
|
|
}
|
1854 |
|
|
}
|
1855 |
|
|
}
|
1856 |
|
|
}
|
1857 |
|
|
|
1858 |
|
|
/* Now set the weakdefs field correctly for all the weak defined
|
1859 |
|
|
symbols we found. The only way to do this is to search all the
|
1860 |
|
|
symbols. Since we only need the information for non functions in
|
1861 |
|
|
dynamic objects, that's the only time we actually put anything on
|
1862 |
|
|
the list WEAKS. We need this information so that if a regular
|
1863 |
|
|
object refers to a symbol defined weakly in a dynamic object, the
|
1864 |
|
|
real symbol in the dynamic object is also put in the dynamic
|
1865 |
|
|
symbols; we also must arrange for both symbols to point to the
|
1866 |
|
|
same memory location. We could handle the general case of symbol
|
1867 |
|
|
aliasing, but a general symbol alias can only be generated in
|
1868 |
|
|
assembler code, handling it correctly would be very time
|
1869 |
|
|
consuming, and other ELF linkers don't handle general aliasing
|
1870 |
|
|
either. */
|
1871 |
|
|
while (weaks != NULL)
|
1872 |
|
|
{
|
1873 |
|
|
struct elf_link_hash_entry *hlook;
|
1874 |
|
|
asection *slook;
|
1875 |
|
|
bfd_vma vlook;
|
1876 |
|
|
struct elf_link_hash_entry **hpp;
|
1877 |
|
|
struct elf_link_hash_entry **hppend;
|
1878 |
|
|
|
1879 |
|
|
hlook = weaks;
|
1880 |
|
|
weaks = hlook->weakdef;
|
1881 |
|
|
hlook->weakdef = NULL;
|
1882 |
|
|
|
1883 |
|
|
BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
|
1884 |
|
|
|| hlook->root.type == bfd_link_hash_defweak
|
1885 |
|
|
|| hlook->root.type == bfd_link_hash_common
|
1886 |
|
|
|| hlook->root.type == bfd_link_hash_indirect);
|
1887 |
|
|
slook = hlook->root.u.def.section;
|
1888 |
|
|
vlook = hlook->root.u.def.value;
|
1889 |
|
|
|
1890 |
|
|
hpp = elf_sym_hashes (abfd);
|
1891 |
|
|
hppend = hpp + extsymcount;
|
1892 |
|
|
for (; hpp < hppend; hpp++)
|
1893 |
|
|
{
|
1894 |
|
|
struct elf_link_hash_entry *h;
|
1895 |
|
|
|
1896 |
|
|
h = *hpp;
|
1897 |
|
|
if (h != NULL && h != hlook
|
1898 |
|
|
&& h->root.type == bfd_link_hash_defined
|
1899 |
|
|
&& h->root.u.def.section == slook
|
1900 |
|
|
&& h->root.u.def.value == vlook)
|
1901 |
|
|
{
|
1902 |
|
|
hlook->weakdef = h;
|
1903 |
|
|
|
1904 |
|
|
/* If the weak definition is in the list of dynamic
|
1905 |
|
|
symbols, make sure the real definition is put there
|
1906 |
|
|
as well. */
|
1907 |
|
|
if (hlook->dynindx != -1
|
1908 |
|
|
&& h->dynindx == -1)
|
1909 |
|
|
{
|
1910 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
1911 |
|
|
goto error_return;
|
1912 |
|
|
}
|
1913 |
|
|
|
1914 |
|
|
/* If the real definition is in the list of dynamic
|
1915 |
|
|
symbols, make sure the weak definition is put there
|
1916 |
|
|
as well. If we don't do this, then the dynamic
|
1917 |
|
|
loader might not merge the entries for the real
|
1918 |
|
|
definition and the weak definition. */
|
1919 |
|
|
if (h->dynindx != -1
|
1920 |
|
|
&& hlook->dynindx == -1)
|
1921 |
|
|
{
|
1922 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
|
1923 |
|
|
goto error_return;
|
1924 |
|
|
}
|
1925 |
|
|
|
1926 |
|
|
break;
|
1927 |
|
|
}
|
1928 |
|
|
}
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
if (buf != NULL)
|
1932 |
|
|
{
|
1933 |
|
|
free (buf);
|
1934 |
|
|
buf = NULL;
|
1935 |
|
|
}
|
1936 |
|
|
|
1937 |
|
|
if (extversym != NULL)
|
1938 |
|
|
{
|
1939 |
|
|
free (extversym);
|
1940 |
|
|
extversym = NULL;
|
1941 |
|
|
}
|
1942 |
|
|
|
1943 |
|
|
/* If this object is the same format as the output object, and it is
|
1944 |
|
|
not a shared library, then let the backend look through the
|
1945 |
|
|
relocs.
|
1946 |
|
|
|
1947 |
|
|
This is required to build global offset table entries and to
|
1948 |
|
|
arrange for dynamic relocs. It is not required for the
|
1949 |
|
|
particular common case of linking non PIC code, even when linking
|
1950 |
|
|
against shared libraries, but unfortunately there is no way of
|
1951 |
|
|
knowing whether an object file has been compiled PIC or not.
|
1952 |
|
|
Looking through the relocs is not particularly time consuming.
|
1953 |
|
|
The problem is that we must either (1) keep the relocs in memory,
|
1954 |
|
|
which causes the linker to require additional runtime memory or
|
1955 |
|
|
(2) read the relocs twice from the input file, which wastes time.
|
1956 |
|
|
This would be a good case for using mmap.
|
1957 |
|
|
|
1958 |
|
|
I have no idea how to handle linking PIC code into a file of a
|
1959 |
|
|
different format. It probably can't be done. */
|
1960 |
|
|
check_relocs = get_elf_backend_data (abfd)->check_relocs;
|
1961 |
|
|
if (! dynamic
|
1962 |
|
|
&& abfd->xvec == info->hash->creator
|
1963 |
|
|
&& check_relocs != NULL)
|
1964 |
|
|
{
|
1965 |
|
|
asection *o;
|
1966 |
|
|
|
1967 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
1968 |
|
|
{
|
1969 |
|
|
Elf_Internal_Rela *internal_relocs;
|
1970 |
|
|
boolean ok;
|
1971 |
|
|
|
1972 |
|
|
if ((o->flags & SEC_RELOC) == 0
|
1973 |
|
|
|| o->reloc_count == 0
|
1974 |
|
|
|| ((info->strip == strip_all || info->strip == strip_debugger)
|
1975 |
|
|
&& (o->flags & SEC_DEBUGGING) != 0)
|
1976 |
|
|
|| bfd_is_abs_section (o->output_section))
|
1977 |
|
|
continue;
|
1978 |
|
|
|
1979 |
|
|
internal_relocs = (NAME(_bfd_elf,link_read_relocs)
|
1980 |
|
|
(abfd, o, (PTR) NULL,
|
1981 |
|
|
(Elf_Internal_Rela *) NULL,
|
1982 |
|
|
info->keep_memory));
|
1983 |
|
|
if (internal_relocs == NULL)
|
1984 |
|
|
goto error_return;
|
1985 |
|
|
|
1986 |
|
|
ok = (*check_relocs) (abfd, info, o, internal_relocs);
|
1987 |
|
|
|
1988 |
|
|
if (! info->keep_memory)
|
1989 |
|
|
free (internal_relocs);
|
1990 |
|
|
|
1991 |
|
|
if (! ok)
|
1992 |
|
|
goto error_return;
|
1993 |
|
|
}
|
1994 |
|
|
}
|
1995 |
|
|
|
1996 |
|
|
/* If this is a non-traditional, non-relocateable link, try to
|
1997 |
|
|
optimize the handling of the .stab/.stabstr sections. */
|
1998 |
|
|
if (! dynamic
|
1999 |
|
|
&& ! info->relocateable
|
2000 |
|
|
&& ! info->traditional_format
|
2001 |
|
|
&& info->hash->creator->flavour == bfd_target_elf_flavour
|
2002 |
|
|
&& (info->strip != strip_all && info->strip != strip_debugger))
|
2003 |
|
|
{
|
2004 |
|
|
asection *stab, *stabstr;
|
2005 |
|
|
|
2006 |
|
|
stab = bfd_get_section_by_name (abfd, ".stab");
|
2007 |
|
|
if (stab != NULL)
|
2008 |
|
|
{
|
2009 |
|
|
stabstr = bfd_get_section_by_name (abfd, ".stabstr");
|
2010 |
|
|
|
2011 |
|
|
if (stabstr != NULL)
|
2012 |
|
|
{
|
2013 |
|
|
struct bfd_elf_section_data *secdata;
|
2014 |
|
|
|
2015 |
|
|
secdata = elf_section_data (stab);
|
2016 |
|
|
if (! _bfd_link_section_stabs (abfd,
|
2017 |
|
|
&elf_hash_table (info)->stab_info,
|
2018 |
|
|
stab, stabstr,
|
2019 |
|
|
&secdata->stab_info))
|
2020 |
|
|
goto error_return;
|
2021 |
|
|
}
|
2022 |
|
|
}
|
2023 |
|
|
}
|
2024 |
|
|
|
2025 |
|
|
return true;
|
2026 |
|
|
|
2027 |
|
|
error_return:
|
2028 |
|
|
if (buf != NULL)
|
2029 |
|
|
free (buf);
|
2030 |
|
|
if (dynbuf != NULL)
|
2031 |
|
|
free (dynbuf);
|
2032 |
|
|
if (dynver != NULL)
|
2033 |
|
|
free (dynver);
|
2034 |
|
|
if (extversym != NULL)
|
2035 |
|
|
free (extversym);
|
2036 |
|
|
return false;
|
2037 |
|
|
}
|
2038 |
|
|
|
2039 |
|
|
/* Create some sections which will be filled in with dynamic linking
|
2040 |
|
|
information. ABFD is an input file which requires dynamic sections
|
2041 |
|
|
to be created. The dynamic sections take up virtual memory space
|
2042 |
|
|
when the final executable is run, so we need to create them before
|
2043 |
|
|
addresses are assigned to the output sections. We work out the
|
2044 |
|
|
actual contents and size of these sections later. */
|
2045 |
|
|
|
2046 |
|
|
boolean
|
2047 |
|
|
elf_link_create_dynamic_sections (abfd, info)
|
2048 |
|
|
bfd *abfd;
|
2049 |
|
|
struct bfd_link_info *info;
|
2050 |
|
|
{
|
2051 |
|
|
flagword flags;
|
2052 |
|
|
register asection *s;
|
2053 |
|
|
struct elf_link_hash_entry *h;
|
2054 |
|
|
struct elf_backend_data *bed;
|
2055 |
|
|
|
2056 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
2057 |
|
|
return true;
|
2058 |
|
|
|
2059 |
|
|
/* Make sure that all dynamic sections use the same input BFD. */
|
2060 |
|
|
if (elf_hash_table (info)->dynobj == NULL)
|
2061 |
|
|
elf_hash_table (info)->dynobj = abfd;
|
2062 |
|
|
else
|
2063 |
|
|
abfd = elf_hash_table (info)->dynobj;
|
2064 |
|
|
|
2065 |
|
|
/* Note that we set the SEC_IN_MEMORY flag for all of these
|
2066 |
|
|
sections. */
|
2067 |
|
|
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
|
2068 |
|
|
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
2069 |
|
|
|
2070 |
|
|
/* A dynamically linked executable has a .interp section, but a
|
2071 |
|
|
shared library does not. */
|
2072 |
|
|
if (! info->shared)
|
2073 |
|
|
{
|
2074 |
|
|
s = bfd_make_section (abfd, ".interp");
|
2075 |
|
|
if (s == NULL
|
2076 |
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
|
2077 |
|
|
return false;
|
2078 |
|
|
}
|
2079 |
|
|
|
2080 |
|
|
/* Create sections to hold version informations. These are removed
|
2081 |
|
|
if they are not needed. */
|
2082 |
|
|
s = bfd_make_section (abfd, ".gnu.version_d");
|
2083 |
|
|
if (s == NULL
|
2084 |
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
2085 |
|
|
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
2086 |
|
|
return false;
|
2087 |
|
|
|
2088 |
|
|
s = bfd_make_section (abfd, ".gnu.version");
|
2089 |
|
|
if (s == NULL
|
2090 |
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
2091 |
|
|
|| ! bfd_set_section_alignment (abfd, s, 1))
|
2092 |
|
|
return false;
|
2093 |
|
|
|
2094 |
|
|
s = bfd_make_section (abfd, ".gnu.version_r");
|
2095 |
|
|
if (s == NULL
|
2096 |
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
2097 |
|
|
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
2098 |
|
|
return false;
|
2099 |
|
|
|
2100 |
|
|
s = bfd_make_section (abfd, ".dynsym");
|
2101 |
|
|
if (s == NULL
|
2102 |
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
2103 |
|
|
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
2104 |
|
|
return false;
|
2105 |
|
|
|
2106 |
|
|
s = bfd_make_section (abfd, ".dynstr");
|
2107 |
|
|
if (s == NULL
|
2108 |
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
|
2109 |
|
|
return false;
|
2110 |
|
|
|
2111 |
|
|
/* Create a strtab to hold the dynamic symbol names. */
|
2112 |
|
|
if (elf_hash_table (info)->dynstr == NULL)
|
2113 |
|
|
{
|
2114 |
|
|
elf_hash_table (info)->dynstr = elf_stringtab_init ();
|
2115 |
|
|
if (elf_hash_table (info)->dynstr == NULL)
|
2116 |
|
|
return false;
|
2117 |
|
|
}
|
2118 |
|
|
|
2119 |
|
|
s = bfd_make_section (abfd, ".dynamic");
|
2120 |
|
|
if (s == NULL
|
2121 |
|
|
|| ! bfd_set_section_flags (abfd, s, flags)
|
2122 |
|
|
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
2123 |
|
|
return false;
|
2124 |
|
|
|
2125 |
|
|
/* The special symbol _DYNAMIC is always set to the start of the
|
2126 |
|
|
.dynamic section. This call occurs before we have processed the
|
2127 |
|
|
symbols for any dynamic object, so we don't have to worry about
|
2128 |
|
|
overriding a dynamic definition. We could set _DYNAMIC in a
|
2129 |
|
|
linker script, but we only want to define it if we are, in fact,
|
2130 |
|
|
creating a .dynamic section. We don't want to define it if there
|
2131 |
|
|
is no .dynamic section, since on some ELF platforms the start up
|
2132 |
|
|
code examines it to decide how to initialize the process. */
|
2133 |
|
|
h = NULL;
|
2134 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
2135 |
|
|
(info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
|
2136 |
|
|
(const char *) NULL, false, get_elf_backend_data (abfd)->collect,
|
2137 |
|
|
(struct bfd_link_hash_entry **) &h)))
|
2138 |
|
|
return false;
|
2139 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
2140 |
|
|
h->type = STT_OBJECT;
|
2141 |
|
|
|
2142 |
|
|
if (info->shared
|
2143 |
|
|
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
|
2144 |
|
|
return false;
|
2145 |
|
|
|
2146 |
|
|
bed = get_elf_backend_data (abfd);
|
2147 |
|
|
|
2148 |
|
|
s = bfd_make_section (abfd, ".hash");
|
2149 |
|
|
if (s == NULL
|
2150 |
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
2151 |
|
|
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
2152 |
|
|
return false;
|
2153 |
|
|
elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
|
2154 |
|
|
|
2155 |
|
|
/* Let the backend create the rest of the sections. This lets the
|
2156 |
|
|
backend set the right flags. The backend will normally create
|
2157 |
|
|
the .got and .plt sections. */
|
2158 |
|
|
if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
|
2159 |
|
|
return false;
|
2160 |
|
|
|
2161 |
|
|
elf_hash_table (info)->dynamic_sections_created = true;
|
2162 |
|
|
|
2163 |
|
|
return true;
|
2164 |
|
|
}
|
2165 |
|
|
|
2166 |
|
|
/* Add an entry to the .dynamic table. */
|
2167 |
|
|
|
2168 |
|
|
boolean
|
2169 |
|
|
elf_add_dynamic_entry (info, tag, val)
|
2170 |
|
|
struct bfd_link_info *info;
|
2171 |
|
|
bfd_vma tag;
|
2172 |
|
|
bfd_vma val;
|
2173 |
|
|
{
|
2174 |
|
|
Elf_Internal_Dyn dyn;
|
2175 |
|
|
bfd *dynobj;
|
2176 |
|
|
asection *s;
|
2177 |
|
|
size_t newsize;
|
2178 |
|
|
bfd_byte *newcontents;
|
2179 |
|
|
|
2180 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
2181 |
|
|
|
2182 |
|
|
s = bfd_get_section_by_name (dynobj, ".dynamic");
|
2183 |
|
|
BFD_ASSERT (s != NULL);
|
2184 |
|
|
|
2185 |
|
|
newsize = s->_raw_size + sizeof (Elf_External_Dyn);
|
2186 |
|
|
newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
|
2187 |
|
|
if (newcontents == NULL)
|
2188 |
|
|
return false;
|
2189 |
|
|
|
2190 |
|
|
dyn.d_tag = tag;
|
2191 |
|
|
dyn.d_un.d_val = val;
|
2192 |
|
|
elf_swap_dyn_out (dynobj, &dyn,
|
2193 |
|
|
(Elf_External_Dyn *) (newcontents + s->_raw_size));
|
2194 |
|
|
|
2195 |
|
|
s->_raw_size = newsize;
|
2196 |
|
|
s->contents = newcontents;
|
2197 |
|
|
|
2198 |
|
|
return true;
|
2199 |
|
|
}
|
2200 |
|
|
|
2201 |
|
|
/* Record a new local dynamic symbol. */
|
2202 |
|
|
|
2203 |
|
|
boolean
|
2204 |
|
|
elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
|
2205 |
|
|
struct bfd_link_info *info;
|
2206 |
|
|
bfd *input_bfd;
|
2207 |
|
|
long input_indx;
|
2208 |
|
|
{
|
2209 |
|
|
struct elf_link_local_dynamic_entry *entry;
|
2210 |
|
|
struct elf_link_hash_table *eht;
|
2211 |
|
|
struct bfd_strtab_hash *dynstr;
|
2212 |
|
|
Elf_External_Sym esym;
|
2213 |
|
|
unsigned long dynstr_index;
|
2214 |
|
|
char *name;
|
2215 |
|
|
|
2216 |
|
|
/* See if the entry exists already. */
|
2217 |
|
|
for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
|
2218 |
|
|
if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
|
2219 |
|
|
return true;
|
2220 |
|
|
|
2221 |
|
|
entry = (struct elf_link_local_dynamic_entry *)
|
2222 |
|
|
bfd_alloc (input_bfd, sizeof (*entry));
|
2223 |
|
|
if (entry == NULL)
|
2224 |
|
|
return false;
|
2225 |
|
|
|
2226 |
|
|
/* Go find the symbol, so that we can find it's name. */
|
2227 |
|
|
if (bfd_seek (input_bfd,
|
2228 |
|
|
(elf_tdata (input_bfd)->symtab_hdr.sh_offset
|
2229 |
|
|
+ input_indx * sizeof (Elf_External_Sym)),
|
2230 |
|
|
SEEK_SET) != 0
|
2231 |
|
|
|| (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
|
2232 |
|
|
!= sizeof (Elf_External_Sym)))
|
2233 |
|
|
return false;
|
2234 |
|
|
elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
|
2235 |
|
|
|
2236 |
|
|
name = (bfd_elf_string_from_elf_section
|
2237 |
|
|
(input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
|
2238 |
|
|
entry->isym.st_name));
|
2239 |
|
|
|
2240 |
|
|
dynstr = elf_hash_table (info)->dynstr;
|
2241 |
|
|
if (dynstr == NULL)
|
2242 |
|
|
{
|
2243 |
|
|
/* Create a strtab to hold the dynamic symbol names. */
|
2244 |
|
|
elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
|
2245 |
|
|
if (dynstr == NULL)
|
2246 |
|
|
return false;
|
2247 |
|
|
}
|
2248 |
|
|
|
2249 |
|
|
dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
|
2250 |
|
|
if (dynstr_index == (unsigned long) -1)
|
2251 |
|
|
return false;
|
2252 |
|
|
entry->isym.st_name = dynstr_index;
|
2253 |
|
|
|
2254 |
|
|
eht = elf_hash_table (info);
|
2255 |
|
|
|
2256 |
|
|
entry->next = eht->dynlocal;
|
2257 |
|
|
eht->dynlocal = entry;
|
2258 |
|
|
entry->input_bfd = input_bfd;
|
2259 |
|
|
entry->input_indx = input_indx;
|
2260 |
|
|
eht->dynsymcount++;
|
2261 |
|
|
|
2262 |
|
|
/* Whatever binding the symbol had before, it's now local. */
|
2263 |
|
|
entry->isym.st_info
|
2264 |
|
|
= ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
|
2265 |
|
|
|
2266 |
|
|
/* The dynindx will be set at the end of size_dynamic_sections. */
|
2267 |
|
|
|
2268 |
|
|
return true;
|
2269 |
|
|
}
|
2270 |
|
|
|
2271 |
|
|
|
2272 |
|
|
/* Read and swap the relocs from the section indicated by SHDR. This
|
2273 |
|
|
may be either a REL or a RELA section. The relocations are
|
2274 |
|
|
translated into RELA relocations and stored in INTERNAL_RELOCS,
|
2275 |
|
|
which should have already been allocated to contain enough space.
|
2276 |
|
|
The EXTERNAL_RELOCS are a buffer where the external form of the
|
2277 |
|
|
relocations should be stored.
|
2278 |
|
|
|
2279 |
|
|
Returns false if something goes wrong. */
|
2280 |
|
|
|
2281 |
|
|
static boolean
|
2282 |
|
|
elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
|
2283 |
|
|
internal_relocs)
|
2284 |
|
|
bfd *abfd;
|
2285 |
|
|
Elf_Internal_Shdr *shdr;
|
2286 |
|
|
PTR external_relocs;
|
2287 |
|
|
Elf_Internal_Rela *internal_relocs;
|
2288 |
|
|
{
|
2289 |
|
|
struct elf_backend_data *bed;
|
2290 |
|
|
|
2291 |
|
|
/* If there aren't any relocations, that's OK. */
|
2292 |
|
|
if (!shdr)
|
2293 |
|
|
return true;
|
2294 |
|
|
|
2295 |
|
|
/* Position ourselves at the start of the section. */
|
2296 |
|
|
if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
|
2297 |
|
|
return false;
|
2298 |
|
|
|
2299 |
|
|
/* Read the relocations. */
|
2300 |
|
|
if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
|
2301 |
|
|
!= shdr->sh_size)
|
2302 |
|
|
return false;
|
2303 |
|
|
|
2304 |
|
|
bed = get_elf_backend_data (abfd);
|
2305 |
|
|
|
2306 |
|
|
/* Convert the external relocations to the internal format. */
|
2307 |
|
|
if (shdr->sh_entsize == sizeof (Elf_External_Rel))
|
2308 |
|
|
{
|
2309 |
|
|
Elf_External_Rel *erel;
|
2310 |
|
|
Elf_External_Rel *erelend;
|
2311 |
|
|
Elf_Internal_Rela *irela;
|
2312 |
|
|
Elf_Internal_Rel *irel;
|
2313 |
|
|
|
2314 |
|
|
erel = (Elf_External_Rel *) external_relocs;
|
2315 |
|
|
erelend = erel + shdr->sh_size / shdr->sh_entsize;
|
2316 |
|
|
irela = internal_relocs;
|
2317 |
|
|
irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
|
2318 |
|
|
* sizeof (Elf_Internal_Rel)));
|
2319 |
|
|
for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
|
2320 |
|
|
{
|
2321 |
|
|
unsigned char i;
|
2322 |
|
|
|
2323 |
|
|
if (bed->s->swap_reloc_in)
|
2324 |
|
|
(*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
|
2325 |
|
|
else
|
2326 |
|
|
elf_swap_reloc_in (abfd, erel, irel);
|
2327 |
|
|
|
2328 |
|
|
for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
|
2329 |
|
|
{
|
2330 |
|
|
irela[i].r_offset = irel[i].r_offset;
|
2331 |
|
|
irela[i].r_info = irel[i].r_info;
|
2332 |
|
|
irela[i].r_addend = 0;
|
2333 |
|
|
}
|
2334 |
|
|
}
|
2335 |
|
|
}
|
2336 |
|
|
else
|
2337 |
|
|
{
|
2338 |
|
|
Elf_External_Rela *erela;
|
2339 |
|
|
Elf_External_Rela *erelaend;
|
2340 |
|
|
Elf_Internal_Rela *irela;
|
2341 |
|
|
|
2342 |
|
|
BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
|
2343 |
|
|
|
2344 |
|
|
erela = (Elf_External_Rela *) external_relocs;
|
2345 |
|
|
erelaend = erela + shdr->sh_size / shdr->sh_entsize;
|
2346 |
|
|
irela = internal_relocs;
|
2347 |
|
|
for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
|
2348 |
|
|
{
|
2349 |
|
|
if (bed->s->swap_reloca_in)
|
2350 |
|
|
(*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
|
2351 |
|
|
else
|
2352 |
|
|
elf_swap_reloca_in (abfd, erela, irela);
|
2353 |
|
|
}
|
2354 |
|
|
}
|
2355 |
|
|
|
2356 |
|
|
return true;
|
2357 |
|
|
}
|
2358 |
|
|
|
2359 |
|
|
/* Read and swap the relocs for a section O. They may have been
|
2360 |
|
|
cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
|
2361 |
|
|
not NULL, they are used as buffers to read into. They are known to
|
2362 |
|
|
be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
|
2363 |
|
|
the return value is allocated using either malloc or bfd_alloc,
|
2364 |
|
|
according to the KEEP_MEMORY argument. If O has two relocation
|
2365 |
|
|
sections (both REL and RELA relocations), then the REL_HDR
|
2366 |
|
|
relocations will appear first in INTERNAL_RELOCS, followed by the
|
2367 |
|
|
REL_HDR2 relocations. */
|
2368 |
|
|
|
2369 |
|
|
Elf_Internal_Rela *
|
2370 |
|
|
NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
|
2371 |
|
|
keep_memory)
|
2372 |
|
|
bfd *abfd;
|
2373 |
|
|
asection *o;
|
2374 |
|
|
PTR external_relocs;
|
2375 |
|
|
Elf_Internal_Rela *internal_relocs;
|
2376 |
|
|
boolean keep_memory;
|
2377 |
|
|
{
|
2378 |
|
|
Elf_Internal_Shdr *rel_hdr;
|
2379 |
|
|
PTR alloc1 = NULL;
|
2380 |
|
|
Elf_Internal_Rela *alloc2 = NULL;
|
2381 |
|
|
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
2382 |
|
|
|
2383 |
|
|
if (elf_section_data (o)->relocs != NULL)
|
2384 |
|
|
return elf_section_data (o)->relocs;
|
2385 |
|
|
|
2386 |
|
|
if (o->reloc_count == 0)
|
2387 |
|
|
return NULL;
|
2388 |
|
|
|
2389 |
|
|
rel_hdr = &elf_section_data (o)->rel_hdr;
|
2390 |
|
|
|
2391 |
|
|
if (internal_relocs == NULL)
|
2392 |
|
|
{
|
2393 |
|
|
size_t size;
|
2394 |
|
|
|
2395 |
|
|
size = (o->reloc_count * bed->s->int_rels_per_ext_rel
|
2396 |
|
|
* sizeof (Elf_Internal_Rela));
|
2397 |
|
|
if (keep_memory)
|
2398 |
|
|
internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
|
2399 |
|
|
else
|
2400 |
|
|
internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
|
2401 |
|
|
if (internal_relocs == NULL)
|
2402 |
|
|
goto error_return;
|
2403 |
|
|
}
|
2404 |
|
|
|
2405 |
|
|
if (external_relocs == NULL)
|
2406 |
|
|
{
|
2407 |
|
|
size_t size = (size_t) rel_hdr->sh_size;
|
2408 |
|
|
|
2409 |
|
|
if (elf_section_data (o)->rel_hdr2)
|
2410 |
|
|
size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
|
2411 |
|
|
alloc1 = (PTR) bfd_malloc (size);
|
2412 |
|
|
if (alloc1 == NULL)
|
2413 |
|
|
goto error_return;
|
2414 |
|
|
external_relocs = alloc1;
|
2415 |
|
|
}
|
2416 |
|
|
|
2417 |
|
|
if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
|
2418 |
|
|
external_relocs,
|
2419 |
|
|
internal_relocs))
|
2420 |
|
|
goto error_return;
|
2421 |
|
|
if (!elf_link_read_relocs_from_section
|
2422 |
|
|
(abfd,
|
2423 |
|
|
elf_section_data (o)->rel_hdr2,
|
2424 |
|
|
((bfd_byte *) external_relocs) + rel_hdr->sh_size,
|
2425 |
|
|
internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
|
2426 |
|
|
* bed->s->int_rels_per_ext_rel)))
|
2427 |
|
|
goto error_return;
|
2428 |
|
|
|
2429 |
|
|
/* Cache the results for next time, if we can. */
|
2430 |
|
|
if (keep_memory)
|
2431 |
|
|
elf_section_data (o)->relocs = internal_relocs;
|
2432 |
|
|
|
2433 |
|
|
if (alloc1 != NULL)
|
2434 |
|
|
free (alloc1);
|
2435 |
|
|
|
2436 |
|
|
/* Don't free alloc2, since if it was allocated we are passing it
|
2437 |
|
|
back (under the name of internal_relocs). */
|
2438 |
|
|
|
2439 |
|
|
return internal_relocs;
|
2440 |
|
|
|
2441 |
|
|
error_return:
|
2442 |
|
|
if (alloc1 != NULL)
|
2443 |
|
|
free (alloc1);
|
2444 |
|
|
if (alloc2 != NULL)
|
2445 |
|
|
free (alloc2);
|
2446 |
|
|
return NULL;
|
2447 |
|
|
}
|
2448 |
|
|
|
2449 |
|
|
|
2450 |
|
|
/* Record an assignment to a symbol made by a linker script. We need
|
2451 |
|
|
this in case some dynamic object refers to this symbol. */
|
2452 |
|
|
|
2453 |
|
|
/*ARGSUSED*/
|
2454 |
|
|
boolean
|
2455 |
|
|
NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
|
2456 |
|
|
bfd *output_bfd ATTRIBUTE_UNUSED;
|
2457 |
|
|
struct bfd_link_info *info;
|
2458 |
|
|
const char *name;
|
2459 |
|
|
boolean provide;
|
2460 |
|
|
{
|
2461 |
|
|
struct elf_link_hash_entry *h;
|
2462 |
|
|
|
2463 |
|
|
if (info->hash->creator->flavour != bfd_target_elf_flavour)
|
2464 |
|
|
return true;
|
2465 |
|
|
|
2466 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
|
2467 |
|
|
if (h == NULL)
|
2468 |
|
|
return false;
|
2469 |
|
|
|
2470 |
|
|
if (h->root.type == bfd_link_hash_new)
|
2471 |
|
|
h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
|
2472 |
|
|
|
2473 |
|
|
/* If this symbol is being provided by the linker script, and it is
|
2474 |
|
|
currently defined by a dynamic object, but not by a regular
|
2475 |
|
|
object, then mark it as undefined so that the generic linker will
|
2476 |
|
|
force the correct value. */
|
2477 |
|
|
if (provide
|
2478 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
2479 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
2480 |
|
|
h->root.type = bfd_link_hash_undefined;
|
2481 |
|
|
|
2482 |
|
|
/* If this symbol is not being provided by the linker script, and it is
|
2483 |
|
|
currently defined by a dynamic object, but not by a regular object,
|
2484 |
|
|
then clear out any version information because the symbol will not be
|
2485 |
|
|
associated with the dynamic object any more. */
|
2486 |
|
|
if (!provide
|
2487 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
2488 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
2489 |
|
|
h->verinfo.verdef = NULL;
|
2490 |
|
|
|
2491 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
2492 |
|
|
|
2493 |
|
|
/* When possible, keep the original type of the symbol */
|
2494 |
|
|
if (h->type == STT_NOTYPE)
|
2495 |
|
|
h->type = STT_OBJECT;
|
2496 |
|
|
|
2497 |
|
|
if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
2498 |
|
|
| ELF_LINK_HASH_REF_DYNAMIC)) != 0
|
2499 |
|
|
|| info->shared)
|
2500 |
|
|
&& h->dynindx == -1)
|
2501 |
|
|
{
|
2502 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
2503 |
|
|
return false;
|
2504 |
|
|
|
2505 |
|
|
/* If this is a weak defined symbol, and we know a corresponding
|
2506 |
|
|
real symbol from the same dynamic object, make sure the real
|
2507 |
|
|
symbol is also made into a dynamic symbol. */
|
2508 |
|
|
if (h->weakdef != NULL
|
2509 |
|
|
&& h->weakdef->dynindx == -1)
|
2510 |
|
|
{
|
2511 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
|
2512 |
|
|
return false;
|
2513 |
|
|
}
|
2514 |
|
|
}
|
2515 |
|
|
|
2516 |
|
|
return true;
|
2517 |
|
|
}
|
2518 |
|
|
|
2519 |
|
|
/* This structure is used to pass information to
|
2520 |
|
|
elf_link_assign_sym_version. */
|
2521 |
|
|
|
2522 |
|
|
struct elf_assign_sym_version_info
|
2523 |
|
|
{
|
2524 |
|
|
/* Output BFD. */
|
2525 |
|
|
bfd *output_bfd;
|
2526 |
|
|
/* General link information. */
|
2527 |
|
|
struct bfd_link_info *info;
|
2528 |
|
|
/* Version tree. */
|
2529 |
|
|
struct bfd_elf_version_tree *verdefs;
|
2530 |
|
|
/* Whether we are exporting all dynamic symbols. */
|
2531 |
|
|
boolean export_dynamic;
|
2532 |
|
|
/* Whether we had a failure. */
|
2533 |
|
|
boolean failed;
|
2534 |
|
|
};
|
2535 |
|
|
|
2536 |
|
|
/* This structure is used to pass information to
|
2537 |
|
|
elf_link_find_version_dependencies. */
|
2538 |
|
|
|
2539 |
|
|
struct elf_find_verdep_info
|
2540 |
|
|
{
|
2541 |
|
|
/* Output BFD. */
|
2542 |
|
|
bfd *output_bfd;
|
2543 |
|
|
/* General link information. */
|
2544 |
|
|
struct bfd_link_info *info;
|
2545 |
|
|
/* The number of dependencies. */
|
2546 |
|
|
unsigned int vers;
|
2547 |
|
|
/* Whether we had a failure. */
|
2548 |
|
|
boolean failed;
|
2549 |
|
|
};
|
2550 |
|
|
|
2551 |
|
|
/* Array used to determine the number of hash table buckets to use
|
2552 |
|
|
based on the number of symbols there are. If there are fewer than
|
2553 |
|
|
3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
|
2554 |
|
|
fewer than 37 we use 17 buckets, and so forth. We never use more
|
2555 |
|
|
than 32771 buckets. */
|
2556 |
|
|
|
2557 |
|
|
static const size_t elf_buckets[] =
|
2558 |
|
|
{
|
2559 |
|
|
1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
|
2560 |
|
|
16411, 32771, 0
|
2561 |
|
|
};
|
2562 |
|
|
|
2563 |
|
|
/* Compute bucket count for hashing table. We do not use a static set
|
2564 |
|
|
of possible tables sizes anymore. Instead we determine for all
|
2565 |
|
|
possible reasonable sizes of the table the outcome (i.e., the
|
2566 |
|
|
number of collisions etc) and choose the best solution. The
|
2567 |
|
|
weighting functions are not too simple to allow the table to grow
|
2568 |
|
|
without bounds. Instead one of the weighting factors is the size.
|
2569 |
|
|
Therefore the result is always a good payoff between few collisions
|
2570 |
|
|
(= short chain lengths) and table size. */
|
2571 |
|
|
static size_t
|
2572 |
|
|
compute_bucket_count (info)
|
2573 |
|
|
struct bfd_link_info *info;
|
2574 |
|
|
{
|
2575 |
|
|
size_t dynsymcount = elf_hash_table (info)->dynsymcount;
|
2576 |
|
|
size_t best_size = 0;
|
2577 |
|
|
unsigned long int *hashcodes;
|
2578 |
|
|
unsigned long int *hashcodesp;
|
2579 |
|
|
unsigned long int i;
|
2580 |
|
|
|
2581 |
|
|
/* Compute the hash values for all exported symbols. At the same
|
2582 |
|
|
time store the values in an array so that we could use them for
|
2583 |
|
|
optimizations. */
|
2584 |
|
|
hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
|
2585 |
|
|
* sizeof (unsigned long int));
|
2586 |
|
|
if (hashcodes == NULL)
|
2587 |
|
|
return 0;
|
2588 |
|
|
hashcodesp = hashcodes;
|
2589 |
|
|
|
2590 |
|
|
/* Put all hash values in HASHCODES. */
|
2591 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
2592 |
|
|
elf_collect_hash_codes, &hashcodesp);
|
2593 |
|
|
|
2594 |
|
|
/* We have a problem here. The following code to optimize the table
|
2595 |
|
|
size requires an integer type with more the 32 bits. If
|
2596 |
|
|
BFD_HOST_U_64_BIT is set we know about such a type. */
|
2597 |
|
|
#ifdef BFD_HOST_U_64_BIT
|
2598 |
|
|
if (info->optimize == true)
|
2599 |
|
|
{
|
2600 |
|
|
unsigned long int nsyms = hashcodesp - hashcodes;
|
2601 |
|
|
size_t minsize;
|
2602 |
|
|
size_t maxsize;
|
2603 |
|
|
BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
|
2604 |
|
|
unsigned long int *counts ;
|
2605 |
|
|
|
2606 |
|
|
/* Possible optimization parameters: if we have NSYMS symbols we say
|
2607 |
|
|
that the hashing table must at least have NSYMS/4 and at most
|
2608 |
|
|
2*NSYMS buckets. */
|
2609 |
|
|
minsize = nsyms / 4;
|
2610 |
|
|
if (minsize == 0)
|
2611 |
|
|
minsize = 1;
|
2612 |
|
|
best_size = maxsize = nsyms * 2;
|
2613 |
|
|
|
2614 |
|
|
/* Create array where we count the collisions in. We must use bfd_malloc
|
2615 |
|
|
since the size could be large. */
|
2616 |
|
|
counts = (unsigned long int *) bfd_malloc (maxsize
|
2617 |
|
|
* sizeof (unsigned long int));
|
2618 |
|
|
if (counts == NULL)
|
2619 |
|
|
{
|
2620 |
|
|
free (hashcodes);
|
2621 |
|
|
return 0;
|
2622 |
|
|
}
|
2623 |
|
|
|
2624 |
|
|
/* Compute the "optimal" size for the hash table. The criteria is a
|
2625 |
|
|
minimal chain length. The minor criteria is (of course) the size
|
2626 |
|
|
of the table. */
|
2627 |
|
|
for (i = minsize; i < maxsize; ++i)
|
2628 |
|
|
{
|
2629 |
|
|
/* Walk through the array of hashcodes and count the collisions. */
|
2630 |
|
|
BFD_HOST_U_64_BIT max;
|
2631 |
|
|
unsigned long int j;
|
2632 |
|
|
unsigned long int fact;
|
2633 |
|
|
|
2634 |
|
|
memset (counts, '\0', i * sizeof (unsigned long int));
|
2635 |
|
|
|
2636 |
|
|
/* Determine how often each hash bucket is used. */
|
2637 |
|
|
for (j = 0; j < nsyms; ++j)
|
2638 |
|
|
++counts[hashcodes[j] % i];
|
2639 |
|
|
|
2640 |
|
|
/* For the weight function we need some information about the
|
2641 |
|
|
pagesize on the target. This is information need not be 100%
|
2642 |
|
|
accurate. Since this information is not available (so far) we
|
2643 |
|
|
define it here to a reasonable default value. If it is crucial
|
2644 |
|
|
to have a better value some day simply define this value. */
|
2645 |
|
|
# ifndef BFD_TARGET_PAGESIZE
|
2646 |
|
|
# define BFD_TARGET_PAGESIZE (4096)
|
2647 |
|
|
# endif
|
2648 |
|
|
|
2649 |
|
|
/* We in any case need 2 + NSYMS entries for the size values and
|
2650 |
|
|
the chains. */
|
2651 |
|
|
max = (2 + nsyms) * (ARCH_SIZE / 8);
|
2652 |
|
|
|
2653 |
|
|
# if 1
|
2654 |
|
|
/* Variant 1: optimize for short chains. We add the squares
|
2655 |
|
|
of all the chain lengths (which favous many small chain
|
2656 |
|
|
over a few long chains). */
|
2657 |
|
|
for (j = 0; j < i; ++j)
|
2658 |
|
|
max += counts[j] * counts[j];
|
2659 |
|
|
|
2660 |
|
|
/* This adds penalties for the overall size of the table. */
|
2661 |
|
|
fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
|
2662 |
|
|
max *= fact * fact;
|
2663 |
|
|
# else
|
2664 |
|
|
/* Variant 2: Optimize a lot more for small table. Here we
|
2665 |
|
|
also add squares of the size but we also add penalties for
|
2666 |
|
|
empty slots (the +1 term). */
|
2667 |
|
|
for (j = 0; j < i; ++j)
|
2668 |
|
|
max += (1 + counts[j]) * (1 + counts[j]);
|
2669 |
|
|
|
2670 |
|
|
/* The overall size of the table is considered, but not as
|
2671 |
|
|
strong as in variant 1, where it is squared. */
|
2672 |
|
|
fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
|
2673 |
|
|
max *= fact;
|
2674 |
|
|
# endif
|
2675 |
|
|
|
2676 |
|
|
/* Compare with current best results. */
|
2677 |
|
|
if (max < best_chlen)
|
2678 |
|
|
{
|
2679 |
|
|
best_chlen = max;
|
2680 |
|
|
best_size = i;
|
2681 |
|
|
}
|
2682 |
|
|
}
|
2683 |
|
|
|
2684 |
|
|
free (counts);
|
2685 |
|
|
}
|
2686 |
|
|
else
|
2687 |
|
|
#endif /* defined (BFD_HOST_U_64_BIT) */
|
2688 |
|
|
{
|
2689 |
|
|
/* This is the fallback solution if no 64bit type is available or if we
|
2690 |
|
|
are not supposed to spend much time on optimizations. We select the
|
2691 |
|
|
bucket count using a fixed set of numbers. */
|
2692 |
|
|
for (i = 0; elf_buckets[i] != 0; i++)
|
2693 |
|
|
{
|
2694 |
|
|
best_size = elf_buckets[i];
|
2695 |
|
|
if (dynsymcount < elf_buckets[i + 1])
|
2696 |
|
|
break;
|
2697 |
|
|
}
|
2698 |
|
|
}
|
2699 |
|
|
|
2700 |
|
|
/* Free the arrays we needed. */
|
2701 |
|
|
free (hashcodes);
|
2702 |
|
|
|
2703 |
|
|
return best_size;
|
2704 |
|
|
}
|
2705 |
|
|
|
2706 |
|
|
/* Set up the sizes and contents of the ELF dynamic sections. This is
|
2707 |
|
|
called by the ELF linker emulation before_allocation routine. We
|
2708 |
|
|
must set the sizes of the sections before the linker sets the
|
2709 |
|
|
addresses of the various sections. */
|
2710 |
|
|
|
2711 |
|
|
boolean
|
2712 |
|
|
NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
|
2713 |
|
|
export_dynamic, filter_shlib,
|
2714 |
|
|
auxiliary_filters, info, sinterpptr,
|
2715 |
|
|
verdefs)
|
2716 |
|
|
bfd *output_bfd;
|
2717 |
|
|
const char *soname;
|
2718 |
|
|
const char *rpath;
|
2719 |
|
|
boolean export_dynamic;
|
2720 |
|
|
const char *filter_shlib;
|
2721 |
|
|
const char * const *auxiliary_filters;
|
2722 |
|
|
struct bfd_link_info *info;
|
2723 |
|
|
asection **sinterpptr;
|
2724 |
|
|
struct bfd_elf_version_tree *verdefs;
|
2725 |
|
|
{
|
2726 |
|
|
bfd_size_type soname_indx;
|
2727 |
|
|
bfd *dynobj;
|
2728 |
|
|
struct elf_backend_data *bed;
|
2729 |
|
|
struct elf_assign_sym_version_info asvinfo;
|
2730 |
|
|
|
2731 |
|
|
*sinterpptr = NULL;
|
2732 |
|
|
|
2733 |
|
|
soname_indx = (bfd_size_type) -1;
|
2734 |
|
|
|
2735 |
|
|
if (info->hash->creator->flavour != bfd_target_elf_flavour)
|
2736 |
|
|
return true;
|
2737 |
|
|
|
2738 |
|
|
/* The backend may have to create some sections regardless of whether
|
2739 |
|
|
we're dynamic or not. */
|
2740 |
|
|
bed = get_elf_backend_data (output_bfd);
|
2741 |
|
|
if (bed->elf_backend_always_size_sections
|
2742 |
|
|
&& ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
|
2743 |
|
|
return false;
|
2744 |
|
|
|
2745 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
2746 |
|
|
|
2747 |
|
|
/* If there were no dynamic objects in the link, there is nothing to
|
2748 |
|
|
do here. */
|
2749 |
|
|
if (dynobj == NULL)
|
2750 |
|
|
return true;
|
2751 |
|
|
|
2752 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
2753 |
|
|
{
|
2754 |
|
|
struct elf_info_failed eif;
|
2755 |
|
|
struct elf_link_hash_entry *h;
|
2756 |
|
|
bfd_size_type strsize;
|
2757 |
|
|
|
2758 |
|
|
*sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
|
2759 |
|
|
BFD_ASSERT (*sinterpptr != NULL || info->shared);
|
2760 |
|
|
|
2761 |
|
|
if (soname != NULL)
|
2762 |
|
|
{
|
2763 |
|
|
soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
|
2764 |
|
|
soname, true, true);
|
2765 |
|
|
if (soname_indx == (bfd_size_type) -1
|
2766 |
|
|
|| ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
|
2767 |
|
|
return false;
|
2768 |
|
|
}
|
2769 |
|
|
|
2770 |
|
|
if (info->symbolic)
|
2771 |
|
|
{
|
2772 |
|
|
if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
|
2773 |
|
|
return false;
|
2774 |
|
|
}
|
2775 |
|
|
|
2776 |
|
|
if (rpath != NULL)
|
2777 |
|
|
{
|
2778 |
|
|
bfd_size_type indx;
|
2779 |
|
|
|
2780 |
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
|
2781 |
|
|
true, true);
|
2782 |
|
|
if (indx == (bfd_size_type) -1
|
2783 |
|
|
|| ! elf_add_dynamic_entry (info, DT_RPATH, indx))
|
2784 |
|
|
return false;
|
2785 |
|
|
}
|
2786 |
|
|
|
2787 |
|
|
if (filter_shlib != NULL)
|
2788 |
|
|
{
|
2789 |
|
|
bfd_size_type indx;
|
2790 |
|
|
|
2791 |
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
|
2792 |
|
|
filter_shlib, true, true);
|
2793 |
|
|
if (indx == (bfd_size_type) -1
|
2794 |
|
|
|| ! elf_add_dynamic_entry (info, DT_FILTER, indx))
|
2795 |
|
|
return false;
|
2796 |
|
|
}
|
2797 |
|
|
|
2798 |
|
|
if (auxiliary_filters != NULL)
|
2799 |
|
|
{
|
2800 |
|
|
const char * const *p;
|
2801 |
|
|
|
2802 |
|
|
for (p = auxiliary_filters; *p != NULL; p++)
|
2803 |
|
|
{
|
2804 |
|
|
bfd_size_type indx;
|
2805 |
|
|
|
2806 |
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
|
2807 |
|
|
*p, true, true);
|
2808 |
|
|
if (indx == (bfd_size_type) -1
|
2809 |
|
|
|| ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
|
2810 |
|
|
return false;
|
2811 |
|
|
}
|
2812 |
|
|
}
|
2813 |
|
|
|
2814 |
|
|
/* If we are supposed to export all symbols into the dynamic symbol
|
2815 |
|
|
table (this is not the normal case), then do so. */
|
2816 |
|
|
if (export_dynamic)
|
2817 |
|
|
{
|
2818 |
|
|
struct elf_info_failed eif;
|
2819 |
|
|
|
2820 |
|
|
eif.failed = false;
|
2821 |
|
|
eif.info = info;
|
2822 |
|
|
elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
|
2823 |
|
|
(PTR) &eif);
|
2824 |
|
|
if (eif.failed)
|
2825 |
|
|
return false;
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
/* Attach all the symbols to their version information. */
|
2829 |
|
|
asvinfo.output_bfd = output_bfd;
|
2830 |
|
|
asvinfo.info = info;
|
2831 |
|
|
asvinfo.verdefs = verdefs;
|
2832 |
|
|
asvinfo.export_dynamic = export_dynamic;
|
2833 |
|
|
asvinfo.failed = false;
|
2834 |
|
|
|
2835 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
2836 |
|
|
elf_link_assign_sym_version,
|
2837 |
|
|
(PTR) &asvinfo);
|
2838 |
|
|
if (asvinfo.failed)
|
2839 |
|
|
return false;
|
2840 |
|
|
|
2841 |
|
|
/* Find all symbols which were defined in a dynamic object and make
|
2842 |
|
|
the backend pick a reasonable value for them. */
|
2843 |
|
|
eif.failed = false;
|
2844 |
|
|
eif.info = info;
|
2845 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
2846 |
|
|
elf_adjust_dynamic_symbol,
|
2847 |
|
|
(PTR) &eif);
|
2848 |
|
|
if (eif.failed)
|
2849 |
|
|
return false;
|
2850 |
|
|
|
2851 |
|
|
/* Add some entries to the .dynamic section. We fill in some of the
|
2852 |
|
|
values later, in elf_bfd_final_link, but we must add the entries
|
2853 |
|
|
now so that we know the final size of the .dynamic section. */
|
2854 |
|
|
|
2855 |
|
|
/* If there are initialization and/or finalization functions to
|
2856 |
|
|
call then add the corresponding DT_INIT/DT_FINI entries. */
|
2857 |
|
|
h = (info->init_function
|
2858 |
|
|
? elf_link_hash_lookup (elf_hash_table (info),
|
2859 |
|
|
info->init_function, false,
|
2860 |
|
|
false, false)
|
2861 |
|
|
: NULL);
|
2862 |
|
|
if (h != NULL
|
2863 |
|
|
&& (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
|
2864 |
|
|
| ELF_LINK_HASH_DEF_REGULAR)) != 0)
|
2865 |
|
|
{
|
2866 |
|
|
if (! elf_add_dynamic_entry (info, DT_INIT, 0))
|
2867 |
|
|
return false;
|
2868 |
|
|
}
|
2869 |
|
|
h = (info->fini_function
|
2870 |
|
|
? elf_link_hash_lookup (elf_hash_table (info),
|
2871 |
|
|
info->fini_function, false,
|
2872 |
|
|
false, false)
|
2873 |
|
|
: NULL);
|
2874 |
|
|
if (h != NULL
|
2875 |
|
|
&& (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
|
2876 |
|
|
| ELF_LINK_HASH_DEF_REGULAR)) != 0)
|
2877 |
|
|
{
|
2878 |
|
|
if (! elf_add_dynamic_entry (info, DT_FINI, 0))
|
2879 |
|
|
return false;
|
2880 |
|
|
}
|
2881 |
|
|
|
2882 |
|
|
strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
2883 |
|
|
if (! elf_add_dynamic_entry (info, DT_HASH, 0)
|
2884 |
|
|
|| ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
|
2885 |
|
|
|| ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
|
2886 |
|
|
|| ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
|
2887 |
|
|
|| ! elf_add_dynamic_entry (info, DT_SYMENT,
|
2888 |
|
|
sizeof (Elf_External_Sym)))
|
2889 |
|
|
return false;
|
2890 |
|
|
}
|
2891 |
|
|
|
2892 |
|
|
/* The backend must work out the sizes of all the other dynamic
|
2893 |
|
|
sections. */
|
2894 |
|
|
if (bed->elf_backend_size_dynamic_sections
|
2895 |
|
|
&& ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
|
2896 |
|
|
return false;
|
2897 |
|
|
|
2898 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
2899 |
|
|
{
|
2900 |
|
|
size_t dynsymcount;
|
2901 |
|
|
asection *s;
|
2902 |
|
|
size_t bucketcount = 0;
|
2903 |
|
|
Elf_Internal_Sym isym;
|
2904 |
|
|
size_t hash_entry_size;
|
2905 |
|
|
|
2906 |
|
|
/* Set up the version definition section. */
|
2907 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
|
2908 |
|
|
BFD_ASSERT (s != NULL);
|
2909 |
|
|
|
2910 |
|
|
/* We may have created additional version definitions if we are
|
2911 |
|
|
just linking a regular application. */
|
2912 |
|
|
verdefs = asvinfo.verdefs;
|
2913 |
|
|
|
2914 |
|
|
if (verdefs == NULL)
|
2915 |
|
|
_bfd_strip_section_from_output (info, s);
|
2916 |
|
|
else
|
2917 |
|
|
{
|
2918 |
|
|
unsigned int cdefs;
|
2919 |
|
|
bfd_size_type size;
|
2920 |
|
|
struct bfd_elf_version_tree *t;
|
2921 |
|
|
bfd_byte *p;
|
2922 |
|
|
Elf_Internal_Verdef def;
|
2923 |
|
|
Elf_Internal_Verdaux defaux;
|
2924 |
|
|
|
2925 |
|
|
cdefs = 0;
|
2926 |
|
|
size = 0;
|
2927 |
|
|
|
2928 |
|
|
/* Make space for the base version. */
|
2929 |
|
|
size += sizeof (Elf_External_Verdef);
|
2930 |
|
|
size += sizeof (Elf_External_Verdaux);
|
2931 |
|
|
++cdefs;
|
2932 |
|
|
|
2933 |
|
|
for (t = verdefs; t != NULL; t = t->next)
|
2934 |
|
|
{
|
2935 |
|
|
struct bfd_elf_version_deps *n;
|
2936 |
|
|
|
2937 |
|
|
size += sizeof (Elf_External_Verdef);
|
2938 |
|
|
size += sizeof (Elf_External_Verdaux);
|
2939 |
|
|
++cdefs;
|
2940 |
|
|
|
2941 |
|
|
for (n = t->deps; n != NULL; n = n->next)
|
2942 |
|
|
size += sizeof (Elf_External_Verdaux);
|
2943 |
|
|
}
|
2944 |
|
|
|
2945 |
|
|
s->_raw_size = size;
|
2946 |
|
|
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
2947 |
|
|
if (s->contents == NULL && s->_raw_size != 0)
|
2948 |
|
|
return false;
|
2949 |
|
|
|
2950 |
|
|
/* Fill in the version definition section. */
|
2951 |
|
|
|
2952 |
|
|
p = s->contents;
|
2953 |
|
|
|
2954 |
|
|
def.vd_version = VER_DEF_CURRENT;
|
2955 |
|
|
def.vd_flags = VER_FLG_BASE;
|
2956 |
|
|
def.vd_ndx = 1;
|
2957 |
|
|
def.vd_cnt = 1;
|
2958 |
|
|
def.vd_aux = sizeof (Elf_External_Verdef);
|
2959 |
|
|
def.vd_next = (sizeof (Elf_External_Verdef)
|
2960 |
|
|
+ sizeof (Elf_External_Verdaux));
|
2961 |
|
|
|
2962 |
|
|
if (soname_indx != (bfd_size_type) -1)
|
2963 |
|
|
{
|
2964 |
|
|
def.vd_hash = bfd_elf_hash (soname);
|
2965 |
|
|
defaux.vda_name = soname_indx;
|
2966 |
|
|
}
|
2967 |
|
|
else
|
2968 |
|
|
{
|
2969 |
|
|
const char *name;
|
2970 |
|
|
bfd_size_type indx;
|
2971 |
|
|
|
2972 |
|
|
name = output_bfd->filename;
|
2973 |
|
|
def.vd_hash = bfd_elf_hash (name);
|
2974 |
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
|
2975 |
|
|
name, true, false);
|
2976 |
|
|
if (indx == (bfd_size_type) -1)
|
2977 |
|
|
return false;
|
2978 |
|
|
defaux.vda_name = indx;
|
2979 |
|
|
}
|
2980 |
|
|
defaux.vda_next = 0;
|
2981 |
|
|
|
2982 |
|
|
_bfd_elf_swap_verdef_out (output_bfd, &def,
|
2983 |
|
|
(Elf_External_Verdef *)p);
|
2984 |
|
|
p += sizeof (Elf_External_Verdef);
|
2985 |
|
|
_bfd_elf_swap_verdaux_out (output_bfd, &defaux,
|
2986 |
|
|
(Elf_External_Verdaux *) p);
|
2987 |
|
|
p += sizeof (Elf_External_Verdaux);
|
2988 |
|
|
|
2989 |
|
|
for (t = verdefs; t != NULL; t = t->next)
|
2990 |
|
|
{
|
2991 |
|
|
unsigned int cdeps;
|
2992 |
|
|
struct bfd_elf_version_deps *n;
|
2993 |
|
|
struct elf_link_hash_entry *h;
|
2994 |
|
|
|
2995 |
|
|
cdeps = 0;
|
2996 |
|
|
for (n = t->deps; n != NULL; n = n->next)
|
2997 |
|
|
++cdeps;
|
2998 |
|
|
|
2999 |
|
|
/* Add a symbol representing this version. */
|
3000 |
|
|
h = NULL;
|
3001 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
3002 |
|
|
(info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
|
3003 |
|
|
(bfd_vma) 0, (const char *) NULL, false,
|
3004 |
|
|
get_elf_backend_data (dynobj)->collect,
|
3005 |
|
|
(struct bfd_link_hash_entry **) &h)))
|
3006 |
|
|
return false;
|
3007 |
|
|
h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
|
3008 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
3009 |
|
|
h->type = STT_OBJECT;
|
3010 |
|
|
h->verinfo.vertree = t;
|
3011 |
|
|
|
3012 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
3013 |
|
|
return false;
|
3014 |
|
|
|
3015 |
|
|
def.vd_version = VER_DEF_CURRENT;
|
3016 |
|
|
def.vd_flags = 0;
|
3017 |
|
|
if (t->globals == NULL && t->locals == NULL && ! t->used)
|
3018 |
|
|
def.vd_flags |= VER_FLG_WEAK;
|
3019 |
|
|
def.vd_ndx = t->vernum + 1;
|
3020 |
|
|
def.vd_cnt = cdeps + 1;
|
3021 |
|
|
def.vd_hash = bfd_elf_hash (t->name);
|
3022 |
|
|
def.vd_aux = sizeof (Elf_External_Verdef);
|
3023 |
|
|
if (t->next != NULL)
|
3024 |
|
|
def.vd_next = (sizeof (Elf_External_Verdef)
|
3025 |
|
|
+ (cdeps + 1) * sizeof (Elf_External_Verdaux));
|
3026 |
|
|
else
|
3027 |
|
|
def.vd_next = 0;
|
3028 |
|
|
|
3029 |
|
|
_bfd_elf_swap_verdef_out (output_bfd, &def,
|
3030 |
|
|
(Elf_External_Verdef *) p);
|
3031 |
|
|
p += sizeof (Elf_External_Verdef);
|
3032 |
|
|
|
3033 |
|
|
defaux.vda_name = h->dynstr_index;
|
3034 |
|
|
if (t->deps == NULL)
|
3035 |
|
|
defaux.vda_next = 0;
|
3036 |
|
|
else
|
3037 |
|
|
defaux.vda_next = sizeof (Elf_External_Verdaux);
|
3038 |
|
|
t->name_indx = defaux.vda_name;
|
3039 |
|
|
|
3040 |
|
|
_bfd_elf_swap_verdaux_out (output_bfd, &defaux,
|
3041 |
|
|
(Elf_External_Verdaux *) p);
|
3042 |
|
|
p += sizeof (Elf_External_Verdaux);
|
3043 |
|
|
|
3044 |
|
|
for (n = t->deps; n != NULL; n = n->next)
|
3045 |
|
|
{
|
3046 |
|
|
if (n->version_needed == NULL)
|
3047 |
|
|
{
|
3048 |
|
|
/* This can happen if there was an error in the
|
3049 |
|
|
version script. */
|
3050 |
|
|
defaux.vda_name = 0;
|
3051 |
|
|
}
|
3052 |
|
|
else
|
3053 |
|
|
defaux.vda_name = n->version_needed->name_indx;
|
3054 |
|
|
if (n->next == NULL)
|
3055 |
|
|
defaux.vda_next = 0;
|
3056 |
|
|
else
|
3057 |
|
|
defaux.vda_next = sizeof (Elf_External_Verdaux);
|
3058 |
|
|
|
3059 |
|
|
_bfd_elf_swap_verdaux_out (output_bfd, &defaux,
|
3060 |
|
|
(Elf_External_Verdaux *) p);
|
3061 |
|
|
p += sizeof (Elf_External_Verdaux);
|
3062 |
|
|
}
|
3063 |
|
|
}
|
3064 |
|
|
|
3065 |
|
|
if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
|
3066 |
|
|
|| ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
|
3067 |
|
|
return false;
|
3068 |
|
|
|
3069 |
|
|
elf_tdata (output_bfd)->cverdefs = cdefs;
|
3070 |
|
|
}
|
3071 |
|
|
|
3072 |
|
|
/* Work out the size of the version reference section. */
|
3073 |
|
|
|
3074 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
|
3075 |
|
|
BFD_ASSERT (s != NULL);
|
3076 |
|
|
{
|
3077 |
|
|
struct elf_find_verdep_info sinfo;
|
3078 |
|
|
|
3079 |
|
|
sinfo.output_bfd = output_bfd;
|
3080 |
|
|
sinfo.info = info;
|
3081 |
|
|
sinfo.vers = elf_tdata (output_bfd)->cverdefs;
|
3082 |
|
|
if (sinfo.vers == 0)
|
3083 |
|
|
sinfo.vers = 1;
|
3084 |
|
|
sinfo.failed = false;
|
3085 |
|
|
|
3086 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
3087 |
|
|
elf_link_find_version_dependencies,
|
3088 |
|
|
(PTR) &sinfo);
|
3089 |
|
|
|
3090 |
|
|
if (elf_tdata (output_bfd)->verref == NULL)
|
3091 |
|
|
_bfd_strip_section_from_output (info, s);
|
3092 |
|
|
else
|
3093 |
|
|
{
|
3094 |
|
|
Elf_Internal_Verneed *t;
|
3095 |
|
|
unsigned int size;
|
3096 |
|
|
unsigned int crefs;
|
3097 |
|
|
bfd_byte *p;
|
3098 |
|
|
|
3099 |
|
|
/* Build the version definition section. */
|
3100 |
|
|
size = 0;
|
3101 |
|
|
crefs = 0;
|
3102 |
|
|
for (t = elf_tdata (output_bfd)->verref;
|
3103 |
|
|
t != NULL;
|
3104 |
|
|
t = t->vn_nextref)
|
3105 |
|
|
{
|
3106 |
|
|
Elf_Internal_Vernaux *a;
|
3107 |
|
|
|
3108 |
|
|
size += sizeof (Elf_External_Verneed);
|
3109 |
|
|
++crefs;
|
3110 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
3111 |
|
|
size += sizeof (Elf_External_Vernaux);
|
3112 |
|
|
}
|
3113 |
|
|
|
3114 |
|
|
s->_raw_size = size;
|
3115 |
|
|
s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
|
3116 |
|
|
if (s->contents == NULL)
|
3117 |
|
|
return false;
|
3118 |
|
|
|
3119 |
|
|
p = s->contents;
|
3120 |
|
|
for (t = elf_tdata (output_bfd)->verref;
|
3121 |
|
|
t != NULL;
|
3122 |
|
|
t = t->vn_nextref)
|
3123 |
|
|
{
|
3124 |
|
|
unsigned int caux;
|
3125 |
|
|
Elf_Internal_Vernaux *a;
|
3126 |
|
|
bfd_size_type indx;
|
3127 |
|
|
|
3128 |
|
|
caux = 0;
|
3129 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
3130 |
|
|
++caux;
|
3131 |
|
|
|
3132 |
|
|
t->vn_version = VER_NEED_CURRENT;
|
3133 |
|
|
t->vn_cnt = caux;
|
3134 |
|
|
if (elf_dt_name (t->vn_bfd) != NULL)
|
3135 |
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
|
3136 |
|
|
elf_dt_name (t->vn_bfd),
|
3137 |
|
|
true, false);
|
3138 |
|
|
else
|
3139 |
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
|
3140 |
|
|
t->vn_bfd->filename, true, false);
|
3141 |
|
|
if (indx == (bfd_size_type) -1)
|
3142 |
|
|
return false;
|
3143 |
|
|
t->vn_file = indx;
|
3144 |
|
|
t->vn_aux = sizeof (Elf_External_Verneed);
|
3145 |
|
|
if (t->vn_nextref == NULL)
|
3146 |
|
|
t->vn_next = 0;
|
3147 |
|
|
else
|
3148 |
|
|
t->vn_next = (sizeof (Elf_External_Verneed)
|
3149 |
|
|
+ caux * sizeof (Elf_External_Vernaux));
|
3150 |
|
|
|
3151 |
|
|
_bfd_elf_swap_verneed_out (output_bfd, t,
|
3152 |
|
|
(Elf_External_Verneed *) p);
|
3153 |
|
|
p += sizeof (Elf_External_Verneed);
|
3154 |
|
|
|
3155 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
3156 |
|
|
{
|
3157 |
|
|
a->vna_hash = bfd_elf_hash (a->vna_nodename);
|
3158 |
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
|
3159 |
|
|
a->vna_nodename, true, false);
|
3160 |
|
|
if (indx == (bfd_size_type) -1)
|
3161 |
|
|
return false;
|
3162 |
|
|
a->vna_name = indx;
|
3163 |
|
|
if (a->vna_nextptr == NULL)
|
3164 |
|
|
a->vna_next = 0;
|
3165 |
|
|
else
|
3166 |
|
|
a->vna_next = sizeof (Elf_External_Vernaux);
|
3167 |
|
|
|
3168 |
|
|
_bfd_elf_swap_vernaux_out (output_bfd, a,
|
3169 |
|
|
(Elf_External_Vernaux *) p);
|
3170 |
|
|
p += sizeof (Elf_External_Vernaux);
|
3171 |
|
|
}
|
3172 |
|
|
}
|
3173 |
|
|
|
3174 |
|
|
if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
|
3175 |
|
|
|| ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
|
3176 |
|
|
return false;
|
3177 |
|
|
|
3178 |
|
|
elf_tdata (output_bfd)->cverrefs = crefs;
|
3179 |
|
|
}
|
3180 |
|
|
}
|
3181 |
|
|
|
3182 |
|
|
/* Assign dynsym indicies. In a shared library we generate a
|
3183 |
|
|
section symbol for each output section, which come first.
|
3184 |
|
|
Next come all of the back-end allocated local dynamic syms,
|
3185 |
|
|
followed by the rest of the global symbols. */
|
3186 |
|
|
|
3187 |
|
|
dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
|
3188 |
|
|
|
3189 |
|
|
/* Work out the size of the symbol version section. */
|
3190 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version");
|
3191 |
|
|
BFD_ASSERT (s != NULL);
|
3192 |
|
|
if (dynsymcount == 0
|
3193 |
|
|
|| (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
|
3194 |
|
|
{
|
3195 |
|
|
_bfd_strip_section_from_output (info, s);
|
3196 |
|
|
/* The DYNSYMCOUNT might have changed if we were going to
|
3197 |
|
|
output a dynamic symbol table entry for S. */
|
3198 |
|
|
dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
|
3199 |
|
|
}
|
3200 |
|
|
else
|
3201 |
|
|
{
|
3202 |
|
|
s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
|
3203 |
|
|
s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
|
3204 |
|
|
if (s->contents == NULL)
|
3205 |
|
|
return false;
|
3206 |
|
|
|
3207 |
|
|
if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
|
3208 |
|
|
return false;
|
3209 |
|
|
}
|
3210 |
|
|
|
3211 |
|
|
/* Set the size of the .dynsym and .hash sections. We counted
|
3212 |
|
|
the number of dynamic symbols in elf_link_add_object_symbols.
|
3213 |
|
|
We will build the contents of .dynsym and .hash when we build
|
3214 |
|
|
the final symbol table, because until then we do not know the
|
3215 |
|
|
correct value to give the symbols. We built the .dynstr
|
3216 |
|
|
section as we went along in elf_link_add_object_symbols. */
|
3217 |
|
|
s = bfd_get_section_by_name (dynobj, ".dynsym");
|
3218 |
|
|
BFD_ASSERT (s != NULL);
|
3219 |
|
|
s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
|
3220 |
|
|
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
3221 |
|
|
if (s->contents == NULL && s->_raw_size != 0)
|
3222 |
|
|
return false;
|
3223 |
|
|
|
3224 |
|
|
/* The first entry in .dynsym is a dummy symbol. */
|
3225 |
|
|
isym.st_value = 0;
|
3226 |
|
|
isym.st_size = 0;
|
3227 |
|
|
isym.st_name = 0;
|
3228 |
|
|
isym.st_info = 0;
|
3229 |
|
|
isym.st_other = 0;
|
3230 |
|
|
isym.st_shndx = 0;
|
3231 |
|
|
elf_swap_symbol_out (output_bfd, &isym,
|
3232 |
|
|
(PTR) (Elf_External_Sym *) s->contents);
|
3233 |
|
|
|
3234 |
|
|
/* Compute the size of the hashing table. As a side effect this
|
3235 |
|
|
computes the hash values for all the names we export. */
|
3236 |
|
|
bucketcount = compute_bucket_count (info);
|
3237 |
|
|
|
3238 |
|
|
s = bfd_get_section_by_name (dynobj, ".hash");
|
3239 |
|
|
BFD_ASSERT (s != NULL);
|
3240 |
|
|
hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
|
3241 |
|
|
s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
|
3242 |
|
|
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
3243 |
|
|
if (s->contents == NULL)
|
3244 |
|
|
return false;
|
3245 |
|
|
memset (s->contents, 0, (size_t) s->_raw_size);
|
3246 |
|
|
|
3247 |
|
|
bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
|
3248 |
|
|
bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
|
3249 |
|
|
s->contents + hash_entry_size);
|
3250 |
|
|
|
3251 |
|
|
elf_hash_table (info)->bucketcount = bucketcount;
|
3252 |
|
|
|
3253 |
|
|
s = bfd_get_section_by_name (dynobj, ".dynstr");
|
3254 |
|
|
BFD_ASSERT (s != NULL);
|
3255 |
|
|
s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
3256 |
|
|
|
3257 |
|
|
if (! elf_add_dynamic_entry (info, DT_NULL, 0))
|
3258 |
|
|
return false;
|
3259 |
|
|
}
|
3260 |
|
|
|
3261 |
|
|
return true;
|
3262 |
|
|
}
|
3263 |
|
|
|
3264 |
|
|
/* Fix up the flags for a symbol. This handles various cases which
|
3265 |
|
|
can only be fixed after all the input files are seen. This is
|
3266 |
|
|
currently called by both adjust_dynamic_symbol and
|
3267 |
|
|
assign_sym_version, which is unnecessary but perhaps more robust in
|
3268 |
|
|
the face of future changes. */
|
3269 |
|
|
|
3270 |
|
|
static boolean
|
3271 |
|
|
elf_fix_symbol_flags (h, eif)
|
3272 |
|
|
struct elf_link_hash_entry *h;
|
3273 |
|
|
struct elf_info_failed *eif;
|
3274 |
|
|
{
|
3275 |
|
|
/* If this symbol was mentioned in a non-ELF file, try to set
|
3276 |
|
|
DEF_REGULAR and REF_REGULAR correctly. This is the only way to
|
3277 |
|
|
permit a non-ELF file to correctly refer to a symbol defined in
|
3278 |
|
|
an ELF dynamic object. */
|
3279 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
|
3280 |
|
|
{
|
3281 |
|
|
if (h->root.type != bfd_link_hash_defined
|
3282 |
|
|
&& h->root.type != bfd_link_hash_defweak)
|
3283 |
|
|
h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
|
3284 |
|
|
| ELF_LINK_HASH_REF_REGULAR_NONWEAK);
|
3285 |
|
|
else
|
3286 |
|
|
{
|
3287 |
|
|
if (h->root.u.def.section->owner != NULL
|
3288 |
|
|
&& (bfd_get_flavour (h->root.u.def.section->owner)
|
3289 |
|
|
== bfd_target_elf_flavour))
|
3290 |
|
|
h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
|
3291 |
|
|
| ELF_LINK_HASH_REF_REGULAR_NONWEAK);
|
3292 |
|
|
else
|
3293 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
3294 |
|
|
}
|
3295 |
|
|
|
3296 |
|
|
if (h->dynindx == -1
|
3297 |
|
|
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
3298 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
|
3299 |
|
|
{
|
3300 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
|
3301 |
|
|
{
|
3302 |
|
|
eif->failed = true;
|
3303 |
|
|
return false;
|
3304 |
|
|
}
|
3305 |
|
|
}
|
3306 |
|
|
}
|
3307 |
|
|
else
|
3308 |
|
|
{
|
3309 |
|
|
/* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
|
3310 |
|
|
was first seen in a non-ELF file. Fortunately, if the symbol
|
3311 |
|
|
was first seen in an ELF file, we're probably OK unless the
|
3312 |
|
|
symbol was defined in a non-ELF file. Catch that case here.
|
3313 |
|
|
FIXME: We're still in trouble if the symbol was first seen in
|
3314 |
|
|
a dynamic object, and then later in a non-ELF regular object. */
|
3315 |
|
|
if ((h->root.type == bfd_link_hash_defined
|
3316 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
3317 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
3318 |
|
|
&& (h->root.u.def.section->owner != NULL
|
3319 |
|
|
? (bfd_get_flavour (h->root.u.def.section->owner)
|
3320 |
|
|
!= bfd_target_elf_flavour)
|
3321 |
|
|
: (bfd_is_abs_section (h->root.u.def.section)
|
3322 |
|
|
&& (h->elf_link_hash_flags
|
3323 |
|
|
& ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
|
3324 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
3325 |
|
|
}
|
3326 |
|
|
|
3327 |
|
|
/* If this is a final link, and the symbol was defined as a common
|
3328 |
|
|
symbol in a regular object file, and there was no definition in
|
3329 |
|
|
any dynamic object, then the linker will have allocated space for
|
3330 |
|
|
the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
|
3331 |
|
|
flag will not have been set. */
|
3332 |
|
|
if (h->root.type == bfd_link_hash_defined
|
3333 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
3334 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
|
3335 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
3336 |
|
|
&& (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
|
3337 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
3338 |
|
|
|
3339 |
|
|
/* If -Bsymbolic was used (which means to bind references to global
|
3340 |
|
|
symbols to the definition within the shared object), and this
|
3341 |
|
|
symbol was defined in a regular object, then it actually doesn't
|
3342 |
|
|
need a PLT entry. */
|
3343 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
|
3344 |
|
|
&& eif->info->shared
|
3345 |
|
|
&& eif->info->symbolic
|
3346 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
|
3347 |
|
|
{
|
3348 |
|
|
h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
|
3349 |
|
|
h->plt.offset = (bfd_vma) -1;
|
3350 |
|
|
}
|
3351 |
|
|
|
3352 |
|
|
/* If this is a weak defined symbol in a dynamic object, and we know
|
3353 |
|
|
the real definition in the dynamic object, copy interesting flags
|
3354 |
|
|
over to the real definition. */
|
3355 |
|
|
if (h->weakdef != NULL)
|
3356 |
|
|
{
|
3357 |
|
|
struct elf_link_hash_entry *weakdef;
|
3358 |
|
|
|
3359 |
|
|
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|
3360 |
|
|
|| h->root.type == bfd_link_hash_defweak);
|
3361 |
|
|
weakdef = h->weakdef;
|
3362 |
|
|
BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
|
3363 |
|
|
|| weakdef->root.type == bfd_link_hash_defweak);
|
3364 |
|
|
BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
|
3365 |
|
|
|
3366 |
|
|
/* If the real definition is defined by a regular object file,
|
3367 |
|
|
don't do anything special. See the longer description in
|
3368 |
|
|
elf_adjust_dynamic_symbol, below. */
|
3369 |
|
|
if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
|
3370 |
|
|
h->weakdef = NULL;
|
3371 |
|
|
else
|
3372 |
|
|
weakdef->elf_link_hash_flags |=
|
3373 |
|
|
(h->elf_link_hash_flags
|
3374 |
|
|
& (ELF_LINK_HASH_REF_REGULAR
|
3375 |
|
|
| ELF_LINK_HASH_REF_REGULAR_NONWEAK
|
3376 |
|
|
| ELF_LINK_NON_GOT_REF));
|
3377 |
|
|
}
|
3378 |
|
|
|
3379 |
|
|
return true;
|
3380 |
|
|
}
|
3381 |
|
|
|
3382 |
|
|
/* Make the backend pick a good value for a dynamic symbol. This is
|
3383 |
|
|
called via elf_link_hash_traverse, and also calls itself
|
3384 |
|
|
recursively. */
|
3385 |
|
|
|
3386 |
|
|
static boolean
|
3387 |
|
|
elf_adjust_dynamic_symbol (h, data)
|
3388 |
|
|
struct elf_link_hash_entry *h;
|
3389 |
|
|
PTR data;
|
3390 |
|
|
{
|
3391 |
|
|
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
3392 |
|
|
bfd *dynobj;
|
3393 |
|
|
struct elf_backend_data *bed;
|
3394 |
|
|
|
3395 |
|
|
/* Ignore indirect symbols. These are added by the versioning code. */
|
3396 |
|
|
if (h->root.type == bfd_link_hash_indirect)
|
3397 |
|
|
return true;
|
3398 |
|
|
|
3399 |
|
|
/* Fix the symbol flags. */
|
3400 |
|
|
if (! elf_fix_symbol_flags (h, eif))
|
3401 |
|
|
return false;
|
3402 |
|
|
|
3403 |
|
|
/* If this symbol does not require a PLT entry, and it is not
|
3404 |
|
|
defined by a dynamic object, or is not referenced by a regular
|
3405 |
|
|
object, ignore it. We do have to handle a weak defined symbol,
|
3406 |
|
|
even if no regular object refers to it, if we decided to add it
|
3407 |
|
|
to the dynamic symbol table. FIXME: Do we normally need to worry
|
3408 |
|
|
about symbols which are defined by one dynamic object and
|
3409 |
|
|
referenced by another one? */
|
3410 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
|
3411 |
|
|
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
3412 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
3413 |
|
|
|| ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
|
3414 |
|
|
&& (h->weakdef == NULL || h->weakdef->dynindx == -1))))
|
3415 |
|
|
{
|
3416 |
|
|
h->plt.offset = (bfd_vma) -1;
|
3417 |
|
|
return true;
|
3418 |
|
|
}
|
3419 |
|
|
|
3420 |
|
|
/* If we've already adjusted this symbol, don't do it again. This
|
3421 |
|
|
can happen via a recursive call. */
|
3422 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
|
3423 |
|
|
return true;
|
3424 |
|
|
|
3425 |
|
|
/* Don't look at this symbol again. Note that we must set this
|
3426 |
|
|
after checking the above conditions, because we may look at a
|
3427 |
|
|
symbol once, decide not to do anything, and then get called
|
3428 |
|
|
recursively later after REF_REGULAR is set below. */
|
3429 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
|
3430 |
|
|
|
3431 |
|
|
/* If this is a weak definition, and we know a real definition, and
|
3432 |
|
|
the real symbol is not itself defined by a regular object file,
|
3433 |
|
|
then get a good value for the real definition. We handle the
|
3434 |
|
|
real symbol first, for the convenience of the backend routine.
|
3435 |
|
|
|
3436 |
|
|
Note that there is a confusing case here. If the real definition
|
3437 |
|
|
is defined by a regular object file, we don't get the real symbol
|
3438 |
|
|
from the dynamic object, but we do get the weak symbol. If the
|
3439 |
|
|
processor backend uses a COPY reloc, then if some routine in the
|
3440 |
|
|
dynamic object changes the real symbol, we will not see that
|
3441 |
|
|
change in the corresponding weak symbol. This is the way other
|
3442 |
|
|
ELF linkers work as well, and seems to be a result of the shared
|
3443 |
|
|
library model.
|
3444 |
|
|
|
3445 |
|
|
I will clarify this issue. Most SVR4 shared libraries define the
|
3446 |
|
|
variable _timezone and define timezone as a weak synonym. The
|
3447 |
|
|
tzset call changes _timezone. If you write
|
3448 |
|
|
extern int timezone;
|
3449 |
|
|
int _timezone = 5;
|
3450 |
|
|
int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
|
3451 |
|
|
you might expect that, since timezone is a synonym for _timezone,
|
3452 |
|
|
the same number will print both times. However, if the processor
|
3453 |
|
|
backend uses a COPY reloc, then actually timezone will be copied
|
3454 |
|
|
into your process image, and, since you define _timezone
|
3455 |
|
|
yourself, _timezone will not. Thus timezone and _timezone will
|
3456 |
|
|
wind up at different memory locations. The tzset call will set
|
3457 |
|
|
_timezone, leaving timezone unchanged. */
|
3458 |
|
|
|
3459 |
|
|
if (h->weakdef != NULL)
|
3460 |
|
|
{
|
3461 |
|
|
/* If we get to this point, we know there is an implicit
|
3462 |
|
|
reference by a regular object file via the weak symbol H.
|
3463 |
|
|
FIXME: Is this really true? What if the traversal finds
|
3464 |
|
|
H->WEAKDEF before it finds H? */
|
3465 |
|
|
h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
3466 |
|
|
|
3467 |
|
|
if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
|
3468 |
|
|
return false;
|
3469 |
|
|
}
|
3470 |
|
|
|
3471 |
|
|
/* If a symbol has no type and no size and does not require a PLT
|
3472 |
|
|
entry, then we are probably about to do the wrong thing here: we
|
3473 |
|
|
are probably going to create a COPY reloc for an empty object.
|
3474 |
|
|
This case can arise when a shared object is built with assembly
|
3475 |
|
|
code, and the assembly code fails to set the symbol type. */
|
3476 |
|
|
if (h->size == 0
|
3477 |
|
|
&& h->type == STT_NOTYPE
|
3478 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
|
3479 |
|
|
(*_bfd_error_handler)
|
3480 |
|
|
(_("warning: type and size of dynamic symbol `%s' are not defined"),
|
3481 |
|
|
h->root.root.string);
|
3482 |
|
|
|
3483 |
|
|
dynobj = elf_hash_table (eif->info)->dynobj;
|
3484 |
|
|
bed = get_elf_backend_data (dynobj);
|
3485 |
|
|
if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
|
3486 |
|
|
{
|
3487 |
|
|
eif->failed = true;
|
3488 |
|
|
return false;
|
3489 |
|
|
}
|
3490 |
|
|
|
3491 |
|
|
return true;
|
3492 |
|
|
}
|
3493 |
|
|
|
3494 |
|
|
/* This routine is used to export all defined symbols into the dynamic
|
3495 |
|
|
symbol table. It is called via elf_link_hash_traverse. */
|
3496 |
|
|
|
3497 |
|
|
static boolean
|
3498 |
|
|
elf_export_symbol (h, data)
|
3499 |
|
|
struct elf_link_hash_entry *h;
|
3500 |
|
|
PTR data;
|
3501 |
|
|
{
|
3502 |
|
|
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
3503 |
|
|
|
3504 |
|
|
/* Ignore indirect symbols. These are added by the versioning code. */
|
3505 |
|
|
if (h->root.type == bfd_link_hash_indirect)
|
3506 |
|
|
return true;
|
3507 |
|
|
|
3508 |
|
|
if (h->dynindx == -1
|
3509 |
|
|
&& (h->elf_link_hash_flags
|
3510 |
|
|
& (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
|
3511 |
|
|
{
|
3512 |
|
|
if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
|
3513 |
|
|
{
|
3514 |
|
|
eif->failed = true;
|
3515 |
|
|
return false;
|
3516 |
|
|
}
|
3517 |
|
|
}
|
3518 |
|
|
|
3519 |
|
|
return true;
|
3520 |
|
|
}
|
3521 |
|
|
|
3522 |
|
|
/* Look through the symbols which are defined in other shared
|
3523 |
|
|
libraries and referenced here. Update the list of version
|
3524 |
|
|
dependencies. This will be put into the .gnu.version_r section.
|
3525 |
|
|
This function is called via elf_link_hash_traverse. */
|
3526 |
|
|
|
3527 |
|
|
static boolean
|
3528 |
|
|
elf_link_find_version_dependencies (h, data)
|
3529 |
|
|
struct elf_link_hash_entry *h;
|
3530 |
|
|
PTR data;
|
3531 |
|
|
{
|
3532 |
|
|
struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
|
3533 |
|
|
Elf_Internal_Verneed *t;
|
3534 |
|
|
Elf_Internal_Vernaux *a;
|
3535 |
|
|
|
3536 |
|
|
/* We only care about symbols defined in shared objects with version
|
3537 |
|
|
information. */
|
3538 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
3539 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
3540 |
|
|
|| h->dynindx == -1
|
3541 |
|
|
|| h->verinfo.verdef == NULL)
|
3542 |
|
|
return true;
|
3543 |
|
|
|
3544 |
|
|
/* See if we already know about this version. */
|
3545 |
|
|
for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
|
3546 |
|
|
{
|
3547 |
|
|
if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
|
3548 |
|
|
continue;
|
3549 |
|
|
|
3550 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
3551 |
|
|
if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
|
3552 |
|
|
return true;
|
3553 |
|
|
|
3554 |
|
|
break;
|
3555 |
|
|
}
|
3556 |
|
|
|
3557 |
|
|
/* This is a new version. Add it to tree we are building. */
|
3558 |
|
|
|
3559 |
|
|
if (t == NULL)
|
3560 |
|
|
{
|
3561 |
|
|
t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
|
3562 |
|
|
if (t == NULL)
|
3563 |
|
|
{
|
3564 |
|
|
rinfo->failed = true;
|
3565 |
|
|
return false;
|
3566 |
|
|
}
|
3567 |
|
|
|
3568 |
|
|
t->vn_bfd = h->verinfo.verdef->vd_bfd;
|
3569 |
|
|
t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
|
3570 |
|
|
elf_tdata (rinfo->output_bfd)->verref = t;
|
3571 |
|
|
}
|
3572 |
|
|
|
3573 |
|
|
a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
|
3574 |
|
|
|
3575 |
|
|
/* Note that we are copying a string pointer here, and testing it
|
3576 |
|
|
above. If bfd_elf_string_from_elf_section is ever changed to
|
3577 |
|
|
discard the string data when low in memory, this will have to be
|
3578 |
|
|
fixed. */
|
3579 |
|
|
a->vna_nodename = h->verinfo.verdef->vd_nodename;
|
3580 |
|
|
|
3581 |
|
|
a->vna_flags = h->verinfo.verdef->vd_flags;
|
3582 |
|
|
a->vna_nextptr = t->vn_auxptr;
|
3583 |
|
|
|
3584 |
|
|
h->verinfo.verdef->vd_exp_refno = rinfo->vers;
|
3585 |
|
|
++rinfo->vers;
|
3586 |
|
|
|
3587 |
|
|
a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
|
3588 |
|
|
|
3589 |
|
|
t->vn_auxptr = a;
|
3590 |
|
|
|
3591 |
|
|
return true;
|
3592 |
|
|
}
|
3593 |
|
|
|
3594 |
|
|
/* Figure out appropriate versions for all the symbols. We may not
|
3595 |
|
|
have the version number script until we have read all of the input
|
3596 |
|
|
files, so until that point we don't know which symbols should be
|
3597 |
|
|
local. This function is called via elf_link_hash_traverse. */
|
3598 |
|
|
|
3599 |
|
|
static boolean
|
3600 |
|
|
elf_link_assign_sym_version (h, data)
|
3601 |
|
|
struct elf_link_hash_entry *h;
|
3602 |
|
|
PTR data;
|
3603 |
|
|
{
|
3604 |
|
|
struct elf_assign_sym_version_info *sinfo =
|
3605 |
|
|
(struct elf_assign_sym_version_info *) data;
|
3606 |
|
|
struct bfd_link_info *info = sinfo->info;
|
3607 |
|
|
struct elf_backend_data *bed;
|
3608 |
|
|
struct elf_info_failed eif;
|
3609 |
|
|
char *p;
|
3610 |
|
|
|
3611 |
|
|
/* Fix the symbol flags. */
|
3612 |
|
|
eif.failed = false;
|
3613 |
|
|
eif.info = info;
|
3614 |
|
|
if (! elf_fix_symbol_flags (h, &eif))
|
3615 |
|
|
{
|
3616 |
|
|
if (eif.failed)
|
3617 |
|
|
sinfo->failed = true;
|
3618 |
|
|
return false;
|
3619 |
|
|
}
|
3620 |
|
|
|
3621 |
|
|
/* We only need version numbers for symbols defined in regular
|
3622 |
|
|
objects. */
|
3623 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
3624 |
|
|
return true;
|
3625 |
|
|
|
3626 |
|
|
bed = get_elf_backend_data (sinfo->output_bfd);
|
3627 |
|
|
p = strchr (h->root.root.string, ELF_VER_CHR);
|
3628 |
|
|
if (p != NULL && h->verinfo.vertree == NULL)
|
3629 |
|
|
{
|
3630 |
|
|
struct bfd_elf_version_tree *t;
|
3631 |
|
|
boolean hidden;
|
3632 |
|
|
|
3633 |
|
|
hidden = true;
|
3634 |
|
|
|
3635 |
|
|
/* There are two consecutive ELF_VER_CHR characters if this is
|
3636 |
|
|
not a hidden symbol. */
|
3637 |
|
|
++p;
|
3638 |
|
|
if (*p == ELF_VER_CHR)
|
3639 |
|
|
{
|
3640 |
|
|
hidden = false;
|
3641 |
|
|
++p;
|
3642 |
|
|
}
|
3643 |
|
|
|
3644 |
|
|
/* If there is no version string, we can just return out. */
|
3645 |
|
|
if (*p == '\0')
|
3646 |
|
|
{
|
3647 |
|
|
if (hidden)
|
3648 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
|
3649 |
|
|
return true;
|
3650 |
|
|
}
|
3651 |
|
|
|
3652 |
|
|
/* Look for the version. If we find it, it is no longer weak. */
|
3653 |
|
|
for (t = sinfo->verdefs; t != NULL; t = t->next)
|
3654 |
|
|
{
|
3655 |
|
|
if (strcmp (t->name, p) == 0)
|
3656 |
|
|
{
|
3657 |
|
|
int len;
|
3658 |
|
|
char *alc;
|
3659 |
|
|
struct bfd_elf_version_expr *d;
|
3660 |
|
|
|
3661 |
|
|
len = p - h->root.root.string;
|
3662 |
|
|
alc = bfd_alloc (sinfo->output_bfd, len);
|
3663 |
|
|
if (alc == NULL)
|
3664 |
|
|
return false;
|
3665 |
|
|
strncpy (alc, h->root.root.string, len - 1);
|
3666 |
|
|
alc[len - 1] = '\0';
|
3667 |
|
|
if (alc[len - 2] == ELF_VER_CHR)
|
3668 |
|
|
alc[len - 2] = '\0';
|
3669 |
|
|
|
3670 |
|
|
h->verinfo.vertree = t;
|
3671 |
|
|
t->used = true;
|
3672 |
|
|
d = NULL;
|
3673 |
|
|
|
3674 |
|
|
if (t->globals != NULL)
|
3675 |
|
|
{
|
3676 |
|
|
for (d = t->globals; d != NULL; d = d->next)
|
3677 |
|
|
if ((*d->match) (d, alc))
|
3678 |
|
|
break;
|
3679 |
|
|
}
|
3680 |
|
|
|
3681 |
|
|
/* See if there is anything to force this symbol to
|
3682 |
|
|
local scope. */
|
3683 |
|
|
if (d == NULL && t->locals != NULL)
|
3684 |
|
|
{
|
3685 |
|
|
for (d = t->locals; d != NULL; d = d->next)
|
3686 |
|
|
{
|
3687 |
|
|
if ((*d->match) (d, alc))
|
3688 |
|
|
{
|
3689 |
|
|
if (h->dynindx != -1
|
3690 |
|
|
&& info->shared
|
3691 |
|
|
&& ! sinfo->export_dynamic)
|
3692 |
|
|
{
|
3693 |
|
|
h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
|
3694 |
|
|
(*bed->elf_backend_hide_symbol) (h);
|
3695 |
|
|
/* FIXME: The name of the symbol has
|
3696 |
|
|
already been recorded in the dynamic
|
3697 |
|
|
string table section. */
|
3698 |
|
|
}
|
3699 |
|
|
|
3700 |
|
|
break;
|
3701 |
|
|
}
|
3702 |
|
|
}
|
3703 |
|
|
}
|
3704 |
|
|
|
3705 |
|
|
bfd_release (sinfo->output_bfd, alc);
|
3706 |
|
|
break;
|
3707 |
|
|
}
|
3708 |
|
|
}
|
3709 |
|
|
|
3710 |
|
|
/* If we are building an application, we need to create a
|
3711 |
|
|
version node for this version. */
|
3712 |
|
|
if (t == NULL && ! info->shared)
|
3713 |
|
|
{
|
3714 |
|
|
struct bfd_elf_version_tree **pp;
|
3715 |
|
|
int version_index;
|
3716 |
|
|
|
3717 |
|
|
/* If we aren't going to export this symbol, we don't need
|
3718 |
|
|
to worry about it. */
|
3719 |
|
|
if (h->dynindx == -1)
|
3720 |
|
|
return true;
|
3721 |
|
|
|
3722 |
|
|
t = ((struct bfd_elf_version_tree *)
|
3723 |
|
|
bfd_alloc (sinfo->output_bfd, sizeof *t));
|
3724 |
|
|
if (t == NULL)
|
3725 |
|
|
{
|
3726 |
|
|
sinfo->failed = true;
|
3727 |
|
|
return false;
|
3728 |
|
|
}
|
3729 |
|
|
|
3730 |
|
|
t->next = NULL;
|
3731 |
|
|
t->name = p;
|
3732 |
|
|
t->globals = NULL;
|
3733 |
|
|
t->locals = NULL;
|
3734 |
|
|
t->deps = NULL;
|
3735 |
|
|
t->name_indx = (unsigned int) -1;
|
3736 |
|
|
t->used = true;
|
3737 |
|
|
|
3738 |
|
|
version_index = 1;
|
3739 |
|
|
for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
|
3740 |
|
|
++version_index;
|
3741 |
|
|
t->vernum = version_index;
|
3742 |
|
|
|
3743 |
|
|
*pp = t;
|
3744 |
|
|
|
3745 |
|
|
h->verinfo.vertree = t;
|
3746 |
|
|
}
|
3747 |
|
|
else if (t == NULL)
|
3748 |
|
|
{
|
3749 |
|
|
/* We could not find the version for a symbol when
|
3750 |
|
|
generating a shared archive. Return an error. */
|
3751 |
|
|
(*_bfd_error_handler)
|
3752 |
|
|
(_("%s: undefined versioned symbol name %s"),
|
3753 |
|
|
bfd_get_filename (sinfo->output_bfd), h->root.root.string);
|
3754 |
|
|
bfd_set_error (bfd_error_bad_value);
|
3755 |
|
|
sinfo->failed = true;
|
3756 |
|
|
return false;
|
3757 |
|
|
}
|
3758 |
|
|
|
3759 |
|
|
if (hidden)
|
3760 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
|
3761 |
|
|
}
|
3762 |
|
|
|
3763 |
|
|
/* If we don't have a version for this symbol, see if we can find
|
3764 |
|
|
something. */
|
3765 |
|
|
if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
|
3766 |
|
|
{
|
3767 |
|
|
struct bfd_elf_version_tree *t;
|
3768 |
|
|
struct bfd_elf_version_tree *deflt;
|
3769 |
|
|
struct bfd_elf_version_expr *d;
|
3770 |
|
|
|
3771 |
|
|
/* See if can find what version this symbol is in. If the
|
3772 |
|
|
symbol is supposed to be local, then don't actually register
|
3773 |
|
|
it. */
|
3774 |
|
|
deflt = NULL;
|
3775 |
|
|
for (t = sinfo->verdefs; t != NULL; t = t->next)
|
3776 |
|
|
{
|
3777 |
|
|
if (t->globals != NULL)
|
3778 |
|
|
{
|
3779 |
|
|
for (d = t->globals; d != NULL; d = d->next)
|
3780 |
|
|
{
|
3781 |
|
|
if ((*d->match) (d, h->root.root.string))
|
3782 |
|
|
{
|
3783 |
|
|
h->verinfo.vertree = t;
|
3784 |
|
|
break;
|
3785 |
|
|
}
|
3786 |
|
|
}
|
3787 |
|
|
|
3788 |
|
|
if (d != NULL)
|
3789 |
|
|
break;
|
3790 |
|
|
}
|
3791 |
|
|
|
3792 |
|
|
if (t->locals != NULL)
|
3793 |
|
|
{
|
3794 |
|
|
for (d = t->locals; d != NULL; d = d->next)
|
3795 |
|
|
{
|
3796 |
|
|
if (d->pattern[0] == '*' && d->pattern[1] == '\0')
|
3797 |
|
|
deflt = t;
|
3798 |
|
|
else if ((*d->match) (d, h->root.root.string))
|
3799 |
|
|
{
|
3800 |
|
|
h->verinfo.vertree = t;
|
3801 |
|
|
if (h->dynindx != -1
|
3802 |
|
|
&& info->shared
|
3803 |
|
|
&& ! sinfo->export_dynamic)
|
3804 |
|
|
{
|
3805 |
|
|
h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
|
3806 |
|
|
(*bed->elf_backend_hide_symbol) (h);
|
3807 |
|
|
/* FIXME: The name of the symbol has already
|
3808 |
|
|
been recorded in the dynamic string table
|
3809 |
|
|
section. */
|
3810 |
|
|
}
|
3811 |
|
|
break;
|
3812 |
|
|
}
|
3813 |
|
|
}
|
3814 |
|
|
|
3815 |
|
|
if (d != NULL)
|
3816 |
|
|
break;
|
3817 |
|
|
}
|
3818 |
|
|
}
|
3819 |
|
|
|
3820 |
|
|
if (deflt != NULL && h->verinfo.vertree == NULL)
|
3821 |
|
|
{
|
3822 |
|
|
h->verinfo.vertree = deflt;
|
3823 |
|
|
if (h->dynindx != -1
|
3824 |
|
|
&& info->shared
|
3825 |
|
|
&& ! sinfo->export_dynamic)
|
3826 |
|
|
{
|
3827 |
|
|
h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
|
3828 |
|
|
(*bed->elf_backend_hide_symbol) (h);
|
3829 |
|
|
/* FIXME: The name of the symbol has already been
|
3830 |
|
|
recorded in the dynamic string table section. */
|
3831 |
|
|
}
|
3832 |
|
|
}
|
3833 |
|
|
}
|
3834 |
|
|
|
3835 |
|
|
return true;
|
3836 |
|
|
}
|
3837 |
|
|
|
3838 |
|
|
/* Final phase of ELF linker. */
|
3839 |
|
|
|
3840 |
|
|
/* A structure we use to avoid passing large numbers of arguments. */
|
3841 |
|
|
|
3842 |
|
|
struct elf_final_link_info
|
3843 |
|
|
{
|
3844 |
|
|
/* General link information. */
|
3845 |
|
|
struct bfd_link_info *info;
|
3846 |
|
|
/* Output BFD. */
|
3847 |
|
|
bfd *output_bfd;
|
3848 |
|
|
/* Symbol string table. */
|
3849 |
|
|
struct bfd_strtab_hash *symstrtab;
|
3850 |
|
|
/* .dynsym section. */
|
3851 |
|
|
asection *dynsym_sec;
|
3852 |
|
|
/* .hash section. */
|
3853 |
|
|
asection *hash_sec;
|
3854 |
|
|
/* symbol version section (.gnu.version). */
|
3855 |
|
|
asection *symver_sec;
|
3856 |
|
|
/* Buffer large enough to hold contents of any section. */
|
3857 |
|
|
bfd_byte *contents;
|
3858 |
|
|
/* Buffer large enough to hold external relocs of any section. */
|
3859 |
|
|
PTR external_relocs;
|
3860 |
|
|
/* Buffer large enough to hold internal relocs of any section. */
|
3861 |
|
|
Elf_Internal_Rela *internal_relocs;
|
3862 |
|
|
/* Buffer large enough to hold external local symbols of any input
|
3863 |
|
|
BFD. */
|
3864 |
|
|
Elf_External_Sym *external_syms;
|
3865 |
|
|
/* Buffer large enough to hold internal local symbols of any input
|
3866 |
|
|
BFD. */
|
3867 |
|
|
Elf_Internal_Sym *internal_syms;
|
3868 |
|
|
/* Array large enough to hold a symbol index for each local symbol
|
3869 |
|
|
of any input BFD. */
|
3870 |
|
|
long *indices;
|
3871 |
|
|
/* Array large enough to hold a section pointer for each local
|
3872 |
|
|
symbol of any input BFD. */
|
3873 |
|
|
asection **sections;
|
3874 |
|
|
/* Buffer to hold swapped out symbols. */
|
3875 |
|
|
Elf_External_Sym *symbuf;
|
3876 |
|
|
/* Number of swapped out symbols in buffer. */
|
3877 |
|
|
size_t symbuf_count;
|
3878 |
|
|
/* Number of symbols which fit in symbuf. */
|
3879 |
|
|
size_t symbuf_size;
|
3880 |
|
|
};
|
3881 |
|
|
|
3882 |
|
|
static boolean elf_link_output_sym
|
3883 |
|
|
PARAMS ((struct elf_final_link_info *, const char *,
|
3884 |
|
|
Elf_Internal_Sym *, asection *));
|
3885 |
|
|
static boolean elf_link_flush_output_syms
|
3886 |
|
|
PARAMS ((struct elf_final_link_info *));
|
3887 |
|
|
static boolean elf_link_output_extsym
|
3888 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
3889 |
|
|
static boolean elf_link_input_bfd
|
3890 |
|
|
PARAMS ((struct elf_final_link_info *, bfd *));
|
3891 |
|
|
static boolean elf_reloc_link_order
|
3892 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
3893 |
|
|
struct bfd_link_order *));
|
3894 |
|
|
|
3895 |
|
|
/* This struct is used to pass information to elf_link_output_extsym. */
|
3896 |
|
|
|
3897 |
|
|
struct elf_outext_info
|
3898 |
|
|
{
|
3899 |
|
|
boolean failed;
|
3900 |
|
|
boolean localsyms;
|
3901 |
|
|
struct elf_final_link_info *finfo;
|
3902 |
|
|
};
|
3903 |
|
|
|
3904 |
|
|
/* Compute the size of, and allocate space for, REL_HDR which is the
|
3905 |
|
|
section header for a section containing relocations for O. */
|
3906 |
|
|
|
3907 |
|
|
static boolean
|
3908 |
|
|
elf_link_size_reloc_section (abfd, rel_hdr, o)
|
3909 |
|
|
bfd *abfd;
|
3910 |
|
|
Elf_Internal_Shdr *rel_hdr;
|
3911 |
|
|
asection *o;
|
3912 |
|
|
{
|
3913 |
|
|
register struct elf_link_hash_entry **p, **pend;
|
3914 |
|
|
unsigned reloc_count;
|
3915 |
|
|
|
3916 |
|
|
/* Figure out how many relocations there will be. */
|
3917 |
|
|
if (rel_hdr == &elf_section_data (o)->rel_hdr)
|
3918 |
|
|
reloc_count = elf_section_data (o)->rel_count;
|
3919 |
|
|
else
|
3920 |
|
|
reloc_count = elf_section_data (o)->rel_count2;
|
3921 |
|
|
|
3922 |
|
|
/* That allows us to calculate the size of the section. */
|
3923 |
|
|
rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
|
3924 |
|
|
|
3925 |
|
|
/* The contents field must last into write_object_contents, so we
|
3926 |
|
|
allocate it with bfd_alloc rather than malloc. */
|
3927 |
|
|
rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
|
3928 |
|
|
if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
|
3929 |
|
|
return false;
|
3930 |
|
|
|
3931 |
|
|
/* We only allocate one set of hash entries, so we only do it the
|
3932 |
|
|
first time we are called. */
|
3933 |
|
|
if (elf_section_data (o)->rel_hashes == NULL)
|
3934 |
|
|
{
|
3935 |
|
|
p = ((struct elf_link_hash_entry **)
|
3936 |
|
|
bfd_malloc (o->reloc_count
|
3937 |
|
|
* sizeof (struct elf_link_hash_entry *)));
|
3938 |
|
|
if (p == NULL && o->reloc_count != 0)
|
3939 |
|
|
return false;
|
3940 |
|
|
|
3941 |
|
|
elf_section_data (o)->rel_hashes = p;
|
3942 |
|
|
pend = p + o->reloc_count;
|
3943 |
|
|
for (; p < pend; p++)
|
3944 |
|
|
*p = NULL;
|
3945 |
|
|
}
|
3946 |
|
|
|
3947 |
|
|
return true;
|
3948 |
|
|
}
|
3949 |
|
|
|
3950 |
|
|
/* When performing a relocateable link, the input relocations are
|
3951 |
|
|
preserved. But, if they reference global symbols, the indices
|
3952 |
|
|
referenced must be updated. Update all the relocations in
|
3953 |
|
|
REL_HDR (there are COUNT of them), using the data in REL_HASH. */
|
3954 |
|
|
|
3955 |
|
|
static void
|
3956 |
|
|
elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
|
3957 |
|
|
bfd *abfd;
|
3958 |
|
|
Elf_Internal_Shdr *rel_hdr;
|
3959 |
|
|
unsigned int count;
|
3960 |
|
|
struct elf_link_hash_entry **rel_hash;
|
3961 |
|
|
{
|
3962 |
|
|
unsigned int i;
|
3963 |
|
|
|
3964 |
|
|
for (i = 0; i < count; i++, rel_hash++)
|
3965 |
|
|
{
|
3966 |
|
|
if (*rel_hash == NULL)
|
3967 |
|
|
continue;
|
3968 |
|
|
|
3969 |
|
|
BFD_ASSERT ((*rel_hash)->indx >= 0);
|
3970 |
|
|
|
3971 |
|
|
if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
3972 |
|
|
{
|
3973 |
|
|
Elf_External_Rel *erel;
|
3974 |
|
|
Elf_Internal_Rel irel;
|
3975 |
|
|
|
3976 |
|
|
erel = (Elf_External_Rel *) rel_hdr->contents + i;
|
3977 |
|
|
elf_swap_reloc_in (abfd, erel, &irel);
|
3978 |
|
|
irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
|
3979 |
|
|
ELF_R_TYPE (irel.r_info));
|
3980 |
|
|
elf_swap_reloc_out (abfd, &irel, erel);
|
3981 |
|
|
}
|
3982 |
|
|
else
|
3983 |
|
|
{
|
3984 |
|
|
Elf_External_Rela *erela;
|
3985 |
|
|
Elf_Internal_Rela irela;
|
3986 |
|
|
|
3987 |
|
|
BFD_ASSERT (rel_hdr->sh_entsize
|
3988 |
|
|
== sizeof (Elf_External_Rela));
|
3989 |
|
|
|
3990 |
|
|
erela = (Elf_External_Rela *) rel_hdr->contents + i;
|
3991 |
|
|
elf_swap_reloca_in (abfd, erela, &irela);
|
3992 |
|
|
irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
|
3993 |
|
|
ELF_R_TYPE (irela.r_info));
|
3994 |
|
|
elf_swap_reloca_out (abfd, &irela, erela);
|
3995 |
|
|
}
|
3996 |
|
|
}
|
3997 |
|
|
}
|
3998 |
|
|
|
3999 |
|
|
/* Do the final step of an ELF link. */
|
4000 |
|
|
|
4001 |
|
|
boolean
|
4002 |
|
|
elf_bfd_final_link (abfd, info)
|
4003 |
|
|
bfd *abfd;
|
4004 |
|
|
struct bfd_link_info *info;
|
4005 |
|
|
{
|
4006 |
|
|
boolean dynamic;
|
4007 |
|
|
bfd *dynobj;
|
4008 |
|
|
struct elf_final_link_info finfo;
|
4009 |
|
|
register asection *o;
|
4010 |
|
|
register struct bfd_link_order *p;
|
4011 |
|
|
register bfd *sub;
|
4012 |
|
|
size_t max_contents_size;
|
4013 |
|
|
size_t max_external_reloc_size;
|
4014 |
|
|
size_t max_internal_reloc_count;
|
4015 |
|
|
size_t max_sym_count;
|
4016 |
|
|
file_ptr off;
|
4017 |
|
|
Elf_Internal_Sym elfsym;
|
4018 |
|
|
unsigned int i;
|
4019 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
4020 |
|
|
Elf_Internal_Shdr *symstrtab_hdr;
|
4021 |
|
|
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
4022 |
|
|
struct elf_outext_info eoinfo;
|
4023 |
|
|
|
4024 |
|
|
if (info->shared)
|
4025 |
|
|
abfd->flags |= DYNAMIC;
|
4026 |
|
|
|
4027 |
|
|
dynamic = elf_hash_table (info)->dynamic_sections_created;
|
4028 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
4029 |
|
|
|
4030 |
|
|
finfo.info = info;
|
4031 |
|
|
finfo.output_bfd = abfd;
|
4032 |
|
|
finfo.symstrtab = elf_stringtab_init ();
|
4033 |
|
|
if (finfo.symstrtab == NULL)
|
4034 |
|
|
return false;
|
4035 |
|
|
|
4036 |
|
|
if (! dynamic)
|
4037 |
|
|
{
|
4038 |
|
|
finfo.dynsym_sec = NULL;
|
4039 |
|
|
finfo.hash_sec = NULL;
|
4040 |
|
|
finfo.symver_sec = NULL;
|
4041 |
|
|
}
|
4042 |
|
|
else
|
4043 |
|
|
{
|
4044 |
|
|
finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
|
4045 |
|
|
finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
|
4046 |
|
|
BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
|
4047 |
|
|
finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
|
4048 |
|
|
/* Note that it is OK if symver_sec is NULL. */
|
4049 |
|
|
}
|
4050 |
|
|
|
4051 |
|
|
finfo.contents = NULL;
|
4052 |
|
|
finfo.external_relocs = NULL;
|
4053 |
|
|
finfo.internal_relocs = NULL;
|
4054 |
|
|
finfo.external_syms = NULL;
|
4055 |
|
|
finfo.internal_syms = NULL;
|
4056 |
|
|
finfo.indices = NULL;
|
4057 |
|
|
finfo.sections = NULL;
|
4058 |
|
|
finfo.symbuf = NULL;
|
4059 |
|
|
finfo.symbuf_count = 0;
|
4060 |
|
|
|
4061 |
|
|
/* Count up the number of relocations we will output for each output
|
4062 |
|
|
section, so that we know the sizes of the reloc sections. We
|
4063 |
|
|
also figure out some maximum sizes. */
|
4064 |
|
|
max_contents_size = 0;
|
4065 |
|
|
max_external_reloc_size = 0;
|
4066 |
|
|
max_internal_reloc_count = 0;
|
4067 |
|
|
max_sym_count = 0;
|
4068 |
|
|
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
4069 |
|
|
{
|
4070 |
|
|
o->reloc_count = 0;
|
4071 |
|
|
|
4072 |
|
|
for (p = o->link_order_head; p != NULL; p = p->next)
|
4073 |
|
|
{
|
4074 |
|
|
if (p->type == bfd_section_reloc_link_order
|
4075 |
|
|
|| p->type == bfd_symbol_reloc_link_order)
|
4076 |
|
|
++o->reloc_count;
|
4077 |
|
|
else if (p->type == bfd_indirect_link_order)
|
4078 |
|
|
{
|
4079 |
|
|
asection *sec;
|
4080 |
|
|
|
4081 |
|
|
sec = p->u.indirect.section;
|
4082 |
|
|
|
4083 |
|
|
/* Mark all sections which are to be included in the
|
4084 |
|
|
link. This will normally be every section. We need
|
4085 |
|
|
to do this so that we can identify any sections which
|
4086 |
|
|
the linker has decided to not include. */
|
4087 |
|
|
sec->linker_mark = true;
|
4088 |
|
|
|
4089 |
|
|
if (info->relocateable)
|
4090 |
|
|
o->reloc_count += sec->reloc_count;
|
4091 |
|
|
|
4092 |
|
|
if (sec->_raw_size > max_contents_size)
|
4093 |
|
|
max_contents_size = sec->_raw_size;
|
4094 |
|
|
if (sec->_cooked_size > max_contents_size)
|
4095 |
|
|
max_contents_size = sec->_cooked_size;
|
4096 |
|
|
|
4097 |
|
|
/* We are interested in just local symbols, not all
|
4098 |
|
|
symbols. */
|
4099 |
|
|
if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
|
4100 |
|
|
&& (sec->owner->flags & DYNAMIC) == 0)
|
4101 |
|
|
{
|
4102 |
|
|
size_t sym_count;
|
4103 |
|
|
|
4104 |
|
|
if (elf_bad_symtab (sec->owner))
|
4105 |
|
|
sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
|
4106 |
|
|
/ sizeof (Elf_External_Sym));
|
4107 |
|
|
else
|
4108 |
|
|
sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
|
4109 |
|
|
|
4110 |
|
|
if (sym_count > max_sym_count)
|
4111 |
|
|
max_sym_count = sym_count;
|
4112 |
|
|
|
4113 |
|
|
if ((sec->flags & SEC_RELOC) != 0)
|
4114 |
|
|
{
|
4115 |
|
|
size_t ext_size;
|
4116 |
|
|
|
4117 |
|
|
ext_size = elf_section_data (sec)->rel_hdr.sh_size;
|
4118 |
|
|
if (ext_size > max_external_reloc_size)
|
4119 |
|
|
max_external_reloc_size = ext_size;
|
4120 |
|
|
if (sec->reloc_count > max_internal_reloc_count)
|
4121 |
|
|
max_internal_reloc_count = sec->reloc_count;
|
4122 |
|
|
}
|
4123 |
|
|
}
|
4124 |
|
|
}
|
4125 |
|
|
}
|
4126 |
|
|
|
4127 |
|
|
if (o->reloc_count > 0)
|
4128 |
|
|
o->flags |= SEC_RELOC;
|
4129 |
|
|
else
|
4130 |
|
|
{
|
4131 |
|
|
/* Explicitly clear the SEC_RELOC flag. The linker tends to
|
4132 |
|
|
set it (this is probably a bug) and if it is set
|
4133 |
|
|
assign_section_numbers will create a reloc section. */
|
4134 |
|
|
o->flags &=~ SEC_RELOC;
|
4135 |
|
|
}
|
4136 |
|
|
|
4137 |
|
|
/* If the SEC_ALLOC flag is not set, force the section VMA to
|
4138 |
|
|
zero. This is done in elf_fake_sections as well, but forcing
|
4139 |
|
|
the VMA to 0 here will ensure that relocs against these
|
4140 |
|
|
sections are handled correctly. */
|
4141 |
|
|
if ((o->flags & SEC_ALLOC) == 0
|
4142 |
|
|
&& ! o->user_set_vma)
|
4143 |
|
|
o->vma = 0;
|
4144 |
|
|
}
|
4145 |
|
|
|
4146 |
|
|
/* Figure out the file positions for everything but the symbol table
|
4147 |
|
|
and the relocs. We set symcount to force assign_section_numbers
|
4148 |
|
|
to create a symbol table. */
|
4149 |
|
|
bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
|
4150 |
|
|
BFD_ASSERT (! abfd->output_has_begun);
|
4151 |
|
|
if (! _bfd_elf_compute_section_file_positions (abfd, info))
|
4152 |
|
|
goto error_return;
|
4153 |
|
|
|
4154 |
|
|
/* Figure out how many relocations we will have in each section.
|
4155 |
|
|
Just using RELOC_COUNT isn't good enough since that doesn't
|
4156 |
|
|
maintain a separate value for REL vs. RELA relocations. */
|
4157 |
|
|
if (info->relocateable)
|
4158 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
4159 |
|
|
for (o = sub->sections; o != NULL; o = o->next)
|
4160 |
|
|
{
|
4161 |
|
|
asection *output_section;
|
4162 |
|
|
|
4163 |
|
|
if (! o->linker_mark)
|
4164 |
|
|
{
|
4165 |
|
|
/* This section was omitted from the link. */
|
4166 |
|
|
continue;
|
4167 |
|
|
}
|
4168 |
|
|
|
4169 |
|
|
output_section = o->output_section;
|
4170 |
|
|
|
4171 |
|
|
if (output_section != NULL
|
4172 |
|
|
&& (o->flags & SEC_RELOC) != 0)
|
4173 |
|
|
{
|
4174 |
|
|
struct bfd_elf_section_data *esdi
|
4175 |
|
|
= elf_section_data (o);
|
4176 |
|
|
struct bfd_elf_section_data *esdo
|
4177 |
|
|
= elf_section_data (output_section);
|
4178 |
|
|
unsigned int *rel_count;
|
4179 |
|
|
unsigned int *rel_count2;
|
4180 |
|
|
|
4181 |
|
|
/* We must be careful to add the relocation froms the
|
4182 |
|
|
input section to the right output count. */
|
4183 |
|
|
if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
|
4184 |
|
|
{
|
4185 |
|
|
rel_count = &esdo->rel_count;
|
4186 |
|
|
rel_count2 = &esdo->rel_count2;
|
4187 |
|
|
}
|
4188 |
|
|
else
|
4189 |
|
|
{
|
4190 |
|
|
rel_count = &esdo->rel_count2;
|
4191 |
|
|
rel_count2 = &esdo->rel_count;
|
4192 |
|
|
}
|
4193 |
|
|
|
4194 |
|
|
*rel_count += (esdi->rel_hdr.sh_size
|
4195 |
|
|
/ esdi->rel_hdr.sh_entsize);
|
4196 |
|
|
if (esdi->rel_hdr2)
|
4197 |
|
|
*rel_count2 += (esdi->rel_hdr2->sh_size
|
4198 |
|
|
/ esdi->rel_hdr2->sh_entsize);
|
4199 |
|
|
}
|
4200 |
|
|
}
|
4201 |
|
|
|
4202 |
|
|
/* That created the reloc sections. Set their sizes, and assign
|
4203 |
|
|
them file positions, and allocate some buffers. */
|
4204 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
4205 |
|
|
{
|
4206 |
|
|
if ((o->flags & SEC_RELOC) != 0)
|
4207 |
|
|
{
|
4208 |
|
|
if (!elf_link_size_reloc_section (abfd,
|
4209 |
|
|
&elf_section_data (o)->rel_hdr,
|
4210 |
|
|
o))
|
4211 |
|
|
goto error_return;
|
4212 |
|
|
|
4213 |
|
|
if (elf_section_data (o)->rel_hdr2
|
4214 |
|
|
&& !elf_link_size_reloc_section (abfd,
|
4215 |
|
|
elf_section_data (o)->rel_hdr2,
|
4216 |
|
|
o))
|
4217 |
|
|
goto error_return;
|
4218 |
|
|
}
|
4219 |
|
|
|
4220 |
|
|
/* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
|
4221 |
|
|
to count upwards while actually outputting the relocations. */
|
4222 |
|
|
elf_section_data (o)->rel_count = 0;
|
4223 |
|
|
elf_section_data (o)->rel_count2 = 0;
|
4224 |
|
|
}
|
4225 |
|
|
|
4226 |
|
|
_bfd_elf_assign_file_positions_for_relocs (abfd);
|
4227 |
|
|
|
4228 |
|
|
/* We have now assigned file positions for all the sections except
|
4229 |
|
|
.symtab and .strtab. We start the .symtab section at the current
|
4230 |
|
|
file position, and write directly to it. We build the .strtab
|
4231 |
|
|
section in memory. */
|
4232 |
|
|
bfd_get_symcount (abfd) = 0;
|
4233 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
4234 |
|
|
/* sh_name is set in prep_headers. */
|
4235 |
|
|
symtab_hdr->sh_type = SHT_SYMTAB;
|
4236 |
|
|
symtab_hdr->sh_flags = 0;
|
4237 |
|
|
symtab_hdr->sh_addr = 0;
|
4238 |
|
|
symtab_hdr->sh_size = 0;
|
4239 |
|
|
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
|
4240 |
|
|
/* sh_link is set in assign_section_numbers. */
|
4241 |
|
|
/* sh_info is set below. */
|
4242 |
|
|
/* sh_offset is set just below. */
|
4243 |
|
|
symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
|
4244 |
|
|
|
4245 |
|
|
off = elf_tdata (abfd)->next_file_pos;
|
4246 |
|
|
off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
|
4247 |
|
|
|
4248 |
|
|
/* Note that at this point elf_tdata (abfd)->next_file_pos is
|
4249 |
|
|
incorrect. We do not yet know the size of the .symtab section.
|
4250 |
|
|
We correct next_file_pos below, after we do know the size. */
|
4251 |
|
|
|
4252 |
|
|
/* Allocate a buffer to hold swapped out symbols. This is to avoid
|
4253 |
|
|
continuously seeking to the right position in the file. */
|
4254 |
|
|
if (! info->keep_memory || max_sym_count < 20)
|
4255 |
|
|
finfo.symbuf_size = 20;
|
4256 |
|
|
else
|
4257 |
|
|
finfo.symbuf_size = max_sym_count;
|
4258 |
|
|
finfo.symbuf = ((Elf_External_Sym *)
|
4259 |
|
|
bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
|
4260 |
|
|
if (finfo.symbuf == NULL)
|
4261 |
|
|
goto error_return;
|
4262 |
|
|
|
4263 |
|
|
/* Start writing out the symbol table. The first symbol is always a
|
4264 |
|
|
dummy symbol. */
|
4265 |
|
|
if (info->strip != strip_all || info->relocateable)
|
4266 |
|
|
{
|
4267 |
|
|
elfsym.st_value = 0;
|
4268 |
|
|
elfsym.st_size = 0;
|
4269 |
|
|
elfsym.st_info = 0;
|
4270 |
|
|
elfsym.st_other = 0;
|
4271 |
|
|
elfsym.st_shndx = SHN_UNDEF;
|
4272 |
|
|
if (! elf_link_output_sym (&finfo, (const char *) NULL,
|
4273 |
|
|
&elfsym, bfd_und_section_ptr))
|
4274 |
|
|
goto error_return;
|
4275 |
|
|
}
|
4276 |
|
|
|
4277 |
|
|
#if 0
|
4278 |
|
|
/* Some standard ELF linkers do this, but we don't because it causes
|
4279 |
|
|
bootstrap comparison failures. */
|
4280 |
|
|
/* Output a file symbol for the output file as the second symbol.
|
4281 |
|
|
We output this even if we are discarding local symbols, although
|
4282 |
|
|
I'm not sure if this is correct. */
|
4283 |
|
|
elfsym.st_value = 0;
|
4284 |
|
|
elfsym.st_size = 0;
|
4285 |
|
|
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
|
4286 |
|
|
elfsym.st_other = 0;
|
4287 |
|
|
elfsym.st_shndx = SHN_ABS;
|
4288 |
|
|
if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
|
4289 |
|
|
&elfsym, bfd_abs_section_ptr))
|
4290 |
|
|
goto error_return;
|
4291 |
|
|
#endif
|
4292 |
|
|
|
4293 |
|
|
/* Output a symbol for each section. We output these even if we are
|
4294 |
|
|
discarding local symbols, since they are used for relocs. These
|
4295 |
|
|
symbols have no names. We store the index of each one in the
|
4296 |
|
|
index field of the section, so that we can find it again when
|
4297 |
|
|
outputting relocs. */
|
4298 |
|
|
if (info->strip != strip_all || info->relocateable)
|
4299 |
|
|
{
|
4300 |
|
|
elfsym.st_size = 0;
|
4301 |
|
|
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
4302 |
|
|
elfsym.st_other = 0;
|
4303 |
|
|
for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
|
4304 |
|
|
{
|
4305 |
|
|
o = section_from_elf_index (abfd, i);
|
4306 |
|
|
if (o != NULL)
|
4307 |
|
|
o->target_index = bfd_get_symcount (abfd);
|
4308 |
|
|
elfsym.st_shndx = i;
|
4309 |
|
|
if (info->relocateable || o == NULL)
|
4310 |
|
|
elfsym.st_value = 0;
|
4311 |
|
|
else
|
4312 |
|
|
elfsym.st_value = o->vma;
|
4313 |
|
|
if (! elf_link_output_sym (&finfo, (const char *) NULL,
|
4314 |
|
|
&elfsym, o))
|
4315 |
|
|
goto error_return;
|
4316 |
|
|
}
|
4317 |
|
|
}
|
4318 |
|
|
|
4319 |
|
|
/* Allocate some memory to hold information read in from the input
|
4320 |
|
|
files. */
|
4321 |
|
|
finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
|
4322 |
|
|
finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
|
4323 |
|
|
finfo.internal_relocs = ((Elf_Internal_Rela *)
|
4324 |
|
|
bfd_malloc (max_internal_reloc_count
|
4325 |
|
|
* sizeof (Elf_Internal_Rela)
|
4326 |
|
|
* bed->s->int_rels_per_ext_rel));
|
4327 |
|
|
finfo.external_syms = ((Elf_External_Sym *)
|
4328 |
|
|
bfd_malloc (max_sym_count
|
4329 |
|
|
* sizeof (Elf_External_Sym)));
|
4330 |
|
|
finfo.internal_syms = ((Elf_Internal_Sym *)
|
4331 |
|
|
bfd_malloc (max_sym_count
|
4332 |
|
|
* sizeof (Elf_Internal_Sym)));
|
4333 |
|
|
finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
|
4334 |
|
|
finfo.sections = ((asection **)
|
4335 |
|
|
bfd_malloc (max_sym_count * sizeof (asection *)));
|
4336 |
|
|
if ((finfo.contents == NULL && max_contents_size != 0)
|
4337 |
|
|
|| (finfo.external_relocs == NULL && max_external_reloc_size != 0)
|
4338 |
|
|
|| (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
|
4339 |
|
|
|| (finfo.external_syms == NULL && max_sym_count != 0)
|
4340 |
|
|
|| (finfo.internal_syms == NULL && max_sym_count != 0)
|
4341 |
|
|
|| (finfo.indices == NULL && max_sym_count != 0)
|
4342 |
|
|
|| (finfo.sections == NULL && max_sym_count != 0))
|
4343 |
|
|
goto error_return;
|
4344 |
|
|
|
4345 |
|
|
/* Since ELF permits relocations to be against local symbols, we
|
4346 |
|
|
must have the local symbols available when we do the relocations.
|
4347 |
|
|
Since we would rather only read the local symbols once, and we
|
4348 |
|
|
would rather not keep them in memory, we handle all the
|
4349 |
|
|
relocations for a single input file at the same time.
|
4350 |
|
|
|
4351 |
|
|
Unfortunately, there is no way to know the total number of local
|
4352 |
|
|
symbols until we have seen all of them, and the local symbol
|
4353 |
|
|
indices precede the global symbol indices. This means that when
|
4354 |
|
|
we are generating relocateable output, and we see a reloc against
|
4355 |
|
|
a global symbol, we can not know the symbol index until we have
|
4356 |
|
|
finished examining all the local symbols to see which ones we are
|
4357 |
|
|
going to output. To deal with this, we keep the relocations in
|
4358 |
|
|
memory, and don't output them until the end of the link. This is
|
4359 |
|
|
an unfortunate waste of memory, but I don't see a good way around
|
4360 |
|
|
it. Fortunately, it only happens when performing a relocateable
|
4361 |
|
|
link, which is not the common case. FIXME: If keep_memory is set
|
4362 |
|
|
we could write the relocs out and then read them again; I don't
|
4363 |
|
|
know how bad the memory loss will be. */
|
4364 |
|
|
|
4365 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
4366 |
|
|
sub->output_has_begun = false;
|
4367 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
4368 |
|
|
{
|
4369 |
|
|
for (p = o->link_order_head; p != NULL; p = p->next)
|
4370 |
|
|
{
|
4371 |
|
|
if (p->type == bfd_indirect_link_order
|
4372 |
|
|
&& (bfd_get_flavour (p->u.indirect.section->owner)
|
4373 |
|
|
== bfd_target_elf_flavour))
|
4374 |
|
|
{
|
4375 |
|
|
sub = p->u.indirect.section->owner;
|
4376 |
|
|
if (! sub->output_has_begun)
|
4377 |
|
|
{
|
4378 |
|
|
if (! elf_link_input_bfd (&finfo, sub))
|
4379 |
|
|
goto error_return;
|
4380 |
|
|
sub->output_has_begun = true;
|
4381 |
|
|
}
|
4382 |
|
|
}
|
4383 |
|
|
else if (p->type == bfd_section_reloc_link_order
|
4384 |
|
|
|| p->type == bfd_symbol_reloc_link_order)
|
4385 |
|
|
{
|
4386 |
|
|
if (! elf_reloc_link_order (abfd, info, o, p))
|
4387 |
|
|
goto error_return;
|
4388 |
|
|
}
|
4389 |
|
|
else
|
4390 |
|
|
{
|
4391 |
|
|
if (! _bfd_default_link_order (abfd, info, o, p))
|
4392 |
|
|
goto error_return;
|
4393 |
|
|
}
|
4394 |
|
|
}
|
4395 |
|
|
}
|
4396 |
|
|
|
4397 |
|
|
/* That wrote out all the local symbols. Finish up the symbol table
|
4398 |
|
|
with the global symbols. Even if we want to strip everything we
|
4399 |
|
|
can, we still need to deal with those global symbols that got
|
4400 |
|
|
converted to local in a version script. */
|
4401 |
|
|
|
4402 |
|
|
if (info->shared)
|
4403 |
|
|
{
|
4404 |
|
|
/* Output any global symbols that got converted to local in a
|
4405 |
|
|
version script. We do this in a separate step since ELF
|
4406 |
|
|
requires all local symbols to appear prior to any global
|
4407 |
|
|
symbols. FIXME: We should only do this if some global
|
4408 |
|
|
symbols were, in fact, converted to become local. FIXME:
|
4409 |
|
|
Will this work correctly with the Irix 5 linker? */
|
4410 |
|
|
eoinfo.failed = false;
|
4411 |
|
|
eoinfo.finfo = &finfo;
|
4412 |
|
|
eoinfo.localsyms = true;
|
4413 |
|
|
elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
|
4414 |
|
|
(PTR) &eoinfo);
|
4415 |
|
|
if (eoinfo.failed)
|
4416 |
|
|
return false;
|
4417 |
|
|
}
|
4418 |
|
|
|
4419 |
|
|
/* The sh_info field records the index of the first non local symbol. */
|
4420 |
|
|
symtab_hdr->sh_info = bfd_get_symcount (abfd);
|
4421 |
|
|
|
4422 |
|
|
if (dynamic)
|
4423 |
|
|
{
|
4424 |
|
|
Elf_Internal_Sym sym;
|
4425 |
|
|
Elf_External_Sym *dynsym =
|
4426 |
|
|
(Elf_External_Sym *)finfo.dynsym_sec->contents;
|
4427 |
|
|
long last_local = 0;
|
4428 |
|
|
|
4429 |
|
|
/* Write out the section symbols for the output sections. */
|
4430 |
|
|
if (info->shared)
|
4431 |
|
|
{
|
4432 |
|
|
asection *s;
|
4433 |
|
|
|
4434 |
|
|
sym.st_size = 0;
|
4435 |
|
|
sym.st_name = 0;
|
4436 |
|
|
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
4437 |
|
|
sym.st_other = 0;
|
4438 |
|
|
|
4439 |
|
|
for (s = abfd->sections; s != NULL; s = s->next)
|
4440 |
|
|
{
|
4441 |
|
|
int indx;
|
4442 |
|
|
indx = elf_section_data (s)->this_idx;
|
4443 |
|
|
BFD_ASSERT (indx > 0);
|
4444 |
|
|
sym.st_shndx = indx;
|
4445 |
|
|
sym.st_value = s->vma;
|
4446 |
|
|
|
4447 |
|
|
elf_swap_symbol_out (abfd, &sym,
|
4448 |
|
|
dynsym + elf_section_data (s)->dynindx);
|
4449 |
|
|
}
|
4450 |
|
|
|
4451 |
|
|
last_local = bfd_count_sections (abfd);
|
4452 |
|
|
}
|
4453 |
|
|
|
4454 |
|
|
/* Write out the local dynsyms. */
|
4455 |
|
|
if (elf_hash_table (info)->dynlocal)
|
4456 |
|
|
{
|
4457 |
|
|
struct elf_link_local_dynamic_entry *e;
|
4458 |
|
|
for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
|
4459 |
|
|
{
|
4460 |
|
|
asection *s;
|
4461 |
|
|
|
4462 |
|
|
sym.st_size = e->isym.st_size;
|
4463 |
|
|
sym.st_other = e->isym.st_other;
|
4464 |
|
|
|
4465 |
|
|
/* Copy the internal symbol as is.
|
4466 |
|
|
Note that we saved a word of storage and overwrote
|
4467 |
|
|
the original st_name with the dynstr_index. */
|
4468 |
|
|
sym = e->isym;
|
4469 |
|
|
|
4470 |
|
|
if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
|
4471 |
|
|
{
|
4472 |
|
|
s = bfd_section_from_elf_index (e->input_bfd,
|
4473 |
|
|
e->isym.st_shndx);
|
4474 |
|
|
|
4475 |
|
|
sym.st_shndx =
|
4476 |
|
|
elf_section_data (s->output_section)->this_idx;
|
4477 |
|
|
sym.st_value = (s->output_section->vma
|
4478 |
|
|
+ s->output_offset
|
4479 |
|
|
+ e->isym.st_value);
|
4480 |
|
|
}
|
4481 |
|
|
|
4482 |
|
|
if (last_local < e->dynindx)
|
4483 |
|
|
last_local = e->dynindx;
|
4484 |
|
|
|
4485 |
|
|
elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
|
4486 |
|
|
}
|
4487 |
|
|
}
|
4488 |
|
|
|
4489 |
|
|
elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
|
4490 |
|
|
last_local + 1;
|
4491 |
|
|
}
|
4492 |
|
|
|
4493 |
|
|
/* We get the global symbols from the hash table. */
|
4494 |
|
|
eoinfo.failed = false;
|
4495 |
|
|
eoinfo.localsyms = false;
|
4496 |
|
|
eoinfo.finfo = &finfo;
|
4497 |
|
|
elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
|
4498 |
|
|
(PTR) &eoinfo);
|
4499 |
|
|
if (eoinfo.failed)
|
4500 |
|
|
return false;
|
4501 |
|
|
|
4502 |
|
|
/* If backend needs to output some symbols not present in the hash
|
4503 |
|
|
table, do it now. */
|
4504 |
|
|
if (bed->elf_backend_output_arch_syms)
|
4505 |
|
|
{
|
4506 |
|
|
if (! (*bed->elf_backend_output_arch_syms)
|
4507 |
|
|
(abfd, info, (PTR) &finfo,
|
4508 |
|
|
(boolean (*) PARAMS ((PTR, const char *,
|
4509 |
|
|
Elf_Internal_Sym *, asection *)))
|
4510 |
|
|
elf_link_output_sym))
|
4511 |
|
|
return false;
|
4512 |
|
|
}
|
4513 |
|
|
|
4514 |
|
|
/* Flush all symbols to the file. */
|
4515 |
|
|
if (! elf_link_flush_output_syms (&finfo))
|
4516 |
|
|
return false;
|
4517 |
|
|
|
4518 |
|
|
/* Now we know the size of the symtab section. */
|
4519 |
|
|
off += symtab_hdr->sh_size;
|
4520 |
|
|
|
4521 |
|
|
/* Finish up and write out the symbol string table (.strtab)
|
4522 |
|
|
section. */
|
4523 |
|
|
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
|
4524 |
|
|
/* sh_name was set in prep_headers. */
|
4525 |
|
|
symstrtab_hdr->sh_type = SHT_STRTAB;
|
4526 |
|
|
symstrtab_hdr->sh_flags = 0;
|
4527 |
|
|
symstrtab_hdr->sh_addr = 0;
|
4528 |
|
|
symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
|
4529 |
|
|
symstrtab_hdr->sh_entsize = 0;
|
4530 |
|
|
symstrtab_hdr->sh_link = 0;
|
4531 |
|
|
symstrtab_hdr->sh_info = 0;
|
4532 |
|
|
/* sh_offset is set just below. */
|
4533 |
|
|
symstrtab_hdr->sh_addralign = 1;
|
4534 |
|
|
|
4535 |
|
|
off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
|
4536 |
|
|
elf_tdata (abfd)->next_file_pos = off;
|
4537 |
|
|
|
4538 |
|
|
if (bfd_get_symcount (abfd) > 0)
|
4539 |
|
|
{
|
4540 |
|
|
if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
|
4541 |
|
|
|| ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
|
4542 |
|
|
return false;
|
4543 |
|
|
}
|
4544 |
|
|
|
4545 |
|
|
/* Adjust the relocs to have the correct symbol indices. */
|
4546 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
4547 |
|
|
{
|
4548 |
|
|
if ((o->flags & SEC_RELOC) == 0)
|
4549 |
|
|
continue;
|
4550 |
|
|
|
4551 |
|
|
elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
|
4552 |
|
|
elf_section_data (o)->rel_count,
|
4553 |
|
|
elf_section_data (o)->rel_hashes);
|
4554 |
|
|
if (elf_section_data (o)->rel_hdr2 != NULL)
|
4555 |
|
|
elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
|
4556 |
|
|
elf_section_data (o)->rel_count2,
|
4557 |
|
|
(elf_section_data (o)->rel_hashes
|
4558 |
|
|
+ elf_section_data (o)->rel_count));
|
4559 |
|
|
|
4560 |
|
|
/* Set the reloc_count field to 0 to prevent write_relocs from
|
4561 |
|
|
trying to swap the relocs out itself. */
|
4562 |
|
|
o->reloc_count = 0;
|
4563 |
|
|
}
|
4564 |
|
|
|
4565 |
|
|
/* If we are linking against a dynamic object, or generating a
|
4566 |
|
|
shared library, finish up the dynamic linking information. */
|
4567 |
|
|
if (dynamic)
|
4568 |
|
|
{
|
4569 |
|
|
Elf_External_Dyn *dyncon, *dynconend;
|
4570 |
|
|
|
4571 |
|
|
/* Fix up .dynamic entries. */
|
4572 |
|
|
o = bfd_get_section_by_name (dynobj, ".dynamic");
|
4573 |
|
|
BFD_ASSERT (o != NULL);
|
4574 |
|
|
|
4575 |
|
|
dyncon = (Elf_External_Dyn *) o->contents;
|
4576 |
|
|
dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
|
4577 |
|
|
for (; dyncon < dynconend; dyncon++)
|
4578 |
|
|
{
|
4579 |
|
|
Elf_Internal_Dyn dyn;
|
4580 |
|
|
const char *name;
|
4581 |
|
|
unsigned int type;
|
4582 |
|
|
|
4583 |
|
|
elf_swap_dyn_in (dynobj, dyncon, &dyn);
|
4584 |
|
|
|
4585 |
|
|
switch (dyn.d_tag)
|
4586 |
|
|
{
|
4587 |
|
|
default:
|
4588 |
|
|
break;
|
4589 |
|
|
case DT_INIT:
|
4590 |
|
|
name = info->init_function;
|
4591 |
|
|
goto get_sym;
|
4592 |
|
|
case DT_FINI:
|
4593 |
|
|
name = info->fini_function;
|
4594 |
|
|
get_sym:
|
4595 |
|
|
{
|
4596 |
|
|
struct elf_link_hash_entry *h;
|
4597 |
|
|
|
4598 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
4599 |
|
|
false, false, true);
|
4600 |
|
|
if (h != NULL
|
4601 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
4602 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
4603 |
|
|
{
|
4604 |
|
|
dyn.d_un.d_val = h->root.u.def.value;
|
4605 |
|
|
o = h->root.u.def.section;
|
4606 |
|
|
if (o->output_section != NULL)
|
4607 |
|
|
dyn.d_un.d_val += (o->output_section->vma
|
4608 |
|
|
+ o->output_offset);
|
4609 |
|
|
else
|
4610 |
|
|
{
|
4611 |
|
|
/* The symbol is imported from another shared
|
4612 |
|
|
library and does not apply to this one. */
|
4613 |
|
|
dyn.d_un.d_val = 0;
|
4614 |
|
|
}
|
4615 |
|
|
|
4616 |
|
|
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
4617 |
|
|
}
|
4618 |
|
|
}
|
4619 |
|
|
break;
|
4620 |
|
|
|
4621 |
|
|
case DT_HASH:
|
4622 |
|
|
name = ".hash";
|
4623 |
|
|
goto get_vma;
|
4624 |
|
|
case DT_STRTAB:
|
4625 |
|
|
name = ".dynstr";
|
4626 |
|
|
goto get_vma;
|
4627 |
|
|
case DT_SYMTAB:
|
4628 |
|
|
name = ".dynsym";
|
4629 |
|
|
goto get_vma;
|
4630 |
|
|
case DT_VERDEF:
|
4631 |
|
|
name = ".gnu.version_d";
|
4632 |
|
|
goto get_vma;
|
4633 |
|
|
case DT_VERNEED:
|
4634 |
|
|
name = ".gnu.version_r";
|
4635 |
|
|
goto get_vma;
|
4636 |
|
|
case DT_VERSYM:
|
4637 |
|
|
name = ".gnu.version";
|
4638 |
|
|
get_vma:
|
4639 |
|
|
o = bfd_get_section_by_name (abfd, name);
|
4640 |
|
|
BFD_ASSERT (o != NULL);
|
4641 |
|
|
dyn.d_un.d_ptr = o->vma;
|
4642 |
|
|
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
4643 |
|
|
break;
|
4644 |
|
|
|
4645 |
|
|
case DT_REL:
|
4646 |
|
|
case DT_RELA:
|
4647 |
|
|
case DT_RELSZ:
|
4648 |
|
|
case DT_RELASZ:
|
4649 |
|
|
if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
|
4650 |
|
|
type = SHT_REL;
|
4651 |
|
|
else
|
4652 |
|
|
type = SHT_RELA;
|
4653 |
|
|
dyn.d_un.d_val = 0;
|
4654 |
|
|
for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
|
4655 |
|
|
{
|
4656 |
|
|
Elf_Internal_Shdr *hdr;
|
4657 |
|
|
|
4658 |
|
|
hdr = elf_elfsections (abfd)[i];
|
4659 |
|
|
if (hdr->sh_type == type
|
4660 |
|
|
&& (hdr->sh_flags & SHF_ALLOC) != 0)
|
4661 |
|
|
{
|
4662 |
|
|
if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
|
4663 |
|
|
dyn.d_un.d_val += hdr->sh_size;
|
4664 |
|
|
else
|
4665 |
|
|
{
|
4666 |
|
|
if (dyn.d_un.d_val == 0
|
4667 |
|
|
|| hdr->sh_addr < dyn.d_un.d_val)
|
4668 |
|
|
dyn.d_un.d_val = hdr->sh_addr;
|
4669 |
|
|
}
|
4670 |
|
|
}
|
4671 |
|
|
}
|
4672 |
|
|
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
4673 |
|
|
break;
|
4674 |
|
|
}
|
4675 |
|
|
}
|
4676 |
|
|
}
|
4677 |
|
|
|
4678 |
|
|
/* If we have created any dynamic sections, then output them. */
|
4679 |
|
|
if (dynobj != NULL)
|
4680 |
|
|
{
|
4681 |
|
|
if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
|
4682 |
|
|
goto error_return;
|
4683 |
|
|
|
4684 |
|
|
for (o = dynobj->sections; o != NULL; o = o->next)
|
4685 |
|
|
{
|
4686 |
|
|
if ((o->flags & SEC_HAS_CONTENTS) == 0
|
4687 |
|
|
|| o->_raw_size == 0)
|
4688 |
|
|
continue;
|
4689 |
|
|
if ((o->flags & SEC_LINKER_CREATED) == 0)
|
4690 |
|
|
{
|
4691 |
|
|
/* At this point, we are only interested in sections
|
4692 |
|
|
created by elf_link_create_dynamic_sections. */
|
4693 |
|
|
continue;
|
4694 |
|
|
}
|
4695 |
|
|
if ((elf_section_data (o->output_section)->this_hdr.sh_type
|
4696 |
|
|
!= SHT_STRTAB)
|
4697 |
|
|
|| strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
|
4698 |
|
|
{
|
4699 |
|
|
if (! bfd_set_section_contents (abfd, o->output_section,
|
4700 |
|
|
o->contents, o->output_offset,
|
4701 |
|
|
o->_raw_size))
|
4702 |
|
|
goto error_return;
|
4703 |
|
|
}
|
4704 |
|
|
else
|
4705 |
|
|
{
|
4706 |
|
|
file_ptr off;
|
4707 |
|
|
|
4708 |
|
|
/* The contents of the .dynstr section are actually in a
|
4709 |
|
|
stringtab. */
|
4710 |
|
|
off = elf_section_data (o->output_section)->this_hdr.sh_offset;
|
4711 |
|
|
if (bfd_seek (abfd, off, SEEK_SET) != 0
|
4712 |
|
|
|| ! _bfd_stringtab_emit (abfd,
|
4713 |
|
|
elf_hash_table (info)->dynstr))
|
4714 |
|
|
goto error_return;
|
4715 |
|
|
}
|
4716 |
|
|
}
|
4717 |
|
|
}
|
4718 |
|
|
|
4719 |
|
|
/* If we have optimized stabs strings, output them. */
|
4720 |
|
|
if (elf_hash_table (info)->stab_info != NULL)
|
4721 |
|
|
{
|
4722 |
|
|
if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
|
4723 |
|
|
goto error_return;
|
4724 |
|
|
}
|
4725 |
|
|
|
4726 |
|
|
if (finfo.symstrtab != NULL)
|
4727 |
|
|
_bfd_stringtab_free (finfo.symstrtab);
|
4728 |
|
|
if (finfo.contents != NULL)
|
4729 |
|
|
free (finfo.contents);
|
4730 |
|
|
if (finfo.external_relocs != NULL)
|
4731 |
|
|
free (finfo.external_relocs);
|
4732 |
|
|
if (finfo.internal_relocs != NULL)
|
4733 |
|
|
free (finfo.internal_relocs);
|
4734 |
|
|
if (finfo.external_syms != NULL)
|
4735 |
|
|
free (finfo.external_syms);
|
4736 |
|
|
if (finfo.internal_syms != NULL)
|
4737 |
|
|
free (finfo.internal_syms);
|
4738 |
|
|
if (finfo.indices != NULL)
|
4739 |
|
|
free (finfo.indices);
|
4740 |
|
|
if (finfo.sections != NULL)
|
4741 |
|
|
free (finfo.sections);
|
4742 |
|
|
if (finfo.symbuf != NULL)
|
4743 |
|
|
free (finfo.symbuf);
|
4744 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
4745 |
|
|
{
|
4746 |
|
|
if ((o->flags & SEC_RELOC) != 0
|
4747 |
|
|
&& elf_section_data (o)->rel_hashes != NULL)
|
4748 |
|
|
free (elf_section_data (o)->rel_hashes);
|
4749 |
|
|
}
|
4750 |
|
|
|
4751 |
|
|
elf_tdata (abfd)->linker = true;
|
4752 |
|
|
|
4753 |
|
|
return true;
|
4754 |
|
|
|
4755 |
|
|
error_return:
|
4756 |
|
|
if (finfo.symstrtab != NULL)
|
4757 |
|
|
_bfd_stringtab_free (finfo.symstrtab);
|
4758 |
|
|
if (finfo.contents != NULL)
|
4759 |
|
|
free (finfo.contents);
|
4760 |
|
|
if (finfo.external_relocs != NULL)
|
4761 |
|
|
free (finfo.external_relocs);
|
4762 |
|
|
if (finfo.internal_relocs != NULL)
|
4763 |
|
|
free (finfo.internal_relocs);
|
4764 |
|
|
if (finfo.external_syms != NULL)
|
4765 |
|
|
free (finfo.external_syms);
|
4766 |
|
|
if (finfo.internal_syms != NULL)
|
4767 |
|
|
free (finfo.internal_syms);
|
4768 |
|
|
if (finfo.indices != NULL)
|
4769 |
|
|
free (finfo.indices);
|
4770 |
|
|
if (finfo.sections != NULL)
|
4771 |
|
|
free (finfo.sections);
|
4772 |
|
|
if (finfo.symbuf != NULL)
|
4773 |
|
|
free (finfo.symbuf);
|
4774 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
4775 |
|
|
{
|
4776 |
|
|
if ((o->flags & SEC_RELOC) != 0
|
4777 |
|
|
&& elf_section_data (o)->rel_hashes != NULL)
|
4778 |
|
|
free (elf_section_data (o)->rel_hashes);
|
4779 |
|
|
}
|
4780 |
|
|
|
4781 |
|
|
return false;
|
4782 |
|
|
}
|
4783 |
|
|
|
4784 |
|
|
/* Add a symbol to the output symbol table. */
|
4785 |
|
|
|
4786 |
|
|
static boolean
|
4787 |
|
|
elf_link_output_sym (finfo, name, elfsym, input_sec)
|
4788 |
|
|
struct elf_final_link_info *finfo;
|
4789 |
|
|
const char *name;
|
4790 |
|
|
Elf_Internal_Sym *elfsym;
|
4791 |
|
|
asection *input_sec;
|
4792 |
|
|
{
|
4793 |
|
|
boolean (*output_symbol_hook) PARAMS ((bfd *,
|
4794 |
|
|
struct bfd_link_info *info,
|
4795 |
|
|
const char *,
|
4796 |
|
|
Elf_Internal_Sym *,
|
4797 |
|
|
asection *));
|
4798 |
|
|
|
4799 |
|
|
output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
|
4800 |
|
|
elf_backend_link_output_symbol_hook;
|
4801 |
|
|
if (output_symbol_hook != NULL)
|
4802 |
|
|
{
|
4803 |
|
|
if (! ((*output_symbol_hook)
|
4804 |
|
|
(finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
|
4805 |
|
|
return false;
|
4806 |
|
|
}
|
4807 |
|
|
|
4808 |
|
|
if (name == (const char *) NULL || *name == '\0')
|
4809 |
|
|
elfsym->st_name = 0;
|
4810 |
|
|
else if (input_sec->flags & SEC_EXCLUDE)
|
4811 |
|
|
elfsym->st_name = 0;
|
4812 |
|
|
else
|
4813 |
|
|
{
|
4814 |
|
|
elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
|
4815 |
|
|
name, true,
|
4816 |
|
|
false);
|
4817 |
|
|
if (elfsym->st_name == (unsigned long) -1)
|
4818 |
|
|
return false;
|
4819 |
|
|
}
|
4820 |
|
|
|
4821 |
|
|
if (finfo->symbuf_count >= finfo->symbuf_size)
|
4822 |
|
|
{
|
4823 |
|
|
if (! elf_link_flush_output_syms (finfo))
|
4824 |
|
|
return false;
|
4825 |
|
|
}
|
4826 |
|
|
|
4827 |
|
|
elf_swap_symbol_out (finfo->output_bfd, elfsym,
|
4828 |
|
|
(PTR) (finfo->symbuf + finfo->symbuf_count));
|
4829 |
|
|
++finfo->symbuf_count;
|
4830 |
|
|
|
4831 |
|
|
++ bfd_get_symcount (finfo->output_bfd);
|
4832 |
|
|
|
4833 |
|
|
return true;
|
4834 |
|
|
}
|
4835 |
|
|
|
4836 |
|
|
/* Flush the output symbols to the file. */
|
4837 |
|
|
|
4838 |
|
|
static boolean
|
4839 |
|
|
elf_link_flush_output_syms (finfo)
|
4840 |
|
|
struct elf_final_link_info *finfo;
|
4841 |
|
|
{
|
4842 |
|
|
if (finfo->symbuf_count > 0)
|
4843 |
|
|
{
|
4844 |
|
|
Elf_Internal_Shdr *symtab;
|
4845 |
|
|
|
4846 |
|
|
symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
|
4847 |
|
|
|
4848 |
|
|
if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
|
4849 |
|
|
SEEK_SET) != 0
|
4850 |
|
|
|| (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
|
4851 |
|
|
sizeof (Elf_External_Sym), finfo->output_bfd)
|
4852 |
|
|
!= finfo->symbuf_count * sizeof (Elf_External_Sym)))
|
4853 |
|
|
return false;
|
4854 |
|
|
|
4855 |
|
|
symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
|
4856 |
|
|
|
4857 |
|
|
finfo->symbuf_count = 0;
|
4858 |
|
|
}
|
4859 |
|
|
|
4860 |
|
|
return true;
|
4861 |
|
|
}
|
4862 |
|
|
|
4863 |
|
|
/* Add an external symbol to the symbol table. This is called from
|
4864 |
|
|
the hash table traversal routine. When generating a shared object,
|
4865 |
|
|
we go through the symbol table twice. The first time we output
|
4866 |
|
|
anything that might have been forced to local scope in a version
|
4867 |
|
|
script. The second time we output the symbols that are still
|
4868 |
|
|
global symbols. */
|
4869 |
|
|
|
4870 |
|
|
static boolean
|
4871 |
|
|
elf_link_output_extsym (h, data)
|
4872 |
|
|
struct elf_link_hash_entry *h;
|
4873 |
|
|
PTR data;
|
4874 |
|
|
{
|
4875 |
|
|
struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
|
4876 |
|
|
struct elf_final_link_info *finfo = eoinfo->finfo;
|
4877 |
|
|
boolean strip;
|
4878 |
|
|
Elf_Internal_Sym sym;
|
4879 |
|
|
asection *input_sec;
|
4880 |
|
|
|
4881 |
|
|
/* Decide whether to output this symbol in this pass. */
|
4882 |
|
|
if (eoinfo->localsyms)
|
4883 |
|
|
{
|
4884 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
4885 |
|
|
return true;
|
4886 |
|
|
}
|
4887 |
|
|
else
|
4888 |
|
|
{
|
4889 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
|
4890 |
|
|
return true;
|
4891 |
|
|
}
|
4892 |
|
|
|
4893 |
|
|
/* If we are not creating a shared library, and this symbol is
|
4894 |
|
|
referenced by a shared library but is not defined anywhere, then
|
4895 |
|
|
warn that it is undefined. If we do not do this, the runtime
|
4896 |
|
|
linker will complain that the symbol is undefined when the
|
4897 |
|
|
program is run. We don't have to worry about symbols that are
|
4898 |
|
|
referenced by regular files, because we will already have issued
|
4899 |
|
|
warnings for them. */
|
4900 |
|
|
if (! finfo->info->relocateable
|
4901 |
|
|
&& ! (finfo->info->shared
|
4902 |
|
|
&& !finfo->info->no_undefined)
|
4903 |
|
|
&& h->root.type == bfd_link_hash_undefined
|
4904 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
|
4905 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
4906 |
|
|
{
|
4907 |
|
|
if (! ((*finfo->info->callbacks->undefined_symbol)
|
4908 |
|
|
(finfo->info, h->root.root.string, h->root.u.undef.abfd,
|
4909 |
|
|
(asection *) NULL, 0, true)))
|
4910 |
|
|
{
|
4911 |
|
|
eoinfo->failed = true;
|
4912 |
|
|
return false;
|
4913 |
|
|
}
|
4914 |
|
|
}
|
4915 |
|
|
|
4916 |
|
|
/* We don't want to output symbols that have never been mentioned by
|
4917 |
|
|
a regular file, or that we have been told to strip. However, if
|
4918 |
|
|
h->indx is set to -2, the symbol is used by a reloc and we must
|
4919 |
|
|
output it. */
|
4920 |
|
|
if (h->indx == -2)
|
4921 |
|
|
strip = false;
|
4922 |
|
|
else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
4923 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
|
4924 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
4925 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
4926 |
|
|
strip = true;
|
4927 |
|
|
else if (finfo->info->strip == strip_all
|
4928 |
|
|
|| (finfo->info->strip == strip_some
|
4929 |
|
|
&& bfd_hash_lookup (finfo->info->keep_hash,
|
4930 |
|
|
h->root.root.string,
|
4931 |
|
|
false, false) == NULL))
|
4932 |
|
|
strip = true;
|
4933 |
|
|
else
|
4934 |
|
|
strip = false;
|
4935 |
|
|
|
4936 |
|
|
/* If we're stripping it, and it's not a dynamic symbol, there's
|
4937 |
|
|
nothing else to do unless it is a forced local symbol. */
|
4938 |
|
|
if (strip
|
4939 |
|
|
&& h->dynindx == -1
|
4940 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
4941 |
|
|
return true;
|
4942 |
|
|
|
4943 |
|
|
sym.st_value = 0;
|
4944 |
|
|
sym.st_size = h->size;
|
4945 |
|
|
sym.st_other = h->other;
|
4946 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
|
4947 |
|
|
sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
|
4948 |
|
|
else if (h->root.type == bfd_link_hash_undefweak
|
4949 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
4950 |
|
|
sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
|
4951 |
|
|
else
|
4952 |
|
|
sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
|
4953 |
|
|
|
4954 |
|
|
switch (h->root.type)
|
4955 |
|
|
{
|
4956 |
|
|
default:
|
4957 |
|
|
case bfd_link_hash_new:
|
4958 |
|
|
abort ();
|
4959 |
|
|
return false;
|
4960 |
|
|
|
4961 |
|
|
case bfd_link_hash_undefined:
|
4962 |
|
|
input_sec = bfd_und_section_ptr;
|
4963 |
|
|
sym.st_shndx = SHN_UNDEF;
|
4964 |
|
|
break;
|
4965 |
|
|
|
4966 |
|
|
case bfd_link_hash_undefweak:
|
4967 |
|
|
input_sec = bfd_und_section_ptr;
|
4968 |
|
|
sym.st_shndx = SHN_UNDEF;
|
4969 |
|
|
break;
|
4970 |
|
|
|
4971 |
|
|
case bfd_link_hash_defined:
|
4972 |
|
|
case bfd_link_hash_defweak:
|
4973 |
|
|
{
|
4974 |
|
|
input_sec = h->root.u.def.section;
|
4975 |
|
|
if (input_sec->output_section != NULL)
|
4976 |
|
|
{
|
4977 |
|
|
sym.st_shndx =
|
4978 |
|
|
_bfd_elf_section_from_bfd_section (finfo->output_bfd,
|
4979 |
|
|
input_sec->output_section);
|
4980 |
|
|
if (sym.st_shndx == (unsigned short) -1)
|
4981 |
|
|
{
|
4982 |
|
|
(*_bfd_error_handler)
|
4983 |
|
|
(_("%s: could not find output section %s for input section %s"),
|
4984 |
|
|
bfd_get_filename (finfo->output_bfd),
|
4985 |
|
|
input_sec->output_section->name,
|
4986 |
|
|
input_sec->name);
|
4987 |
|
|
eoinfo->failed = true;
|
4988 |
|
|
return false;
|
4989 |
|
|
}
|
4990 |
|
|
|
4991 |
|
|
/* ELF symbols in relocateable files are section relative,
|
4992 |
|
|
but in nonrelocateable files they are virtual
|
4993 |
|
|
addresses. */
|
4994 |
|
|
sym.st_value = h->root.u.def.value + input_sec->output_offset;
|
4995 |
|
|
if (! finfo->info->relocateable)
|
4996 |
|
|
sym.st_value += input_sec->output_section->vma;
|
4997 |
|
|
}
|
4998 |
|
|
else
|
4999 |
|
|
{
|
5000 |
|
|
BFD_ASSERT (input_sec->owner == NULL
|
5001 |
|
|
|| (input_sec->owner->flags & DYNAMIC) != 0);
|
5002 |
|
|
sym.st_shndx = SHN_UNDEF;
|
5003 |
|
|
input_sec = bfd_und_section_ptr;
|
5004 |
|
|
}
|
5005 |
|
|
}
|
5006 |
|
|
break;
|
5007 |
|
|
|
5008 |
|
|
case bfd_link_hash_common:
|
5009 |
|
|
input_sec = h->root.u.c.p->section;
|
5010 |
|
|
sym.st_shndx = SHN_COMMON;
|
5011 |
|
|
sym.st_value = 1 << h->root.u.c.p->alignment_power;
|
5012 |
|
|
break;
|
5013 |
|
|
|
5014 |
|
|
case bfd_link_hash_indirect:
|
5015 |
|
|
/* These symbols are created by symbol versioning. They point
|
5016 |
|
|
to the decorated version of the name. For example, if the
|
5017 |
|
|
symbol foo@@GNU_1.2 is the default, which should be used when
|
5018 |
|
|
foo is used with no version, then we add an indirect symbol
|
5019 |
|
|
foo which points to foo@@GNU_1.2. We ignore these symbols,
|
5020 |
|
|
since the indirected symbol is already in the hash table. If
|
5021 |
|
|
the indirect symbol is non-ELF, fall through and output it. */
|
5022 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
|
5023 |
|
|
return true;
|
5024 |
|
|
|
5025 |
|
|
/* Fall through. */
|
5026 |
|
|
case bfd_link_hash_warning:
|
5027 |
|
|
/* We can't represent these symbols in ELF, although a warning
|
5028 |
|
|
symbol may have come from a .gnu.warning.SYMBOL section. We
|
5029 |
|
|
just put the target symbol in the hash table. If the target
|
5030 |
|
|
symbol does not really exist, don't do anything. */
|
5031 |
|
|
if (h->root.u.i.link->type == bfd_link_hash_new)
|
5032 |
|
|
return true;
|
5033 |
|
|
return (elf_link_output_extsym
|
5034 |
|
|
((struct elf_link_hash_entry *) h->root.u.i.link, data));
|
5035 |
|
|
}
|
5036 |
|
|
|
5037 |
|
|
/* Give the processor backend a chance to tweak the symbol value,
|
5038 |
|
|
and also to finish up anything that needs to be done for this
|
5039 |
|
|
symbol. */
|
5040 |
|
|
if ((h->dynindx != -1
|
5041 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
|
5042 |
|
|
&& elf_hash_table (finfo->info)->dynamic_sections_created)
|
5043 |
|
|
{
|
5044 |
|
|
struct elf_backend_data *bed;
|
5045 |
|
|
|
5046 |
|
|
bed = get_elf_backend_data (finfo->output_bfd);
|
5047 |
|
|
if (! ((*bed->elf_backend_finish_dynamic_symbol)
|
5048 |
|
|
(finfo->output_bfd, finfo->info, h, &sym)))
|
5049 |
|
|
{
|
5050 |
|
|
eoinfo->failed = true;
|
5051 |
|
|
return false;
|
5052 |
|
|
}
|
5053 |
|
|
}
|
5054 |
|
|
|
5055 |
|
|
/* If we are marking the symbol as undefined, and there are no
|
5056 |
|
|
non-weak references to this symbol from a regular object, then
|
5057 |
|
|
mark the symbol as weak undefined; if there are non-weak
|
5058 |
|
|
references, mark the symbol as strong. We can't do this earlier,
|
5059 |
|
|
because it might not be marked as undefined until the
|
5060 |
|
|
finish_dynamic_symbol routine gets through with it. */
|
5061 |
|
|
if (sym.st_shndx == SHN_UNDEF
|
5062 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
|
5063 |
|
|
&& (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
|
5064 |
|
|
|| ELF_ST_BIND(sym.st_info) == STB_WEAK))
|
5065 |
|
|
{
|
5066 |
|
|
int bindtype;
|
5067 |
|
|
|
5068 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
|
5069 |
|
|
bindtype = STB_GLOBAL;
|
5070 |
|
|
else
|
5071 |
|
|
bindtype = STB_WEAK;
|
5072 |
|
|
sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
|
5073 |
|
|
}
|
5074 |
|
|
|
5075 |
|
|
/* If this symbol should be put in the .dynsym section, then put it
|
5076 |
|
|
there now. We have already know the symbol index. We also fill
|
5077 |
|
|
in the entry in the .hash section. */
|
5078 |
|
|
if (h->dynindx != -1
|
5079 |
|
|
&& elf_hash_table (finfo->info)->dynamic_sections_created)
|
5080 |
|
|
{
|
5081 |
|
|
size_t bucketcount;
|
5082 |
|
|
size_t bucket;
|
5083 |
|
|
size_t hash_entry_size;
|
5084 |
|
|
bfd_byte *bucketpos;
|
5085 |
|
|
bfd_vma chain;
|
5086 |
|
|
|
5087 |
|
|
sym.st_name = h->dynstr_index;
|
5088 |
|
|
|
5089 |
|
|
elf_swap_symbol_out (finfo->output_bfd, &sym,
|
5090 |
|
|
(PTR) (((Elf_External_Sym *)
|
5091 |
|
|
finfo->dynsym_sec->contents)
|
5092 |
|
|
+ h->dynindx));
|
5093 |
|
|
|
5094 |
|
|
bucketcount = elf_hash_table (finfo->info)->bucketcount;
|
5095 |
|
|
bucket = h->elf_hash_value % bucketcount;
|
5096 |
|
|
hash_entry_size
|
5097 |
|
|
= elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
|
5098 |
|
|
bucketpos = ((bfd_byte *) finfo->hash_sec->contents
|
5099 |
|
|
+ (bucket + 2) * hash_entry_size);
|
5100 |
|
|
chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
|
5101 |
|
|
bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
|
5102 |
|
|
bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
|
5103 |
|
|
((bfd_byte *) finfo->hash_sec->contents
|
5104 |
|
|
+ (bucketcount + 2 + h->dynindx) * hash_entry_size));
|
5105 |
|
|
|
5106 |
|
|
if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
|
5107 |
|
|
{
|
5108 |
|
|
Elf_Internal_Versym iversym;
|
5109 |
|
|
|
5110 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
5111 |
|
|
{
|
5112 |
|
|
if (h->verinfo.verdef == NULL)
|
5113 |
|
|
iversym.vs_vers = 0;
|
5114 |
|
|
else
|
5115 |
|
|
iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
|
5116 |
|
|
}
|
5117 |
|
|
else
|
5118 |
|
|
{
|
5119 |
|
|
if (h->verinfo.vertree == NULL)
|
5120 |
|
|
iversym.vs_vers = 1;
|
5121 |
|
|
else
|
5122 |
|
|
iversym.vs_vers = h->verinfo.vertree->vernum + 1;
|
5123 |
|
|
}
|
5124 |
|
|
|
5125 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
|
5126 |
|
|
iversym.vs_vers |= VERSYM_HIDDEN;
|
5127 |
|
|
|
5128 |
|
|
_bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
|
5129 |
|
|
(((Elf_External_Versym *)
|
5130 |
|
|
finfo->symver_sec->contents)
|
5131 |
|
|
+ h->dynindx));
|
5132 |
|
|
}
|
5133 |
|
|
}
|
5134 |
|
|
|
5135 |
|
|
/* If we're stripping it, then it was just a dynamic symbol, and
|
5136 |
|
|
there's nothing else to do. */
|
5137 |
|
|
if (strip)
|
5138 |
|
|
return true;
|
5139 |
|
|
|
5140 |
|
|
h->indx = bfd_get_symcount (finfo->output_bfd);
|
5141 |
|
|
|
5142 |
|
|
if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
|
5143 |
|
|
{
|
5144 |
|
|
eoinfo->failed = true;
|
5145 |
|
|
return false;
|
5146 |
|
|
}
|
5147 |
|
|
|
5148 |
|
|
return true;
|
5149 |
|
|
}
|
5150 |
|
|
|
5151 |
|
|
/* Copy the relocations indicated by the INTERNAL_RELOCS (which
|
5152 |
|
|
originated from the section given by INPUT_REL_HDR) to the
|
5153 |
|
|
OUTPUT_BFD. */
|
5154 |
|
|
|
5155 |
|
|
static void
|
5156 |
|
|
elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
|
5157 |
|
|
internal_relocs)
|
5158 |
|
|
bfd *output_bfd;
|
5159 |
|
|
asection *input_section;
|
5160 |
|
|
Elf_Internal_Shdr *input_rel_hdr;
|
5161 |
|
|
Elf_Internal_Rela *internal_relocs;
|
5162 |
|
|
{
|
5163 |
|
|
Elf_Internal_Rela *irela;
|
5164 |
|
|
Elf_Internal_Rela *irelaend;
|
5165 |
|
|
Elf_Internal_Shdr *output_rel_hdr;
|
5166 |
|
|
asection *output_section;
|
5167 |
|
|
unsigned int *rel_countp = NULL;
|
5168 |
|
|
|
5169 |
|
|
output_section = input_section->output_section;
|
5170 |
|
|
output_rel_hdr = NULL;
|
5171 |
|
|
|
5172 |
|
|
if (elf_section_data (output_section)->rel_hdr.sh_entsize
|
5173 |
|
|
== input_rel_hdr->sh_entsize)
|
5174 |
|
|
{
|
5175 |
|
|
output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
|
5176 |
|
|
rel_countp = &elf_section_data (output_section)->rel_count;
|
5177 |
|
|
}
|
5178 |
|
|
else if (elf_section_data (output_section)->rel_hdr2
|
5179 |
|
|
&& (elf_section_data (output_section)->rel_hdr2->sh_entsize
|
5180 |
|
|
== input_rel_hdr->sh_entsize))
|
5181 |
|
|
{
|
5182 |
|
|
output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
|
5183 |
|
|
rel_countp = &elf_section_data (output_section)->rel_count2;
|
5184 |
|
|
}
|
5185 |
|
|
|
5186 |
|
|
BFD_ASSERT (output_rel_hdr != NULL);
|
5187 |
|
|
|
5188 |
|
|
irela = internal_relocs;
|
5189 |
|
|
irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
|
5190 |
|
|
if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
5191 |
|
|
{
|
5192 |
|
|
Elf_External_Rel *erel;
|
5193 |
|
|
|
5194 |
|
|
erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
|
5195 |
|
|
for (; irela < irelaend; irela++, erel++)
|
5196 |
|
|
{
|
5197 |
|
|
Elf_Internal_Rel irel;
|
5198 |
|
|
|
5199 |
|
|
irel.r_offset = irela->r_offset;
|
5200 |
|
|
irel.r_info = irela->r_info;
|
5201 |
|
|
BFD_ASSERT (irela->r_addend == 0);
|
5202 |
|
|
elf_swap_reloc_out (output_bfd, &irel, erel);
|
5203 |
|
|
}
|
5204 |
|
|
}
|
5205 |
|
|
else
|
5206 |
|
|
{
|
5207 |
|
|
Elf_External_Rela *erela;
|
5208 |
|
|
|
5209 |
|
|
BFD_ASSERT (input_rel_hdr->sh_entsize
|
5210 |
|
|
== sizeof (Elf_External_Rela));
|
5211 |
|
|
erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
|
5212 |
|
|
for (; irela < irelaend; irela++, erela++)
|
5213 |
|
|
elf_swap_reloca_out (output_bfd, irela, erela);
|
5214 |
|
|
}
|
5215 |
|
|
|
5216 |
|
|
/* Bump the counter, so that we know where to add the next set of
|
5217 |
|
|
relocations. */
|
5218 |
|
|
*rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
|
5219 |
|
|
}
|
5220 |
|
|
|
5221 |
|
|
/* Link an input file into the linker output file. This function
|
5222 |
|
|
handles all the sections and relocations of the input file at once.
|
5223 |
|
|
This is so that we only have to read the local symbols once, and
|
5224 |
|
|
don't have to keep them in memory. */
|
5225 |
|
|
|
5226 |
|
|
static boolean
|
5227 |
|
|
elf_link_input_bfd (finfo, input_bfd)
|
5228 |
|
|
struct elf_final_link_info *finfo;
|
5229 |
|
|
bfd *input_bfd;
|
5230 |
|
|
{
|
5231 |
|
|
boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
|
5232 |
|
|
bfd *, asection *, bfd_byte *,
|
5233 |
|
|
Elf_Internal_Rela *,
|
5234 |
|
|
Elf_Internal_Sym *, asection **));
|
5235 |
|
|
bfd *output_bfd;
|
5236 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
5237 |
|
|
size_t locsymcount;
|
5238 |
|
|
size_t extsymoff;
|
5239 |
|
|
Elf_External_Sym *external_syms;
|
5240 |
|
|
Elf_External_Sym *esym;
|
5241 |
|
|
Elf_External_Sym *esymend;
|
5242 |
|
|
Elf_Internal_Sym *isym;
|
5243 |
|
|
long *pindex;
|
5244 |
|
|
asection **ppsection;
|
5245 |
|
|
asection *o;
|
5246 |
|
|
struct elf_backend_data *bed;
|
5247 |
|
|
|
5248 |
|
|
output_bfd = finfo->output_bfd;
|
5249 |
|
|
bed = get_elf_backend_data (output_bfd);
|
5250 |
|
|
relocate_section = bed->elf_backend_relocate_section;
|
5251 |
|
|
|
5252 |
|
|
/* If this is a dynamic object, we don't want to do anything here:
|
5253 |
|
|
we don't want the local symbols, and we don't want the section
|
5254 |
|
|
contents. */
|
5255 |
|
|
if ((input_bfd->flags & DYNAMIC) != 0)
|
5256 |
|
|
return true;
|
5257 |
|
|
|
5258 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
5259 |
|
|
if (elf_bad_symtab (input_bfd))
|
5260 |
|
|
{
|
5261 |
|
|
locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
|
5262 |
|
|
extsymoff = 0;
|
5263 |
|
|
}
|
5264 |
|
|
else
|
5265 |
|
|
{
|
5266 |
|
|
locsymcount = symtab_hdr->sh_info;
|
5267 |
|
|
extsymoff = symtab_hdr->sh_info;
|
5268 |
|
|
}
|
5269 |
|
|
|
5270 |
|
|
/* Read the local symbols. */
|
5271 |
|
|
if (symtab_hdr->contents != NULL)
|
5272 |
|
|
external_syms = (Elf_External_Sym *) symtab_hdr->contents;
|
5273 |
|
|
else if (locsymcount == 0)
|
5274 |
|
|
external_syms = NULL;
|
5275 |
|
|
else
|
5276 |
|
|
{
|
5277 |
|
|
external_syms = finfo->external_syms;
|
5278 |
|
|
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
5279 |
|
|
|| (bfd_read (external_syms, sizeof (Elf_External_Sym),
|
5280 |
|
|
locsymcount, input_bfd)
|
5281 |
|
|
!= locsymcount * sizeof (Elf_External_Sym)))
|
5282 |
|
|
return false;
|
5283 |
|
|
}
|
5284 |
|
|
|
5285 |
|
|
/* Swap in the local symbols and write out the ones which we know
|
5286 |
|
|
are going into the output file. */
|
5287 |
|
|
esym = external_syms;
|
5288 |
|
|
esymend = esym + locsymcount;
|
5289 |
|
|
isym = finfo->internal_syms;
|
5290 |
|
|
pindex = finfo->indices;
|
5291 |
|
|
ppsection = finfo->sections;
|
5292 |
|
|
for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
|
5293 |
|
|
{
|
5294 |
|
|
asection *isec;
|
5295 |
|
|
const char *name;
|
5296 |
|
|
Elf_Internal_Sym osym;
|
5297 |
|
|
|
5298 |
|
|
elf_swap_symbol_in (input_bfd, esym, isym);
|
5299 |
|
|
*pindex = -1;
|
5300 |
|
|
|
5301 |
|
|
if (elf_bad_symtab (input_bfd))
|
5302 |
|
|
{
|
5303 |
|
|
if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
|
5304 |
|
|
{
|
5305 |
|
|
*ppsection = NULL;
|
5306 |
|
|
continue;
|
5307 |
|
|
}
|
5308 |
|
|
}
|
5309 |
|
|
|
5310 |
|
|
if (isym->st_shndx == SHN_UNDEF)
|
5311 |
|
|
isec = bfd_und_section_ptr;
|
5312 |
|
|
else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
|
5313 |
|
|
isec = section_from_elf_index (input_bfd, isym->st_shndx);
|
5314 |
|
|
else if (isym->st_shndx == SHN_ABS)
|
5315 |
|
|
isec = bfd_abs_section_ptr;
|
5316 |
|
|
else if (isym->st_shndx == SHN_COMMON)
|
5317 |
|
|
isec = bfd_com_section_ptr;
|
5318 |
|
|
else
|
5319 |
|
|
{
|
5320 |
|
|
/* Who knows? */
|
5321 |
|
|
isec = NULL;
|
5322 |
|
|
}
|
5323 |
|
|
|
5324 |
|
|
*ppsection = isec;
|
5325 |
|
|
|
5326 |
|
|
/* Don't output the first, undefined, symbol. */
|
5327 |
|
|
if (esym == external_syms)
|
5328 |
|
|
continue;
|
5329 |
|
|
|
5330 |
|
|
/* If we are stripping all symbols, we don't want to output this
|
5331 |
|
|
one. */
|
5332 |
|
|
if (finfo->info->strip == strip_all)
|
5333 |
|
|
continue;
|
5334 |
|
|
|
5335 |
|
|
/* We never output section symbols. Instead, we use the section
|
5336 |
|
|
symbol of the corresponding section in the output file. */
|
5337 |
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
5338 |
|
|
continue;
|
5339 |
|
|
|
5340 |
|
|
/* If we are discarding all local symbols, we don't want to
|
5341 |
|
|
output this one. If we are generating a relocateable output
|
5342 |
|
|
file, then some of the local symbols may be required by
|
5343 |
|
|
relocs; we output them below as we discover that they are
|
5344 |
|
|
needed. */
|
5345 |
|
|
if (finfo->info->discard == discard_all)
|
5346 |
|
|
continue;
|
5347 |
|
|
|
5348 |
|
|
/* If this symbol is defined in a section which we are
|
5349 |
|
|
discarding, we don't need to keep it, but note that
|
5350 |
|
|
linker_mark is only reliable for sections that have contents.
|
5351 |
|
|
For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
|
5352 |
|
|
as well as linker_mark. */
|
5353 |
|
|
if (isym->st_shndx > 0
|
5354 |
|
|
&& isym->st_shndx < SHN_LORESERVE
|
5355 |
|
|
&& isec != NULL
|
5356 |
|
|
&& ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
|
5357 |
|
|
|| (! finfo->info->relocateable
|
5358 |
|
|
&& (isec->flags & SEC_EXCLUDE) != 0)))
|
5359 |
|
|
continue;
|
5360 |
|
|
|
5361 |
|
|
/* Get the name of the symbol. */
|
5362 |
|
|
name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
|
5363 |
|
|
isym->st_name);
|
5364 |
|
|
if (name == NULL)
|
5365 |
|
|
return false;
|
5366 |
|
|
|
5367 |
|
|
/* See if we are discarding symbols with this name. */
|
5368 |
|
|
if ((finfo->info->strip == strip_some
|
5369 |
|
|
&& (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
|
5370 |
|
|
== NULL))
|
5371 |
|
|
|| (finfo->info->discard == discard_l
|
5372 |
|
|
&& bfd_is_local_label_name (input_bfd, name)))
|
5373 |
|
|
continue;
|
5374 |
|
|
|
5375 |
|
|
/* If we get here, we are going to output this symbol. */
|
5376 |
|
|
|
5377 |
|
|
osym = *isym;
|
5378 |
|
|
|
5379 |
|
|
/* Adjust the section index for the output file. */
|
5380 |
|
|
osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
5381 |
|
|
isec->output_section);
|
5382 |
|
|
if (osym.st_shndx == (unsigned short) -1)
|
5383 |
|
|
return false;
|
5384 |
|
|
|
5385 |
|
|
*pindex = bfd_get_symcount (output_bfd);
|
5386 |
|
|
|
5387 |
|
|
/* ELF symbols in relocateable files are section relative, but
|
5388 |
|
|
in executable files they are virtual addresses. Note that
|
5389 |
|
|
this code assumes that all ELF sections have an associated
|
5390 |
|
|
BFD section with a reasonable value for output_offset; below
|
5391 |
|
|
we assume that they also have a reasonable value for
|
5392 |
|
|
output_section. Any special sections must be set up to meet
|
5393 |
|
|
these requirements. */
|
5394 |
|
|
osym.st_value += isec->output_offset;
|
5395 |
|
|
if (! finfo->info->relocateable)
|
5396 |
|
|
osym.st_value += isec->output_section->vma;
|
5397 |
|
|
|
5398 |
|
|
if (! elf_link_output_sym (finfo, name, &osym, isec))
|
5399 |
|
|
return false;
|
5400 |
|
|
}
|
5401 |
|
|
|
5402 |
|
|
/* Relocate the contents of each section. */
|
5403 |
|
|
for (o = input_bfd->sections; o != NULL; o = o->next)
|
5404 |
|
|
{
|
5405 |
|
|
bfd_byte *contents;
|
5406 |
|
|
|
5407 |
|
|
if (! o->linker_mark)
|
5408 |
|
|
{
|
5409 |
|
|
/* This section was omitted from the link. */
|
5410 |
|
|
continue;
|
5411 |
|
|
}
|
5412 |
|
|
|
5413 |
|
|
if ((o->flags & SEC_HAS_CONTENTS) == 0
|
5414 |
|
|
|| (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
|
5415 |
|
|
continue;
|
5416 |
|
|
|
5417 |
|
|
if ((o->flags & SEC_LINKER_CREATED) != 0)
|
5418 |
|
|
{
|
5419 |
|
|
/* Section was created by elf_link_create_dynamic_sections
|
5420 |
|
|
or somesuch. */
|
5421 |
|
|
continue;
|
5422 |
|
|
}
|
5423 |
|
|
|
5424 |
|
|
/* Get the contents of the section. They have been cached by a
|
5425 |
|
|
relaxation routine. Note that o is a section in an input
|
5426 |
|
|
file, so the contents field will not have been set by any of
|
5427 |
|
|
the routines which work on output files. */
|
5428 |
|
|
if (elf_section_data (o)->this_hdr.contents != NULL)
|
5429 |
|
|
contents = elf_section_data (o)->this_hdr.contents;
|
5430 |
|
|
else
|
5431 |
|
|
{
|
5432 |
|
|
contents = finfo->contents;
|
5433 |
|
|
if (! bfd_get_section_contents (input_bfd, o, contents,
|
5434 |
|
|
(file_ptr) 0, o->_raw_size))
|
5435 |
|
|
return false;
|
5436 |
|
|
}
|
5437 |
|
|
|
5438 |
|
|
if ((o->flags & SEC_RELOC) != 0)
|
5439 |
|
|
{
|
5440 |
|
|
Elf_Internal_Rela *internal_relocs;
|
5441 |
|
|
|
5442 |
|
|
/* Get the swapped relocs. */
|
5443 |
|
|
internal_relocs = (NAME(_bfd_elf,link_read_relocs)
|
5444 |
|
|
(input_bfd, o, finfo->external_relocs,
|
5445 |
|
|
finfo->internal_relocs, false));
|
5446 |
|
|
if (internal_relocs == NULL
|
5447 |
|
|
&& o->reloc_count > 0)
|
5448 |
|
|
return false;
|
5449 |
|
|
|
5450 |
|
|
/* Relocate the section by invoking a back end routine.
|
5451 |
|
|
|
5452 |
|
|
The back end routine is responsible for adjusting the
|
5453 |
|
|
section contents as necessary, and (if using Rela relocs
|
5454 |
|
|
and generating a relocateable output file) adjusting the
|
5455 |
|
|
reloc addend as necessary.
|
5456 |
|
|
|
5457 |
|
|
The back end routine does not have to worry about setting
|
5458 |
|
|
the reloc address or the reloc symbol index.
|
5459 |
|
|
|
5460 |
|
|
The back end routine is given a pointer to the swapped in
|
5461 |
|
|
internal symbols, and can access the hash table entries
|
5462 |
|
|
for the external symbols via elf_sym_hashes (input_bfd).
|
5463 |
|
|
|
5464 |
|
|
When generating relocateable output, the back end routine
|
5465 |
|
|
must handle STB_LOCAL/STT_SECTION symbols specially. The
|
5466 |
|
|
output symbol is going to be a section symbol
|
5467 |
|
|
corresponding to the output section, which will require
|
5468 |
|
|
the addend to be adjusted. */
|
5469 |
|
|
|
5470 |
|
|
if (! (*relocate_section) (output_bfd, finfo->info,
|
5471 |
|
|
input_bfd, o, contents,
|
5472 |
|
|
internal_relocs,
|
5473 |
|
|
finfo->internal_syms,
|
5474 |
|
|
finfo->sections))
|
5475 |
|
|
return false;
|
5476 |
|
|
|
5477 |
|
|
if (finfo->info->relocateable)
|
5478 |
|
|
{
|
5479 |
|
|
Elf_Internal_Rela *irela;
|
5480 |
|
|
Elf_Internal_Rela *irelaend;
|
5481 |
|
|
struct elf_link_hash_entry **rel_hash;
|
5482 |
|
|
Elf_Internal_Shdr *input_rel_hdr;
|
5483 |
|
|
|
5484 |
|
|
/* Adjust the reloc addresses and symbol indices. */
|
5485 |
|
|
|
5486 |
|
|
irela = internal_relocs;
|
5487 |
|
|
irelaend =
|
5488 |
|
|
irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
|
5489 |
|
|
rel_hash = (elf_section_data (o->output_section)->rel_hashes
|
5490 |
|
|
+ elf_section_data (o->output_section)->rel_count
|
5491 |
|
|
+ elf_section_data (o->output_section)->rel_count2);
|
5492 |
|
|
for (; irela < irelaend; irela++, rel_hash++)
|
5493 |
|
|
{
|
5494 |
|
|
unsigned long r_symndx;
|
5495 |
|
|
Elf_Internal_Sym *isym;
|
5496 |
|
|
asection *sec;
|
5497 |
|
|
|
5498 |
|
|
irela->r_offset += o->output_offset;
|
5499 |
|
|
|
5500 |
|
|
r_symndx = ELF_R_SYM (irela->r_info);
|
5501 |
|
|
|
5502 |
|
|
if (r_symndx == 0)
|
5503 |
|
|
continue;
|
5504 |
|
|
|
5505 |
|
|
if (r_symndx >= locsymcount
|
5506 |
|
|
|| (elf_bad_symtab (input_bfd)
|
5507 |
|
|
&& finfo->sections[r_symndx] == NULL))
|
5508 |
|
|
{
|
5509 |
|
|
struct elf_link_hash_entry *rh;
|
5510 |
|
|
long indx;
|
5511 |
|
|
|
5512 |
|
|
/* This is a reloc against a global symbol. We
|
5513 |
|
|
have not yet output all the local symbols, so
|
5514 |
|
|
we do not know the symbol index of any global
|
5515 |
|
|
symbol. We set the rel_hash entry for this
|
5516 |
|
|
reloc to point to the global hash table entry
|
5517 |
|
|
for this symbol. The symbol index is then
|
5518 |
|
|
set at the end of elf_bfd_final_link. */
|
5519 |
|
|
indx = r_symndx - extsymoff;
|
5520 |
|
|
rh = elf_sym_hashes (input_bfd)[indx];
|
5521 |
|
|
while (rh->root.type == bfd_link_hash_indirect
|
5522 |
|
|
|| rh->root.type == bfd_link_hash_warning)
|
5523 |
|
|
rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
|
5524 |
|
|
|
5525 |
|
|
/* Setting the index to -2 tells
|
5526 |
|
|
elf_link_output_extsym that this symbol is
|
5527 |
|
|
used by a reloc. */
|
5528 |
|
|
BFD_ASSERT (rh->indx < 0);
|
5529 |
|
|
rh->indx = -2;
|
5530 |
|
|
|
5531 |
|
|
*rel_hash = rh;
|
5532 |
|
|
|
5533 |
|
|
continue;
|
5534 |
|
|
}
|
5535 |
|
|
|
5536 |
|
|
/* This is a reloc against a local symbol. */
|
5537 |
|
|
|
5538 |
|
|
*rel_hash = NULL;
|
5539 |
|
|
isym = finfo->internal_syms + r_symndx;
|
5540 |
|
|
sec = finfo->sections[r_symndx];
|
5541 |
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
5542 |
|
|
{
|
5543 |
|
|
/* I suppose the backend ought to fill in the
|
5544 |
|
|
section of any STT_SECTION symbol against a
|
5545 |
|
|
processor specific section. If we have
|
5546 |
|
|
discarded a section, the output_section will
|
5547 |
|
|
be the absolute section. */
|
5548 |
|
|
if (sec != NULL
|
5549 |
|
|
&& (bfd_is_abs_section (sec)
|
5550 |
|
|
|| (sec->output_section != NULL
|
5551 |
|
|
&& bfd_is_abs_section (sec->output_section))))
|
5552 |
|
|
r_symndx = 0;
|
5553 |
|
|
else if (sec == NULL || sec->owner == NULL)
|
5554 |
|
|
{
|
5555 |
|
|
bfd_set_error (bfd_error_bad_value);
|
5556 |
|
|
return false;
|
5557 |
|
|
}
|
5558 |
|
|
else
|
5559 |
|
|
{
|
5560 |
|
|
r_symndx = sec->output_section->target_index;
|
5561 |
|
|
BFD_ASSERT (r_symndx != 0);
|
5562 |
|
|
}
|
5563 |
|
|
}
|
5564 |
|
|
else
|
5565 |
|
|
{
|
5566 |
|
|
if (finfo->indices[r_symndx] == -1)
|
5567 |
|
|
{
|
5568 |
|
|
unsigned long link;
|
5569 |
|
|
const char *name;
|
5570 |
|
|
asection *osec;
|
5571 |
|
|
|
5572 |
|
|
if (finfo->info->strip == strip_all)
|
5573 |
|
|
{
|
5574 |
|
|
/* You can't do ld -r -s. */
|
5575 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
5576 |
|
|
return false;
|
5577 |
|
|
}
|
5578 |
|
|
|
5579 |
|
|
/* This symbol was skipped earlier, but
|
5580 |
|
|
since it is needed by a reloc, we
|
5581 |
|
|
must output it now. */
|
5582 |
|
|
link = symtab_hdr->sh_link;
|
5583 |
|
|
name = bfd_elf_string_from_elf_section (input_bfd,
|
5584 |
|
|
link,
|
5585 |
|
|
isym->st_name);
|
5586 |
|
|
if (name == NULL)
|
5587 |
|
|
return false;
|
5588 |
|
|
|
5589 |
|
|
osec = sec->output_section;
|
5590 |
|
|
isym->st_shndx =
|
5591 |
|
|
_bfd_elf_section_from_bfd_section (output_bfd,
|
5592 |
|
|
osec);
|
5593 |
|
|
if (isym->st_shndx == (unsigned short) -1)
|
5594 |
|
|
return false;
|
5595 |
|
|
|
5596 |
|
|
isym->st_value += sec->output_offset;
|
5597 |
|
|
if (! finfo->info->relocateable)
|
5598 |
|
|
isym->st_value += osec->vma;
|
5599 |
|
|
|
5600 |
|
|
finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
|
5601 |
|
|
|
5602 |
|
|
if (! elf_link_output_sym (finfo, name, isym, sec))
|
5603 |
|
|
return false;
|
5604 |
|
|
}
|
5605 |
|
|
|
5606 |
|
|
r_symndx = finfo->indices[r_symndx];
|
5607 |
|
|
}
|
5608 |
|
|
|
5609 |
|
|
irela->r_info = ELF_R_INFO (r_symndx,
|
5610 |
|
|
ELF_R_TYPE (irela->r_info));
|
5611 |
|
|
}
|
5612 |
|
|
|
5613 |
|
|
/* Swap out the relocs. */
|
5614 |
|
|
input_rel_hdr = &elf_section_data (o)->rel_hdr;
|
5615 |
|
|
elf_link_output_relocs (output_bfd, o,
|
5616 |
|
|
input_rel_hdr,
|
5617 |
|
|
internal_relocs);
|
5618 |
|
|
internal_relocs
|
5619 |
|
|
+= input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
|
5620 |
|
|
input_rel_hdr = elf_section_data (o)->rel_hdr2;
|
5621 |
|
|
if (input_rel_hdr)
|
5622 |
|
|
elf_link_output_relocs (output_bfd, o,
|
5623 |
|
|
input_rel_hdr,
|
5624 |
|
|
internal_relocs);
|
5625 |
|
|
}
|
5626 |
|
|
}
|
5627 |
|
|
|
5628 |
|
|
/* Write out the modified section contents. */
|
5629 |
|
|
if (elf_section_data (o)->stab_info == NULL)
|
5630 |
|
|
{
|
5631 |
|
|
if (! (o->flags & SEC_EXCLUDE) &&
|
5632 |
|
|
! bfd_set_section_contents (output_bfd, o->output_section,
|
5633 |
|
|
contents, o->output_offset,
|
5634 |
|
|
(o->_cooked_size != 0
|
5635 |
|
|
? o->_cooked_size
|
5636 |
|
|
: o->_raw_size)))
|
5637 |
|
|
return false;
|
5638 |
|
|
}
|
5639 |
|
|
else
|
5640 |
|
|
{
|
5641 |
|
|
if (! (_bfd_write_section_stabs
|
5642 |
|
|
(output_bfd, &elf_hash_table (finfo->info)->stab_info,
|
5643 |
|
|
o, &elf_section_data (o)->stab_info, contents)))
|
5644 |
|
|
return false;
|
5645 |
|
|
}
|
5646 |
|
|
}
|
5647 |
|
|
|
5648 |
|
|
return true;
|
5649 |
|
|
}
|
5650 |
|
|
|
5651 |
|
|
/* Generate a reloc when linking an ELF file. This is a reloc
|
5652 |
|
|
requested by the linker, and does come from any input file. This
|
5653 |
|
|
is used to build constructor and destructor tables when linking
|
5654 |
|
|
with -Ur. */
|
5655 |
|
|
|
5656 |
|
|
static boolean
|
5657 |
|
|
elf_reloc_link_order (output_bfd, info, output_section, link_order)
|
5658 |
|
|
bfd *output_bfd;
|
5659 |
|
|
struct bfd_link_info *info;
|
5660 |
|
|
asection *output_section;
|
5661 |
|
|
struct bfd_link_order *link_order;
|
5662 |
|
|
{
|
5663 |
|
|
reloc_howto_type *howto;
|
5664 |
|
|
long indx;
|
5665 |
|
|
bfd_vma offset;
|
5666 |
|
|
bfd_vma addend;
|
5667 |
|
|
struct elf_link_hash_entry **rel_hash_ptr;
|
5668 |
|
|
Elf_Internal_Shdr *rel_hdr;
|
5669 |
|
|
|
5670 |
|
|
howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
|
5671 |
|
|
if (howto == NULL)
|
5672 |
|
|
{
|
5673 |
|
|
bfd_set_error (bfd_error_bad_value);
|
5674 |
|
|
return false;
|
5675 |
|
|
}
|
5676 |
|
|
|
5677 |
|
|
addend = link_order->u.reloc.p->addend;
|
5678 |
|
|
|
5679 |
|
|
/* Figure out the symbol index. */
|
5680 |
|
|
rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
|
5681 |
|
|
+ elf_section_data (output_section)->rel_count
|
5682 |
|
|
+ elf_section_data (output_section)->rel_count2);
|
5683 |
|
|
if (link_order->type == bfd_section_reloc_link_order)
|
5684 |
|
|
{
|
5685 |
|
|
indx = link_order->u.reloc.p->u.section->target_index;
|
5686 |
|
|
BFD_ASSERT (indx != 0);
|
5687 |
|
|
*rel_hash_ptr = NULL;
|
5688 |
|
|
}
|
5689 |
|
|
else
|
5690 |
|
|
{
|
5691 |
|
|
struct elf_link_hash_entry *h;
|
5692 |
|
|
|
5693 |
|
|
/* Treat a reloc against a defined symbol as though it were
|
5694 |
|
|
actually against the section. */
|
5695 |
|
|
h = ((struct elf_link_hash_entry *)
|
5696 |
|
|
bfd_wrapped_link_hash_lookup (output_bfd, info,
|
5697 |
|
|
link_order->u.reloc.p->u.name,
|
5698 |
|
|
false, false, true));
|
5699 |
|
|
if (h != NULL
|
5700 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
5701 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
5702 |
|
|
{
|
5703 |
|
|
asection *section;
|
5704 |
|
|
|
5705 |
|
|
section = h->root.u.def.section;
|
5706 |
|
|
indx = section->output_section->target_index;
|
5707 |
|
|
*rel_hash_ptr = NULL;
|
5708 |
|
|
/* It seems that we ought to add the symbol value to the
|
5709 |
|
|
addend here, but in practice it has already been added
|
5710 |
|
|
because it was passed to constructor_callback. */
|
5711 |
|
|
addend += section->output_section->vma + section->output_offset;
|
5712 |
|
|
}
|
5713 |
|
|
else if (h != NULL)
|
5714 |
|
|
{
|
5715 |
|
|
/* Setting the index to -2 tells elf_link_output_extsym that
|
5716 |
|
|
this symbol is used by a reloc. */
|
5717 |
|
|
h->indx = -2;
|
5718 |
|
|
*rel_hash_ptr = h;
|
5719 |
|
|
indx = 0;
|
5720 |
|
|
}
|
5721 |
|
|
else
|
5722 |
|
|
{
|
5723 |
|
|
if (! ((*info->callbacks->unattached_reloc)
|
5724 |
|
|
(info, link_order->u.reloc.p->u.name, (bfd *) NULL,
|
5725 |
|
|
(asection *) NULL, (bfd_vma) 0)))
|
5726 |
|
|
return false;
|
5727 |
|
|
indx = 0;
|
5728 |
|
|
}
|
5729 |
|
|
}
|
5730 |
|
|
|
5731 |
|
|
/* If this is an inplace reloc, we must write the addend into the
|
5732 |
|
|
object file. */
|
5733 |
|
|
if (howto->partial_inplace && addend != 0)
|
5734 |
|
|
{
|
5735 |
|
|
bfd_size_type size;
|
5736 |
|
|
bfd_reloc_status_type rstat;
|
5737 |
|
|
bfd_byte *buf;
|
5738 |
|
|
boolean ok;
|
5739 |
|
|
|
5740 |
|
|
size = bfd_get_reloc_size (howto);
|
5741 |
|
|
buf = (bfd_byte *) bfd_zmalloc (size);
|
5742 |
|
|
if (buf == (bfd_byte *) NULL)
|
5743 |
|
|
return false;
|
5744 |
|
|
rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
|
5745 |
|
|
switch (rstat)
|
5746 |
|
|
{
|
5747 |
|
|
case bfd_reloc_ok:
|
5748 |
|
|
break;
|
5749 |
|
|
default:
|
5750 |
|
|
case bfd_reloc_outofrange:
|
5751 |
|
|
abort ();
|
5752 |
|
|
case bfd_reloc_overflow:
|
5753 |
|
|
if (! ((*info->callbacks->reloc_overflow)
|
5754 |
|
|
(info,
|
5755 |
|
|
(link_order->type == bfd_section_reloc_link_order
|
5756 |
|
|
? bfd_section_name (output_bfd,
|
5757 |
|
|
link_order->u.reloc.p->u.section)
|
5758 |
|
|
: link_order->u.reloc.p->u.name),
|
5759 |
|
|
howto->name, addend, (bfd *) NULL, (asection *) NULL,
|
5760 |
|
|
(bfd_vma) 0)))
|
5761 |
|
|
{
|
5762 |
|
|
free (buf);
|
5763 |
|
|
return false;
|
5764 |
|
|
}
|
5765 |
|
|
break;
|
5766 |
|
|
}
|
5767 |
|
|
ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
|
5768 |
|
|
(file_ptr) link_order->offset, size);
|
5769 |
|
|
free (buf);
|
5770 |
|
|
if (! ok)
|
5771 |
|
|
return false;
|
5772 |
|
|
}
|
5773 |
|
|
|
5774 |
|
|
/* The address of a reloc is relative to the section in a
|
5775 |
|
|
relocateable file, and is a virtual address in an executable
|
5776 |
|
|
file. */
|
5777 |
|
|
offset = link_order->offset;
|
5778 |
|
|
if (! info->relocateable)
|
5779 |
|
|
offset += output_section->vma;
|
5780 |
|
|
|
5781 |
|
|
rel_hdr = &elf_section_data (output_section)->rel_hdr;
|
5782 |
|
|
|
5783 |
|
|
if (rel_hdr->sh_type == SHT_REL)
|
5784 |
|
|
{
|
5785 |
|
|
Elf_Internal_Rel irel;
|
5786 |
|
|
Elf_External_Rel *erel;
|
5787 |
|
|
|
5788 |
|
|
irel.r_offset = offset;
|
5789 |
|
|
irel.r_info = ELF_R_INFO (indx, howto->type);
|
5790 |
|
|
erel = ((Elf_External_Rel *) rel_hdr->contents
|
5791 |
|
|
+ elf_section_data (output_section)->rel_count);
|
5792 |
|
|
elf_swap_reloc_out (output_bfd, &irel, erel);
|
5793 |
|
|
}
|
5794 |
|
|
else
|
5795 |
|
|
{
|
5796 |
|
|
Elf_Internal_Rela irela;
|
5797 |
|
|
Elf_External_Rela *erela;
|
5798 |
|
|
|
5799 |
|
|
irela.r_offset = offset;
|
5800 |
|
|
irela.r_info = ELF_R_INFO (indx, howto->type);
|
5801 |
|
|
irela.r_addend = addend;
|
5802 |
|
|
erela = ((Elf_External_Rela *) rel_hdr->contents
|
5803 |
|
|
+ elf_section_data (output_section)->rel_count);
|
5804 |
|
|
elf_swap_reloca_out (output_bfd, &irela, erela);
|
5805 |
|
|
}
|
5806 |
|
|
|
5807 |
|
|
++elf_section_data (output_section)->rel_count;
|
5808 |
|
|
|
5809 |
|
|
return true;
|
5810 |
|
|
}
|
5811 |
|
|
|
5812 |
|
|
|
5813 |
|
|
/* Allocate a pointer to live in a linker created section. */
|
5814 |
|
|
|
5815 |
|
|
boolean
|
5816 |
|
|
elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
|
5817 |
|
|
bfd *abfd;
|
5818 |
|
|
struct bfd_link_info *info;
|
5819 |
|
|
elf_linker_section_t *lsect;
|
5820 |
|
|
struct elf_link_hash_entry *h;
|
5821 |
|
|
const Elf_Internal_Rela *rel;
|
5822 |
|
|
{
|
5823 |
|
|
elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
|
5824 |
|
|
elf_linker_section_pointers_t *linker_section_ptr;
|
5825 |
|
|
unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
|
5826 |
|
|
|
5827 |
|
|
BFD_ASSERT (lsect != NULL);
|
5828 |
|
|
|
5829 |
|
|
/* Is this a global symbol? */
|
5830 |
|
|
if (h != NULL)
|
5831 |
|
|
{
|
5832 |
|
|
/* Has this symbol already been allocated, if so, our work is done */
|
5833 |
|
|
if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
|
5834 |
|
|
rel->r_addend,
|
5835 |
|
|
lsect->which))
|
5836 |
|
|
return true;
|
5837 |
|
|
|
5838 |
|
|
ptr_linker_section_ptr = &h->linker_section_pointer;
|
5839 |
|
|
/* Make sure this symbol is output as a dynamic symbol. */
|
5840 |
|
|
if (h->dynindx == -1)
|
5841 |
|
|
{
|
5842 |
|
|
if (! elf_link_record_dynamic_symbol (info, h))
|
5843 |
|
|
return false;
|
5844 |
|
|
}
|
5845 |
|
|
|
5846 |
|
|
if (lsect->rel_section)
|
5847 |
|
|
lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
|
5848 |
|
|
}
|
5849 |
|
|
|
5850 |
|
|
else /* Allocation of a pointer to a local symbol */
|
5851 |
|
|
{
|
5852 |
|
|
elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
|
5853 |
|
|
|
5854 |
|
|
/* Allocate a table to hold the local symbols if first time */
|
5855 |
|
|
if (!ptr)
|
5856 |
|
|
{
|
5857 |
|
|
unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
|
5858 |
|
|
register unsigned int i;
|
5859 |
|
|
|
5860 |
|
|
ptr = (elf_linker_section_pointers_t **)
|
5861 |
|
|
bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
|
5862 |
|
|
|
5863 |
|
|
if (!ptr)
|
5864 |
|
|
return false;
|
5865 |
|
|
|
5866 |
|
|
elf_local_ptr_offsets (abfd) = ptr;
|
5867 |
|
|
for (i = 0; i < num_symbols; i++)
|
5868 |
|
|
ptr[i] = (elf_linker_section_pointers_t *)0;
|
5869 |
|
|
}
|
5870 |
|
|
|
5871 |
|
|
/* Has this symbol already been allocated, if so, our work is done */
|
5872 |
|
|
if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
|
5873 |
|
|
rel->r_addend,
|
5874 |
|
|
lsect->which))
|
5875 |
|
|
return true;
|
5876 |
|
|
|
5877 |
|
|
ptr_linker_section_ptr = &ptr[r_symndx];
|
5878 |
|
|
|
5879 |
|
|
if (info->shared)
|
5880 |
|
|
{
|
5881 |
|
|
/* If we are generating a shared object, we need to
|
5882 |
|
|
output a R_<xxx>_RELATIVE reloc so that the
|
5883 |
|
|
dynamic linker can adjust this GOT entry. */
|
5884 |
|
|
BFD_ASSERT (lsect->rel_section != NULL);
|
5885 |
|
|
lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
|
5886 |
|
|
}
|
5887 |
|
|
}
|
5888 |
|
|
|
5889 |
|
|
/* Allocate space for a pointer in the linker section, and allocate a new pointer record
|
5890 |
|
|
from internal memory. */
|
5891 |
|
|
BFD_ASSERT (ptr_linker_section_ptr != NULL);
|
5892 |
|
|
linker_section_ptr = (elf_linker_section_pointers_t *)
|
5893 |
|
|
bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
|
5894 |
|
|
|
5895 |
|
|
if (!linker_section_ptr)
|
5896 |
|
|
return false;
|
5897 |
|
|
|
5898 |
|
|
linker_section_ptr->next = *ptr_linker_section_ptr;
|
5899 |
|
|
linker_section_ptr->addend = rel->r_addend;
|
5900 |
|
|
linker_section_ptr->which = lsect->which;
|
5901 |
|
|
linker_section_ptr->written_address_p = false;
|
5902 |
|
|
*ptr_linker_section_ptr = linker_section_ptr;
|
5903 |
|
|
|
5904 |
|
|
#if 0
|
5905 |
|
|
if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
|
5906 |
|
|
{
|
5907 |
|
|
linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
|
5908 |
|
|
lsect->hole_offset += ARCH_SIZE / 8;
|
5909 |
|
|
lsect->sym_offset += ARCH_SIZE / 8;
|
5910 |
|
|
if (lsect->sym_hash) /* Bump up symbol value if needed */
|
5911 |
|
|
{
|
5912 |
|
|
lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
|
5913 |
|
|
#ifdef DEBUG
|
5914 |
|
|
fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
|
5915 |
|
|
lsect->sym_hash->root.root.string,
|
5916 |
|
|
(long)ARCH_SIZE / 8,
|
5917 |
|
|
(long)lsect->sym_hash->root.u.def.value);
|
5918 |
|
|
#endif
|
5919 |
|
|
}
|
5920 |
|
|
}
|
5921 |
|
|
else
|
5922 |
|
|
#endif
|
5923 |
|
|
linker_section_ptr->offset = lsect->section->_raw_size;
|
5924 |
|
|
|
5925 |
|
|
lsect->section->_raw_size += ARCH_SIZE / 8;
|
5926 |
|
|
|
5927 |
|
|
#ifdef DEBUG
|
5928 |
|
|
fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
|
5929 |
|
|
lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
|
5930 |
|
|
#endif
|
5931 |
|
|
|
5932 |
|
|
return true;
|
5933 |
|
|
}
|
5934 |
|
|
|
5935 |
|
|
|
5936 |
|
|
#if ARCH_SIZE==64
|
5937 |
|
|
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
|
5938 |
|
|
#endif
|
5939 |
|
|
#if ARCH_SIZE==32
|
5940 |
|
|
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
|
5941 |
|
|
#endif
|
5942 |
|
|
|
5943 |
|
|
/* Fill in the address for a pointer generated in alinker section. */
|
5944 |
|
|
|
5945 |
|
|
bfd_vma
|
5946 |
|
|
elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
|
5947 |
|
|
bfd *output_bfd;
|
5948 |
|
|
bfd *input_bfd;
|
5949 |
|
|
struct bfd_link_info *info;
|
5950 |
|
|
elf_linker_section_t *lsect;
|
5951 |
|
|
struct elf_link_hash_entry *h;
|
5952 |
|
|
bfd_vma relocation;
|
5953 |
|
|
const Elf_Internal_Rela *rel;
|
5954 |
|
|
int relative_reloc;
|
5955 |
|
|
{
|
5956 |
|
|
elf_linker_section_pointers_t *linker_section_ptr;
|
5957 |
|
|
|
5958 |
|
|
BFD_ASSERT (lsect != NULL);
|
5959 |
|
|
|
5960 |
|
|
if (h != NULL) /* global symbol */
|
5961 |
|
|
{
|
5962 |
|
|
linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
|
5963 |
|
|
rel->r_addend,
|
5964 |
|
|
lsect->which);
|
5965 |
|
|
|
5966 |
|
|
BFD_ASSERT (linker_section_ptr != NULL);
|
5967 |
|
|
|
5968 |
|
|
if (! elf_hash_table (info)->dynamic_sections_created
|
5969 |
|
|
|| (info->shared
|
5970 |
|
|
&& info->symbolic
|
5971 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
|
5972 |
|
|
{
|
5973 |
|
|
/* This is actually a static link, or it is a
|
5974 |
|
|
-Bsymbolic link and the symbol is defined
|
5975 |
|
|
locally. We must initialize this entry in the
|
5976 |
|
|
global section.
|
5977 |
|
|
|
5978 |
|
|
When doing a dynamic link, we create a .rela.<xxx>
|
5979 |
|
|
relocation entry to initialize the value. This
|
5980 |
|
|
is done in the finish_dynamic_symbol routine. */
|
5981 |
|
|
if (!linker_section_ptr->written_address_p)
|
5982 |
|
|
{
|
5983 |
|
|
linker_section_ptr->written_address_p = true;
|
5984 |
|
|
bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
|
5985 |
|
|
lsect->section->contents + linker_section_ptr->offset);
|
5986 |
|
|
}
|
5987 |
|
|
}
|
5988 |
|
|
}
|
5989 |
|
|
else /* local symbol */
|
5990 |
|
|
{
|
5991 |
|
|
unsigned long r_symndx = ELF_R_SYM (rel->r_info);
|
5992 |
|
|
BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
|
5993 |
|
|
BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
|
5994 |
|
|
linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
|
5995 |
|
|
rel->r_addend,
|
5996 |
|
|
lsect->which);
|
5997 |
|
|
|
5998 |
|
|
BFD_ASSERT (linker_section_ptr != NULL);
|
5999 |
|
|
|
6000 |
|
|
/* Write out pointer if it hasn't been rewritten out before */
|
6001 |
|
|
if (!linker_section_ptr->written_address_p)
|
6002 |
|
|
{
|
6003 |
|
|
linker_section_ptr->written_address_p = true;
|
6004 |
|
|
bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
|
6005 |
|
|
lsect->section->contents + linker_section_ptr->offset);
|
6006 |
|
|
|
6007 |
|
|
if (info->shared)
|
6008 |
|
|
{
|
6009 |
|
|
asection *srel = lsect->rel_section;
|
6010 |
|
|
Elf_Internal_Rela outrel;
|
6011 |
|
|
|
6012 |
|
|
/* We need to generate a relative reloc for the dynamic linker. */
|
6013 |
|
|
if (!srel)
|
6014 |
|
|
lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
|
6015 |
|
|
lsect->rel_name);
|
6016 |
|
|
|
6017 |
|
|
BFD_ASSERT (srel != NULL);
|
6018 |
|
|
|
6019 |
|
|
outrel.r_offset = (lsect->section->output_section->vma
|
6020 |
|
|
+ lsect->section->output_offset
|
6021 |
|
|
+ linker_section_ptr->offset);
|
6022 |
|
|
outrel.r_info = ELF_R_INFO (0, relative_reloc);
|
6023 |
|
|
outrel.r_addend = 0;
|
6024 |
|
|
elf_swap_reloca_out (output_bfd, &outrel,
|
6025 |
|
|
(((Elf_External_Rela *)
|
6026 |
|
|
lsect->section->contents)
|
6027 |
|
|
+ elf_section_data (lsect->section)->rel_count));
|
6028 |
|
|
++elf_section_data (lsect->section)->rel_count;
|
6029 |
|
|
}
|
6030 |
|
|
}
|
6031 |
|
|
}
|
6032 |
|
|
|
6033 |
|
|
relocation = (lsect->section->output_offset
|
6034 |
|
|
+ linker_section_ptr->offset
|
6035 |
|
|
- lsect->hole_offset
|
6036 |
|
|
- lsect->sym_offset);
|
6037 |
|
|
|
6038 |
|
|
#ifdef DEBUG
|
6039 |
|
|
fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
|
6040 |
|
|
lsect->name, (long)relocation, (long)relocation);
|
6041 |
|
|
#endif
|
6042 |
|
|
|
6043 |
|
|
/* Subtract out the addend, because it will get added back in by the normal
|
6044 |
|
|
processing. */
|
6045 |
|
|
return relocation - linker_section_ptr->addend;
|
6046 |
|
|
}
|
6047 |
|
|
|
6048 |
|
|
/* Garbage collect unused sections. */
|
6049 |
|
|
|
6050 |
|
|
static boolean elf_gc_mark
|
6051 |
|
|
PARAMS ((struct bfd_link_info *info, asection *sec,
|
6052 |
|
|
asection * (*gc_mark_hook)
|
6053 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
|
6054 |
|
|
struct elf_link_hash_entry *, Elf_Internal_Sym *))));
|
6055 |
|
|
|
6056 |
|
|
static boolean elf_gc_sweep
|
6057 |
|
|
PARAMS ((struct bfd_link_info *info,
|
6058 |
|
|
boolean (*gc_sweep_hook)
|
6059 |
|
|
PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
|
6060 |
|
|
const Elf_Internal_Rela *relocs))));
|
6061 |
|
|
|
6062 |
|
|
static boolean elf_gc_sweep_symbol
|
6063 |
|
|
PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
|
6064 |
|
|
|
6065 |
|
|
static boolean elf_gc_allocate_got_offsets
|
6066 |
|
|
PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
|
6067 |
|
|
|
6068 |
|
|
static boolean elf_gc_propagate_vtable_entries_used
|
6069 |
|
|
PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
|
6070 |
|
|
|
6071 |
|
|
static boolean elf_gc_smash_unused_vtentry_relocs
|
6072 |
|
|
PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
|
6073 |
|
|
|
6074 |
|
|
/* The mark phase of garbage collection. For a given section, mark
|
6075 |
|
|
it, and all the sections which define symbols to which it refers. */
|
6076 |
|
|
|
6077 |
|
|
static boolean
|
6078 |
|
|
elf_gc_mark (info, sec, gc_mark_hook)
|
6079 |
|
|
struct bfd_link_info *info;
|
6080 |
|
|
asection *sec;
|
6081 |
|
|
asection * (*gc_mark_hook)
|
6082 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
|
6083 |
|
|
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
6084 |
|
|
{
|
6085 |
|
|
boolean ret = true;
|
6086 |
|
|
|
6087 |
|
|
sec->gc_mark = 1;
|
6088 |
|
|
|
6089 |
|
|
/* Look through the section relocs. */
|
6090 |
|
|
|
6091 |
|
|
if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
|
6092 |
|
|
{
|
6093 |
|
|
Elf_Internal_Rela *relstart, *rel, *relend;
|
6094 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
6095 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
6096 |
|
|
size_t nlocsyms;
|
6097 |
|
|
size_t extsymoff;
|
6098 |
|
|
Elf_External_Sym *locsyms, *freesyms = NULL;
|
6099 |
|
|
bfd *input_bfd = sec->owner;
|
6100 |
|
|
struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
|
6101 |
|
|
|
6102 |
|
|
/* GCFIXME: how to arrange so that relocs and symbols are not
|
6103 |
|
|
reread continually? */
|
6104 |
|
|
|
6105 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
6106 |
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
6107 |
|
|
|
6108 |
|
|
/* Read the local symbols. */
|
6109 |
|
|
if (elf_bad_symtab (input_bfd))
|
6110 |
|
|
{
|
6111 |
|
|
nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
|
6112 |
|
|
extsymoff = 0;
|
6113 |
|
|
}
|
6114 |
|
|
else
|
6115 |
|
|
extsymoff = nlocsyms = symtab_hdr->sh_info;
|
6116 |
|
|
if (symtab_hdr->contents)
|
6117 |
|
|
locsyms = (Elf_External_Sym *) symtab_hdr->contents;
|
6118 |
|
|
else if (nlocsyms == 0)
|
6119 |
|
|
locsyms = NULL;
|
6120 |
|
|
else
|
6121 |
|
|
{
|
6122 |
|
|
locsyms = freesyms =
|
6123 |
|
|
bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
|
6124 |
|
|
if (freesyms == NULL
|
6125 |
|
|
|| bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
6126 |
|
|
|| (bfd_read (locsyms, sizeof (Elf_External_Sym),
|
6127 |
|
|
nlocsyms, input_bfd)
|
6128 |
|
|
!= nlocsyms * sizeof (Elf_External_Sym)))
|
6129 |
|
|
{
|
6130 |
|
|
ret = false;
|
6131 |
|
|
goto out1;
|
6132 |
|
|
}
|
6133 |
|
|
}
|
6134 |
|
|
|
6135 |
|
|
/* Read the relocations. */
|
6136 |
|
|
relstart = (NAME(_bfd_elf,link_read_relocs)
|
6137 |
|
|
(sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
|
6138 |
|
|
info->keep_memory));
|
6139 |
|
|
if (relstart == NULL)
|
6140 |
|
|
{
|
6141 |
|
|
ret = false;
|
6142 |
|
|
goto out1;
|
6143 |
|
|
}
|
6144 |
|
|
relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
|
6145 |
|
|
|
6146 |
|
|
for (rel = relstart; rel < relend; rel++)
|
6147 |
|
|
{
|
6148 |
|
|
unsigned long r_symndx;
|
6149 |
|
|
asection *rsec;
|
6150 |
|
|
struct elf_link_hash_entry *h;
|
6151 |
|
|
Elf_Internal_Sym s;
|
6152 |
|
|
|
6153 |
|
|
r_symndx = ELF_R_SYM (rel->r_info);
|
6154 |
|
|
if (r_symndx == 0)
|
6155 |
|
|
continue;
|
6156 |
|
|
|
6157 |
|
|
if (elf_bad_symtab (sec->owner))
|
6158 |
|
|
{
|
6159 |
|
|
elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
|
6160 |
|
|
if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
|
6161 |
|
|
rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
|
6162 |
|
|
else
|
6163 |
|
|
{
|
6164 |
|
|
h = sym_hashes[r_symndx - extsymoff];
|
6165 |
|
|
rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
|
6166 |
|
|
}
|
6167 |
|
|
}
|
6168 |
|
|
else if (r_symndx >= nlocsyms)
|
6169 |
|
|
{
|
6170 |
|
|
h = sym_hashes[r_symndx - extsymoff];
|
6171 |
|
|
rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
|
6172 |
|
|
}
|
6173 |
|
|
else
|
6174 |
|
|
{
|
6175 |
|
|
elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
|
6176 |
|
|
rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
|
6177 |
|
|
}
|
6178 |
|
|
|
6179 |
|
|
if (rsec && !rsec->gc_mark)
|
6180 |
|
|
if (!elf_gc_mark (info, rsec, gc_mark_hook))
|
6181 |
|
|
{
|
6182 |
|
|
ret = false;
|
6183 |
|
|
goto out2;
|
6184 |
|
|
}
|
6185 |
|
|
}
|
6186 |
|
|
|
6187 |
|
|
out2:
|
6188 |
|
|
if (!info->keep_memory)
|
6189 |
|
|
free (relstart);
|
6190 |
|
|
out1:
|
6191 |
|
|
if (freesyms)
|
6192 |
|
|
free (freesyms);
|
6193 |
|
|
}
|
6194 |
|
|
|
6195 |
|
|
return ret;
|
6196 |
|
|
}
|
6197 |
|
|
|
6198 |
|
|
/* The sweep phase of garbage collection. Remove all garbage sections. */
|
6199 |
|
|
|
6200 |
|
|
static boolean
|
6201 |
|
|
elf_gc_sweep (info, gc_sweep_hook)
|
6202 |
|
|
struct bfd_link_info *info;
|
6203 |
|
|
boolean (*gc_sweep_hook)
|
6204 |
|
|
PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
|
6205 |
|
|
const Elf_Internal_Rela *relocs));
|
6206 |
|
|
{
|
6207 |
|
|
bfd *sub;
|
6208 |
|
|
|
6209 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
6210 |
|
|
{
|
6211 |
|
|
asection *o;
|
6212 |
|
|
|
6213 |
|
|
if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
|
6214 |
|
|
continue;
|
6215 |
|
|
|
6216 |
|
|
for (o = sub->sections; o != NULL; o = o->next)
|
6217 |
|
|
{
|
6218 |
|
|
/* Keep special sections. Keep .debug sections. */
|
6219 |
|
|
if ((o->flags & SEC_LINKER_CREATED)
|
6220 |
|
|
|| (o->flags & SEC_DEBUGGING))
|
6221 |
|
|
o->gc_mark = 1;
|
6222 |
|
|
|
6223 |
|
|
if (o->gc_mark)
|
6224 |
|
|
continue;
|
6225 |
|
|
|
6226 |
|
|
/* Skip sweeping sections already excluded. */
|
6227 |
|
|
if (o->flags & SEC_EXCLUDE)
|
6228 |
|
|
continue;
|
6229 |
|
|
|
6230 |
|
|
/* Since this is early in the link process, it is simple
|
6231 |
|
|
to remove a section from the output. */
|
6232 |
|
|
o->flags |= SEC_EXCLUDE;
|
6233 |
|
|
|
6234 |
|
|
/* But we also have to update some of the relocation
|
6235 |
|
|
info we collected before. */
|
6236 |
|
|
if (gc_sweep_hook
|
6237 |
|
|
&& (o->flags & SEC_RELOC) && o->reloc_count > 0)
|
6238 |
|
|
{
|
6239 |
|
|
Elf_Internal_Rela *internal_relocs;
|
6240 |
|
|
boolean r;
|
6241 |
|
|
|
6242 |
|
|
internal_relocs = (NAME(_bfd_elf,link_read_relocs)
|
6243 |
|
|
(o->owner, o, NULL, NULL, info->keep_memory));
|
6244 |
|
|
if (internal_relocs == NULL)
|
6245 |
|
|
return false;
|
6246 |
|
|
|
6247 |
|
|
r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
|
6248 |
|
|
|
6249 |
|
|
if (!info->keep_memory)
|
6250 |
|
|
free (internal_relocs);
|
6251 |
|
|
|
6252 |
|
|
if (!r)
|
6253 |
|
|
return false;
|
6254 |
|
|
}
|
6255 |
|
|
}
|
6256 |
|
|
}
|
6257 |
|
|
|
6258 |
|
|
/* Remove the symbols that were in the swept sections from the dynamic
|
6259 |
|
|
symbol table. GCFIXME: Anyone know how to get them out of the
|
6260 |
|
|
static symbol table as well? */
|
6261 |
|
|
{
|
6262 |
|
|
int i = 0;
|
6263 |
|
|
|
6264 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
6265 |
|
|
elf_gc_sweep_symbol,
|
6266 |
|
|
(PTR) &i);
|
6267 |
|
|
|
6268 |
|
|
elf_hash_table (info)->dynsymcount = i;
|
6269 |
|
|
}
|
6270 |
|
|
|
6271 |
|
|
return true;
|
6272 |
|
|
}
|
6273 |
|
|
|
6274 |
|
|
/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
|
6275 |
|
|
|
6276 |
|
|
static boolean
|
6277 |
|
|
elf_gc_sweep_symbol (h, idxptr)
|
6278 |
|
|
struct elf_link_hash_entry *h;
|
6279 |
|
|
PTR idxptr;
|
6280 |
|
|
{
|
6281 |
|
|
int *idx = (int *) idxptr;
|
6282 |
|
|
|
6283 |
|
|
if (h->dynindx != -1
|
6284 |
|
|
&& ((h->root.type != bfd_link_hash_defined
|
6285 |
|
|
&& h->root.type != bfd_link_hash_defweak)
|
6286 |
|
|
|| h->root.u.def.section->gc_mark))
|
6287 |
|
|
h->dynindx = (*idx)++;
|
6288 |
|
|
|
6289 |
|
|
return true;
|
6290 |
|
|
}
|
6291 |
|
|
|
6292 |
|
|
/* Propogate collected vtable information. This is called through
|
6293 |
|
|
elf_link_hash_traverse. */
|
6294 |
|
|
|
6295 |
|
|
static boolean
|
6296 |
|
|
elf_gc_propagate_vtable_entries_used (h, okp)
|
6297 |
|
|
struct elf_link_hash_entry *h;
|
6298 |
|
|
PTR okp;
|
6299 |
|
|
{
|
6300 |
|
|
/* Those that are not vtables. */
|
6301 |
|
|
if (h->vtable_parent == NULL)
|
6302 |
|
|
return true;
|
6303 |
|
|
|
6304 |
|
|
/* Those vtables that do not have parents, we cannot merge. */
|
6305 |
|
|
if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
|
6306 |
|
|
return true;
|
6307 |
|
|
|
6308 |
|
|
/* If we've already been done, exit. */
|
6309 |
|
|
if (h->vtable_entries_used && h->vtable_entries_used[-1])
|
6310 |
|
|
return true;
|
6311 |
|
|
|
6312 |
|
|
/* Make sure the parent's table is up to date. */
|
6313 |
|
|
elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
|
6314 |
|
|
|
6315 |
|
|
if (h->vtable_entries_used == NULL)
|
6316 |
|
|
{
|
6317 |
|
|
/* None of this table's entries were referenced. Re-use the
|
6318 |
|
|
parent's table. */
|
6319 |
|
|
h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
|
6320 |
|
|
h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
|
6321 |
|
|
}
|
6322 |
|
|
else
|
6323 |
|
|
{
|
6324 |
|
|
size_t n;
|
6325 |
|
|
boolean *cu, *pu;
|
6326 |
|
|
|
6327 |
|
|
/* Or the parent's entries into ours. */
|
6328 |
|
|
cu = h->vtable_entries_used;
|
6329 |
|
|
cu[-1] = true;
|
6330 |
|
|
pu = h->vtable_parent->vtable_entries_used;
|
6331 |
|
|
if (pu != NULL)
|
6332 |
|
|
{
|
6333 |
|
|
n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
|
6334 |
|
|
while (--n != 0)
|
6335 |
|
|
{
|
6336 |
|
|
if (*pu) *cu = true;
|
6337 |
|
|
pu++, cu++;
|
6338 |
|
|
}
|
6339 |
|
|
}
|
6340 |
|
|
}
|
6341 |
|
|
|
6342 |
|
|
return true;
|
6343 |
|
|
}
|
6344 |
|
|
|
6345 |
|
|
static boolean
|
6346 |
|
|
elf_gc_smash_unused_vtentry_relocs (h, okp)
|
6347 |
|
|
struct elf_link_hash_entry *h;
|
6348 |
|
|
PTR okp;
|
6349 |
|
|
{
|
6350 |
|
|
asection *sec;
|
6351 |
|
|
bfd_vma hstart, hend;
|
6352 |
|
|
Elf_Internal_Rela *relstart, *relend, *rel;
|
6353 |
|
|
struct elf_backend_data *bed;
|
6354 |
|
|
|
6355 |
|
|
/* Take care of both those symbols that do not describe vtables as
|
6356 |
|
|
well as those that are not loaded. */
|
6357 |
|
|
if (h->vtable_parent == NULL)
|
6358 |
|
|
return true;
|
6359 |
|
|
|
6360 |
|
|
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|
6361 |
|
|
|| h->root.type == bfd_link_hash_defweak);
|
6362 |
|
|
|
6363 |
|
|
sec = h->root.u.def.section;
|
6364 |
|
|
hstart = h->root.u.def.value;
|
6365 |
|
|
hend = hstart + h->size;
|
6366 |
|
|
|
6367 |
|
|
relstart = (NAME(_bfd_elf,link_read_relocs)
|
6368 |
|
|
(sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
|
6369 |
|
|
if (!relstart)
|
6370 |
|
|
return *(boolean *)okp = false;
|
6371 |
|
|
bed = get_elf_backend_data (sec->owner);
|
6372 |
|
|
relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
|
6373 |
|
|
|
6374 |
|
|
for (rel = relstart; rel < relend; ++rel)
|
6375 |
|
|
if (rel->r_offset >= hstart && rel->r_offset < hend)
|
6376 |
|
|
{
|
6377 |
|
|
/* If the entry is in use, do nothing. */
|
6378 |
|
|
if (h->vtable_entries_used
|
6379 |
|
|
&& (rel->r_offset - hstart) < h->vtable_entries_size)
|
6380 |
|
|
{
|
6381 |
|
|
bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
|
6382 |
|
|
if (h->vtable_entries_used[entry])
|
6383 |
|
|
continue;
|
6384 |
|
|
}
|
6385 |
|
|
/* Otherwise, kill it. */
|
6386 |
|
|
rel->r_offset = rel->r_info = rel->r_addend = 0;
|
6387 |
|
|
}
|
6388 |
|
|
|
6389 |
|
|
return true;
|
6390 |
|
|
}
|
6391 |
|
|
|
6392 |
|
|
/* Do mark and sweep of unused sections. */
|
6393 |
|
|
|
6394 |
|
|
boolean
|
6395 |
|
|
elf_gc_sections (abfd, info)
|
6396 |
|
|
bfd *abfd;
|
6397 |
|
|
struct bfd_link_info *info;
|
6398 |
|
|
{
|
6399 |
|
|
boolean ok = true;
|
6400 |
|
|
bfd *sub;
|
6401 |
|
|
asection * (*gc_mark_hook)
|
6402 |
|
|
PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
|
6403 |
|
|
struct elf_link_hash_entry *h, Elf_Internal_Sym *));
|
6404 |
|
|
|
6405 |
|
|
if (!get_elf_backend_data (abfd)->can_gc_sections
|
6406 |
|
|
|| info->relocateable
|
6407 |
|
|
|| elf_hash_table (info)->dynamic_sections_created)
|
6408 |
|
|
return true;
|
6409 |
|
|
|
6410 |
|
|
/* Apply transitive closure to the vtable entry usage info. */
|
6411 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
6412 |
|
|
elf_gc_propagate_vtable_entries_used,
|
6413 |
|
|
(PTR) &ok);
|
6414 |
|
|
if (!ok)
|
6415 |
|
|
return false;
|
6416 |
|
|
|
6417 |
|
|
/* Kill the vtable relocations that were not used. */
|
6418 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
6419 |
|
|
elf_gc_smash_unused_vtentry_relocs,
|
6420 |
|
|
(PTR) &ok);
|
6421 |
|
|
if (!ok)
|
6422 |
|
|
return false;
|
6423 |
|
|
|
6424 |
|
|
/* Grovel through relocs to find out who stays ... */
|
6425 |
|
|
|
6426 |
|
|
gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
|
6427 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
6428 |
|
|
{
|
6429 |
|
|
asection *o;
|
6430 |
|
|
|
6431 |
|
|
if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
|
6432 |
|
|
continue;
|
6433 |
|
|
|
6434 |
|
|
for (o = sub->sections; o != NULL; o = o->next)
|
6435 |
|
|
{
|
6436 |
|
|
if (o->flags & SEC_KEEP)
|
6437 |
|
|
if (!elf_gc_mark (info, o, gc_mark_hook))
|
6438 |
|
|
return false;
|
6439 |
|
|
}
|
6440 |
|
|
}
|
6441 |
|
|
|
6442 |
|
|
/* ... and mark SEC_EXCLUDE for those that go. */
|
6443 |
|
|
if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
|
6444 |
|
|
return false;
|
6445 |
|
|
|
6446 |
|
|
return true;
|
6447 |
|
|
}
|
6448 |
|
|
|
6449 |
|
|
/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
|
6450 |
|
|
|
6451 |
|
|
boolean
|
6452 |
|
|
elf_gc_record_vtinherit (abfd, sec, h, offset)
|
6453 |
|
|
bfd *abfd;
|
6454 |
|
|
asection *sec;
|
6455 |
|
|
struct elf_link_hash_entry *h;
|
6456 |
|
|
bfd_vma offset;
|
6457 |
|
|
{
|
6458 |
|
|
struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
|
6459 |
|
|
struct elf_link_hash_entry **search, *child;
|
6460 |
|
|
bfd_size_type extsymcount;
|
6461 |
|
|
|
6462 |
|
|
/* The sh_info field of the symtab header tells us where the
|
6463 |
|
|
external symbols start. We don't care about the local symbols at
|
6464 |
|
|
this point. */
|
6465 |
|
|
extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
|
6466 |
|
|
if (!elf_bad_symtab (abfd))
|
6467 |
|
|
extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
|
6468 |
|
|
|
6469 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
6470 |
|
|
sym_hashes_end = sym_hashes + extsymcount;
|
6471 |
|
|
|
6472 |
|
|
/* Hunt down the child symbol, which is in this section at the same
|
6473 |
|
|
offset as the relocation. */
|
6474 |
|
|
for (search = sym_hashes; search != sym_hashes_end; ++search)
|
6475 |
|
|
{
|
6476 |
|
|
if ((child = *search) != NULL
|
6477 |
|
|
&& (child->root.type == bfd_link_hash_defined
|
6478 |
|
|
|| child->root.type == bfd_link_hash_defweak)
|
6479 |
|
|
&& child->root.u.def.section == sec
|
6480 |
|
|
&& child->root.u.def.value == offset)
|
6481 |
|
|
goto win;
|
6482 |
|
|
}
|
6483 |
|
|
|
6484 |
|
|
(*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
|
6485 |
|
|
bfd_get_filename (abfd), sec->name,
|
6486 |
|
|
(unsigned long)offset);
|
6487 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
6488 |
|
|
return false;
|
6489 |
|
|
|
6490 |
|
|
win:
|
6491 |
|
|
if (!h)
|
6492 |
|
|
{
|
6493 |
|
|
/* This *should* only be the absolute section. It could potentially
|
6494 |
|
|
be that someone has defined a non-global vtable though, which
|
6495 |
|
|
would be bad. It isn't worth paging in the local symbols to be
|
6496 |
|
|
sure though; that case should simply be handled by the assembler. */
|
6497 |
|
|
|
6498 |
|
|
child->vtable_parent = (struct elf_link_hash_entry *) -1;
|
6499 |
|
|
}
|
6500 |
|
|
else
|
6501 |
|
|
child->vtable_parent = h;
|
6502 |
|
|
|
6503 |
|
|
return true;
|
6504 |
|
|
}
|
6505 |
|
|
|
6506 |
|
|
/* Called from check_relocs to record the existance of a VTENTRY reloc. */
|
6507 |
|
|
|
6508 |
|
|
boolean
|
6509 |
|
|
elf_gc_record_vtentry (abfd, sec, h, addend)
|
6510 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
6511 |
|
|
asection *sec ATTRIBUTE_UNUSED;
|
6512 |
|
|
struct elf_link_hash_entry *h;
|
6513 |
|
|
bfd_vma addend;
|
6514 |
|
|
{
|
6515 |
|
|
if (addend >= h->vtable_entries_size)
|
6516 |
|
|
{
|
6517 |
|
|
size_t size, bytes;
|
6518 |
|
|
boolean *ptr = h->vtable_entries_used;
|
6519 |
|
|
|
6520 |
|
|
/* While the symbol is undefined, we have to be prepared to handle
|
6521 |
|
|
a zero size. */
|
6522 |
|
|
if (h->root.type == bfd_link_hash_undefined)
|
6523 |
|
|
size = addend;
|
6524 |
|
|
else
|
6525 |
|
|
{
|
6526 |
|
|
size = h->size;
|
6527 |
|
|
if (size < addend)
|
6528 |
|
|
{
|
6529 |
|
|
/* Oops! We've got a reference past the defined end of
|
6530 |
|
|
the table. This is probably a bug -- shall we warn? */
|
6531 |
|
|
size = addend;
|
6532 |
|
|
}
|
6533 |
|
|
}
|
6534 |
|
|
|
6535 |
|
|
/* Allocate one extra entry for use as a "done" flag for the
|
6536 |
|
|
consolidation pass. */
|
6537 |
|
|
bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
|
6538 |
|
|
|
6539 |
|
|
if (ptr)
|
6540 |
|
|
{
|
6541 |
|
|
ptr = bfd_realloc (ptr - 1, bytes);
|
6542 |
|
|
|
6543 |
|
|
if (ptr != NULL)
|
6544 |
|
|
{
|
6545 |
|
|
size_t oldbytes;
|
6546 |
|
|
|
6547 |
|
|
oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
|
6548 |
|
|
memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
|
6549 |
|
|
}
|
6550 |
|
|
}
|
6551 |
|
|
else
|
6552 |
|
|
ptr = bfd_zmalloc (bytes);
|
6553 |
|
|
|
6554 |
|
|
if (ptr == NULL)
|
6555 |
|
|
return false;
|
6556 |
|
|
|
6557 |
|
|
/* And arrange for that done flag to be at index -1. */
|
6558 |
|
|
h->vtable_entries_used = ptr + 1;
|
6559 |
|
|
h->vtable_entries_size = size;
|
6560 |
|
|
}
|
6561 |
|
|
|
6562 |
|
|
h->vtable_entries_used[addend / FILE_ALIGN] = true;
|
6563 |
|
|
|
6564 |
|
|
return true;
|
6565 |
|
|
}
|
6566 |
|
|
|
6567 |
|
|
/* And an accompanying bit to work out final got entry offsets once
|
6568 |
|
|
we're done. Should be called from final_link. */
|
6569 |
|
|
|
6570 |
|
|
boolean
|
6571 |
|
|
elf_gc_common_finalize_got_offsets (abfd, info)
|
6572 |
|
|
bfd *abfd;
|
6573 |
|
|
struct bfd_link_info *info;
|
6574 |
|
|
{
|
6575 |
|
|
bfd *i;
|
6576 |
|
|
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
6577 |
|
|
bfd_vma gotoff;
|
6578 |
|
|
|
6579 |
|
|
/* The GOT offset is relative to the .got section, but the GOT header is
|
6580 |
|
|
put into the .got.plt section, if the backend uses it. */
|
6581 |
|
|
if (bed->want_got_plt)
|
6582 |
|
|
gotoff = 0;
|
6583 |
|
|
else
|
6584 |
|
|
gotoff = bed->got_header_size;
|
6585 |
|
|
|
6586 |
|
|
/* Do the local .got entries first. */
|
6587 |
|
|
for (i = info->input_bfds; i; i = i->link_next)
|
6588 |
|
|
{
|
6589 |
|
|
bfd_signed_vma *local_got;
|
6590 |
|
|
bfd_size_type j, locsymcount;
|
6591 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
6592 |
|
|
|
6593 |
|
|
if (bfd_get_flavour (i) != bfd_target_elf_flavour)
|
6594 |
|
|
continue;
|
6595 |
|
|
|
6596 |
|
|
local_got = elf_local_got_refcounts (i);
|
6597 |
|
|
if (!local_got)
|
6598 |
|
|
continue;
|
6599 |
|
|
|
6600 |
|
|
symtab_hdr = &elf_tdata (i)->symtab_hdr;
|
6601 |
|
|
if (elf_bad_symtab (i))
|
6602 |
|
|
locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
|
6603 |
|
|
else
|
6604 |
|
|
locsymcount = symtab_hdr->sh_info;
|
6605 |
|
|
|
6606 |
|
|
for (j = 0; j < locsymcount; ++j)
|
6607 |
|
|
{
|
6608 |
|
|
if (local_got[j] > 0)
|
6609 |
|
|
{
|
6610 |
|
|
local_got[j] = gotoff;
|
6611 |
|
|
gotoff += ARCH_SIZE / 8;
|
6612 |
|
|
}
|
6613 |
|
|
else
|
6614 |
|
|
local_got[j] = (bfd_vma) -1;
|
6615 |
|
|
}
|
6616 |
|
|
}
|
6617 |
|
|
|
6618 |
|
|
/* Then the global .got and .plt entries. */
|
6619 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
6620 |
|
|
elf_gc_allocate_got_offsets,
|
6621 |
|
|
(PTR) &gotoff);
|
6622 |
|
|
return true;
|
6623 |
|
|
}
|
6624 |
|
|
|
6625 |
|
|
/* We need a special top-level link routine to convert got reference counts
|
6626 |
|
|
to real got offsets. */
|
6627 |
|
|
|
6628 |
|
|
static boolean
|
6629 |
|
|
elf_gc_allocate_got_offsets (h, offarg)
|
6630 |
|
|
struct elf_link_hash_entry *h;
|
6631 |
|
|
PTR offarg;
|
6632 |
|
|
{
|
6633 |
|
|
bfd_vma *off = (bfd_vma *) offarg;
|
6634 |
|
|
|
6635 |
|
|
if (h->got.refcount > 0)
|
6636 |
|
|
{
|
6637 |
|
|
h->got.offset = off[0];
|
6638 |
|
|
off[0] += ARCH_SIZE / 8;
|
6639 |
|
|
}
|
6640 |
|
|
else
|
6641 |
|
|
h->got.offset = (bfd_vma) -1;
|
6642 |
|
|
|
6643 |
|
|
return true;
|
6644 |
|
|
}
|
6645 |
|
|
|
6646 |
|
|
/* Many folk need no more in the way of final link than this, once
|
6647 |
|
|
got entry reference counting is enabled. */
|
6648 |
|
|
|
6649 |
|
|
boolean
|
6650 |
|
|
elf_gc_common_final_link (abfd, info)
|
6651 |
|
|
bfd *abfd;
|
6652 |
|
|
struct bfd_link_info *info;
|
6653 |
|
|
{
|
6654 |
|
|
if (!elf_gc_common_finalize_got_offsets (abfd, info))
|
6655 |
|
|
return false;
|
6656 |
|
|
|
6657 |
|
|
/* Invoke the regular ELF backend linker to do all the work. */
|
6658 |
|
|
return elf_bfd_final_link (abfd, info);
|
6659 |
|
|
}
|
6660 |
|
|
|
6661 |
|
|
/* This function will be called though elf_link_hash_traverse to store
|
6662 |
|
|
all hash value of the exported symbols in an array. */
|
6663 |
|
|
|
6664 |
|
|
static boolean
|
6665 |
|
|
elf_collect_hash_codes (h, data)
|
6666 |
|
|
struct elf_link_hash_entry *h;
|
6667 |
|
|
PTR data;
|
6668 |
|
|
{
|
6669 |
|
|
unsigned long **valuep = (unsigned long **) data;
|
6670 |
|
|
const char *name;
|
6671 |
|
|
char *p;
|
6672 |
|
|
unsigned long ha;
|
6673 |
|
|
char *alc = NULL;
|
6674 |
|
|
|
6675 |
|
|
/* Ignore indirect symbols. These are added by the versioning code. */
|
6676 |
|
|
if (h->dynindx == -1)
|
6677 |
|
|
return true;
|
6678 |
|
|
|
6679 |
|
|
name = h->root.root.string;
|
6680 |
|
|
p = strchr (name, ELF_VER_CHR);
|
6681 |
|
|
if (p != NULL)
|
6682 |
|
|
{
|
6683 |
|
|
alc = bfd_malloc (p - name + 1);
|
6684 |
|
|
memcpy (alc, name, p - name);
|
6685 |
|
|
alc[p - name] = '\0';
|
6686 |
|
|
name = alc;
|
6687 |
|
|
}
|
6688 |
|
|
|
6689 |
|
|
/* Compute the hash value. */
|
6690 |
|
|
ha = bfd_elf_hash (name);
|
6691 |
|
|
|
6692 |
|
|
/* Store the found hash value in the array given as the argument. */
|
6693 |
|
|
*(*valuep)++ = ha;
|
6694 |
|
|
|
6695 |
|
|
/* And store it in the struct so that we can put it in the hash table
|
6696 |
|
|
later. */
|
6697 |
|
|
h->elf_hash_value = ha;
|
6698 |
|
|
|
6699 |
|
|
if (alc != NULL)
|
6700 |
|
|
free (alc);
|
6701 |
|
|
|
6702 |
|
|
return true;
|
6703 |
|
|
}
|