OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [branches/] [oc/] [gdb-5.0/] [bfd/] [reloc.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 104 markom
/* BFD support for handling relocation entries.
2
   Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3
   Free Software Foundation, Inc.
4
   Written by Cygnus Support.
5
 
6
This file is part of BFD, the Binary File Descriptor library.
7
 
8
This program is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 2 of the License, or
11
(at your option) any later version.
12
 
13
This program is distributed in the hope that it will be useful,
14
but WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
GNU General Public License for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with this program; if not, write to the Free Software
20
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
21
 
22
/*
23
SECTION
24
        Relocations
25
 
26
        BFD maintains relocations in much the same way it maintains
27
        symbols: they are left alone until required, then read in
28
        en-mass and translated into an internal form.  A common
29
        routine <<bfd_perform_relocation>> acts upon the
30
        canonical form to do the fixup.
31
 
32
        Relocations are maintained on a per section basis,
33
        while symbols are maintained on a per BFD basis.
34
 
35
        All that a back end has to do to fit the BFD interface is to create
36
        a <<struct reloc_cache_entry>> for each relocation
37
        in a particular section, and fill in the right bits of the structures.
38
 
39
@menu
40
@* typedef arelent::
41
@* howto manager::
42
@end menu
43
 
44
*/
45
 
46
/* DO compile in the reloc_code name table from libbfd.h.  */
47
#define _BFD_MAKE_TABLE_bfd_reloc_code_real
48
 
49
#include "bfd.h"
50
#include "sysdep.h"
51
#include "bfdlink.h"
52
#include "libbfd.h"
53
/*
54
DOCDD
55
INODE
56
        typedef arelent, howto manager, Relocations, Relocations
57
 
58
SUBSECTION
59
        typedef arelent
60
 
61
        This is the structure of a relocation entry:
62
 
63
CODE_FRAGMENT
64
.
65
.typedef enum bfd_reloc_status
66
.{
67
.       {* No errors detected *}
68
.  bfd_reloc_ok,
69
.
70
.       {* The relocation was performed, but there was an overflow. *}
71
.  bfd_reloc_overflow,
72
.
73
.       {* The address to relocate was not within the section supplied. *}
74
.  bfd_reloc_outofrange,
75
.
76
.       {* Used by special functions *}
77
.  bfd_reloc_continue,
78
.
79
.       {* Unsupported relocation size requested. *}
80
.  bfd_reloc_notsupported,
81
.
82
.       {* Unused *}
83
.  bfd_reloc_other,
84
.
85
.       {* The symbol to relocate against was undefined. *}
86
.  bfd_reloc_undefined,
87
.
88
.       {* The relocation was performed, but may not be ok - presently
89
.          generated only when linking i960 coff files with i960 b.out
90
.          symbols.  If this type is returned, the error_message argument
91
.          to bfd_perform_relocation will be set.  *}
92
.  bfd_reloc_dangerous
93
. }
94
. bfd_reloc_status_type;
95
.
96
.
97
.typedef struct reloc_cache_entry
98
.{
99
.       {* A pointer into the canonical table of pointers  *}
100
.  struct symbol_cache_entry **sym_ptr_ptr;
101
.
102
.       {* offset in section *}
103
.  bfd_size_type address;
104
.
105
.       {* addend for relocation value *}
106
.  bfd_vma addend;
107
.
108
.       {* Pointer to how to perform the required relocation *}
109
.  reloc_howto_type *howto;
110
.
111
.} arelent;
112
 
113
*/
114
 
115
/*
116
DESCRIPTION
117
 
118
        Here is a description of each of the fields within an <<arelent>>:
119
 
120
        o <<sym_ptr_ptr>>
121
 
122
        The symbol table pointer points to a pointer to the symbol
123
        associated with the relocation request.  It is
124
        the pointer into the table returned by the back end's
125
        <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
126
        through a pointer to a pointer so that tools like the linker
127
        can fix up all the symbols of the same name by modifying only
128
        one pointer. The relocation routine looks in the symbol and
129
        uses the base of the section the symbol is attached to and the
130
        value of the symbol as the initial relocation offset. If the
131
        symbol pointer is zero, then the section provided is looked up.
132
 
133
        o <<address>>
134
 
135
        The <<address>> field gives the offset in bytes from the base of
136
        the section data which owns the relocation record to the first
137
        byte of relocatable information. The actual data relocated
138
        will be relative to this point; for example, a relocation
139
        type which modifies the bottom two bytes of a four byte word
140
        would not touch the first byte pointed to in a big endian
141
        world.
142
 
143
        o <<addend>>
144
 
145
        The <<addend>> is a value provided by the back end to be added (!)
146
        to the relocation offset. Its interpretation is dependent upon
147
        the howto. For example, on the 68k the code:
148
 
149
 
150
|        char foo[];
151
|        main()
152
|                {
153
|                return foo[0x12345678];
154
|                }
155
 
156
        Could be compiled into:
157
 
158
|        linkw fp,#-4
159
|        moveb @@#12345678,d0
160
|        extbl d0
161
|        unlk fp
162
|        rts
163
 
164
 
165
        This could create a reloc pointing to <<foo>>, but leave the
166
        offset in the data, something like:
167
 
168
 
169
|RELOCATION RECORDS FOR [.text]:
170
|offset   type      value
171
|00000006 32        _foo
172
|
173
|00000000 4e56 fffc          ; linkw fp,#-4
174
|00000004 1039 1234 5678     ; moveb @@#12345678,d0
175
|0000000a 49c0               ; extbl d0
176
|0000000c 4e5e               ; unlk fp
177
|0000000e 4e75               ; rts
178
 
179
 
180
        Using coff and an 88k, some instructions don't have enough
181
        space in them to represent the full address range, and
182
        pointers have to be loaded in two parts. So you'd get something like:
183
 
184
 
185
|        or.u     r13,r0,hi16(_foo+0x12345678)
186
|        ld.b     r2,r13,lo16(_foo+0x12345678)
187
|        jmp      r1
188
 
189
 
190
        This should create two relocs, both pointing to <<_foo>>, and with
191
        0x12340000 in their addend field. The data would consist of:
192
 
193
 
194
|RELOCATION RECORDS FOR [.text]:
195
|offset   type      value
196
|00000002 HVRT16    _foo+0x12340000
197
|00000006 LVRT16    _foo+0x12340000
198
|
199
|00000000 5da05678           ; or.u r13,r0,0x5678
200
|00000004 1c4d5678           ; ld.b r2,r13,0x5678
201
|00000008 f400c001           ; jmp r1
202
 
203
 
204
        The relocation routine digs out the value from the data, adds
205
        it to the addend to get the original offset, and then adds the
206
        value of <<_foo>>. Note that all 32 bits have to be kept around
207
        somewhere, to cope with carry from bit 15 to bit 16.
208
 
209
        One further example is the sparc and the a.out format. The
210
        sparc has a similar problem to the 88k, in that some
211
        instructions don't have room for an entire offset, but on the
212
        sparc the parts are created in odd sized lumps. The designers of
213
        the a.out format chose to not use the data within the section
214
        for storing part of the offset; all the offset is kept within
215
        the reloc. Anything in the data should be ignored.
216
 
217
|        save %sp,-112,%sp
218
|        sethi %hi(_foo+0x12345678),%g2
219
|        ldsb [%g2+%lo(_foo+0x12345678)],%i0
220
|        ret
221
|        restore
222
 
223
        Both relocs contain a pointer to <<foo>>, and the offsets
224
        contain junk.
225
 
226
 
227
|RELOCATION RECORDS FOR [.text]:
228
|offset   type      value
229
|00000004 HI22      _foo+0x12345678
230
|00000008 LO10      _foo+0x12345678
231
|
232
|00000000 9de3bf90     ; save %sp,-112,%sp
233
|00000004 05000000     ; sethi %hi(_foo+0),%g2
234
|00000008 f048a000     ; ldsb [%g2+%lo(_foo+0)],%i0
235
|0000000c 81c7e008     ; ret
236
|00000010 81e80000     ; restore
237
 
238
 
239
        o <<howto>>
240
 
241
        The <<howto>> field can be imagined as a
242
        relocation instruction. It is a pointer to a structure which
243
        contains information on what to do with all of the other
244
        information in the reloc record and data section. A back end
245
        would normally have a relocation instruction set and turn
246
        relocations into pointers to the correct structure on input -
247
        but it would be possible to create each howto field on demand.
248
 
249
*/
250
 
251
/*
252
SUBSUBSECTION
253
        <<enum complain_overflow>>
254
 
255
        Indicates what sort of overflow checking should be done when
256
        performing a relocation.
257
 
258
CODE_FRAGMENT
259
.
260
.enum complain_overflow
261
.{
262
.       {* Do not complain on overflow. *}
263
.  complain_overflow_dont,
264
.
265
.       {* Complain if the bitfield overflows, whether it is considered
266
.          as signed or unsigned. *}
267
.  complain_overflow_bitfield,
268
.
269
.       {* Complain if the value overflows when considered as signed
270
.          number. *}
271
.  complain_overflow_signed,
272
.
273
.       {* Complain if the value overflows when considered as an
274
.          unsigned number. *}
275
.  complain_overflow_unsigned
276
.};
277
 
278
*/
279
 
280
/*
281
SUBSUBSECTION
282
        <<reloc_howto_type>>
283
 
284
        The <<reloc_howto_type>> is a structure which contains all the
285
        information that libbfd needs to know to tie up a back end's data.
286
 
287
CODE_FRAGMENT
288
.struct symbol_cache_entry;             {* Forward declaration *}
289
.
290
.struct reloc_howto_struct
291
.{
292
.       {*  The type field has mainly a documentary use - the back end can
293
.           do what it wants with it, though normally the back end's
294
.           external idea of what a reloc number is stored
295
.           in this field. For example, a PC relative word relocation
296
.           in a coff environment has the type 023 - because that's
297
.           what the outside world calls a R_PCRWORD reloc. *}
298
.  unsigned int type;
299
.
300
.       {*  The value the final relocation is shifted right by. This drops
301
.           unwanted data from the relocation.  *}
302
.  unsigned int rightshift;
303
.
304
.       {*  The size of the item to be relocated.  This is *not* a
305
.           power-of-two measure.  To get the number of bytes operated
306
.           on by a type of relocation, use bfd_get_reloc_size.  *}
307
.  int size;
308
.
309
.       {*  The number of bits in the item to be relocated.  This is used
310
.           when doing overflow checking.  *}
311
.  unsigned int bitsize;
312
.
313
.       {*  Notes that the relocation is relative to the location in the
314
.           data section of the addend. The relocation function will
315
.           subtract from the relocation value the address of the location
316
.           being relocated. *}
317
.  boolean pc_relative;
318
.
319
.       {*  The bit position of the reloc value in the destination.
320
.           The relocated value is left shifted by this amount. *}
321
.  unsigned int bitpos;
322
.
323
.       {* What type of overflow error should be checked for when
324
.          relocating. *}
325
.  enum complain_overflow complain_on_overflow;
326
.
327
.       {* If this field is non null, then the supplied function is
328
.          called rather than the normal function. This allows really
329
.          strange relocation methods to be accomodated (e.g., i960 callj
330
.          instructions). *}
331
.  bfd_reloc_status_type (*special_function)
332
.                                   PARAMS ((bfd *abfd,
333
.                                            arelent *reloc_entry,
334
.                                            struct symbol_cache_entry *symbol,
335
.                                            PTR data,
336
.                                            asection *input_section,
337
.                                            bfd *output_bfd,
338
.                                            char **error_message));
339
.
340
.       {* The textual name of the relocation type. *}
341
.  char *name;
342
.
343
.       {* Some formats record a relocation addend in the section contents
344
.          rather than with the relocation.  For ELF formats this is the
345
.          distinction between USE_REL and USE_RELA (though the code checks
346
.          for USE_REL == 1/0).  The value of this field is TRUE if the
347
.          addend is recorded with the section contents; when performing a
348
.          partial link (ld -r) the section contents (the data) will be
349
.          modified.  The value of this field is FALSE if addends are
350
.          recorded with the relocation (in arelent.addend); when performing
351
.          a partial link the relocation will be modified.
352
.          All relocations for all ELF USE_RELA targets should set this field
353
.          to FALSE (values of TRUE should be looked on with suspicion).
354
.          However, the converse is not true: not all relocations of all ELF
355
.          USE_REL targets set this field to TRUE.  Why this is so is peculiar
356
.          to each particular target.  For relocs that aren't used in partial
357
.          links (e.g. GOT stuff) it doesn't matter what this is set to.  *}
358
.  boolean partial_inplace;
359
.
360
.       {* The src_mask selects which parts of the read in data
361
.          are to be used in the relocation sum.  E.g., if this was an 8 bit
362
.          byte of data which we read and relocated, this would be
363
.          0x000000ff. When we have relocs which have an addend, such as
364
.          sun4 extended relocs, the value in the offset part of a
365
.          relocating field is garbage so we never use it. In this case
366
.          the mask would be 0x00000000. *}
367
.  bfd_vma src_mask;
368
.
369
.       {* The dst_mask selects which parts of the instruction are replaced
370
.          into the instruction. In most cases src_mask == dst_mask,
371
.          except in the above special case, where dst_mask would be
372
.          0x000000ff, and src_mask would be 0x00000000.   *}
373
.  bfd_vma dst_mask;
374
.
375
.       {* When some formats create PC relative instructions, they leave
376
.          the value of the pc of the place being relocated in the offset
377
.          slot of the instruction, so that a PC relative relocation can
378
.          be made just by adding in an ordinary offset (e.g., sun3 a.out).
379
.          Some formats leave the displacement part of an instruction
380
.          empty (e.g., m88k bcs); this flag signals the fact.*}
381
.  boolean pcrel_offset;
382
.
383
.};
384
 
385
*/
386
 
387
/*
388
FUNCTION
389
        The HOWTO Macro
390
 
391
DESCRIPTION
392
        The HOWTO define is horrible and will go away.
393
 
394
 
395
.#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
396
.  {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
397
 
398
DESCRIPTION
399
        And will be replaced with the totally magic way. But for the
400
        moment, we are compatible, so do it this way.
401
 
402
 
403
.#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
404
.
405
 
406
DESCRIPTION
407
        This is used to fill in an empty howto entry in an array.
408
 
409
.#define EMPTY_HOWTO(C) \
410
.  HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
411
.
412
 
413
DESCRIPTION
414
        Helper routine to turn a symbol into a relocation value.
415
 
416
.#define HOWTO_PREPARE(relocation, symbol)      \
417
.  {                                            \
418
.  if (symbol != (asymbol *)NULL) {             \
419
.    if (bfd_is_com_section (symbol->section)) { \
420
.      relocation = 0;                          \
421
.    }                                          \
422
.    else {                                     \
423
.      relocation = symbol->value;              \
424
.    }                                          \
425
.  }                                            \
426
.}
427
 
428
*/
429
 
430
/*
431
FUNCTION
432
        bfd_get_reloc_size
433
 
434
SYNOPSIS
435
        unsigned int bfd_get_reloc_size (reloc_howto_type *);
436
 
437
DESCRIPTION
438
        For a reloc_howto_type that operates on a fixed number of bytes,
439
        this returns the number of bytes operated on.
440
 */
441
 
442
unsigned int
443
bfd_get_reloc_size (howto)
444
     reloc_howto_type *howto;
445
{
446
  switch (howto->size)
447
    {
448
    case 0: return 1;
449
    case 1: return 2;
450
    case 2: return 4;
451
    case 3: return 0;
452
    case 4: return 8;
453
    case 8: return 16;
454
    case -2: return 4;
455
    default: abort ();
456
    }
457
}
458
 
459
/*
460
TYPEDEF
461
        arelent_chain
462
 
463
DESCRIPTION
464
 
465
        How relocs are tied together in an <<asection>>:
466
 
467
.typedef struct relent_chain {
468
.  arelent relent;
469
.  struct   relent_chain *next;
470
.} arelent_chain;
471
 
472
*/
473
 
474
/* N_ONES produces N one bits, without overflowing machine arithmetic.  */
475
#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
476
 
477
/*
478
FUNCTION
479
        bfd_check_overflow
480
 
481
SYNOPSIS
482
        bfd_reloc_status_type
483
                bfd_check_overflow
484
                        (enum complain_overflow how,
485
                         unsigned int bitsize,
486
                         unsigned int rightshift,
487
                         unsigned int addrsize,
488
                         bfd_vma relocation);
489
 
490
DESCRIPTION
491
        Perform overflow checking on @var{relocation} which has
492
        @var{bitsize} significant bits and will be shifted right by
493
        @var{rightshift} bits, on a machine with addresses containing
494
        @var{addrsize} significant bits.  The result is either of
495
        @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
496
 
497
*/
498
 
499
bfd_reloc_status_type
500
bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
501
     enum complain_overflow how;
502
     unsigned int bitsize;
503
     unsigned int rightshift;
504
     unsigned int addrsize;
505
     bfd_vma relocation;
506
{
507
  bfd_vma fieldmask, addrmask, signmask, ss, a;
508
  bfd_reloc_status_type flag = bfd_reloc_ok;
509
 
510
  a = relocation;
511
 
512
  /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
513
     we'll be permissive: extra bits in the field mask will
514
     automatically extend the address mask for purposes of the
515
     overflow check.  */
516
  fieldmask = N_ONES (bitsize);
517
  addrmask = N_ONES (addrsize) | fieldmask;
518
 
519
  switch (how)
520
    {
521
    case complain_overflow_dont:
522
      break;
523
 
524
    case complain_overflow_signed:
525
      /* If any sign bits are set, all sign bits must be set.  That
526
         is, A must be a valid negative address after shifting.  */
527
      a = (a & addrmask) >> rightshift;
528
      signmask = ~ (fieldmask >> 1);
529
      ss = a & signmask;
530
      if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
531
        flag = bfd_reloc_overflow;
532
      break;
533
 
534
    case complain_overflow_unsigned:
535
      /* We have an overflow if the address does not fit in the field.  */
536
      a = (a & addrmask) >> rightshift;
537
      if ((a & ~ fieldmask) != 0)
538
        flag = bfd_reloc_overflow;
539
      break;
540
 
541
    case complain_overflow_bitfield:
542
      /* Bitfields are sometimes signed, sometimes unsigned.  We
543
         explicitly allow an address wrap too, which means a bitfield
544
         of n bits is allowed to store -2**n to 2**n-1.  Thus overflow
545
         if the value has some, but not all, bits set outside the
546
         field.  */
547
      a >>= rightshift;
548
      ss = a & ~ fieldmask;
549
      if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
550
        flag = bfd_reloc_overflow;
551
      break;
552
 
553
    default:
554
      abort ();
555
    }
556
 
557
  return flag;
558
}
559
 
560
/*
561
FUNCTION
562
        bfd_perform_relocation
563
 
564
SYNOPSIS
565
        bfd_reloc_status_type
566
                bfd_perform_relocation
567
                        (bfd *abfd,
568
                         arelent *reloc_entry,
569
                         PTR data,
570
                         asection *input_section,
571
                         bfd *output_bfd,
572
                         char **error_message);
573
 
574
DESCRIPTION
575
        If @var{output_bfd} is supplied to this function, the
576
        generated image will be relocatable; the relocations are
577
        copied to the output file after they have been changed to
578
        reflect the new state of the world. There are two ways of
579
        reflecting the results of partial linkage in an output file:
580
        by modifying the output data in place, and by modifying the
581
        relocation record.  Some native formats (e.g., basic a.out and
582
        basic coff) have no way of specifying an addend in the
583
        relocation type, so the addend has to go in the output data.
584
        This is no big deal since in these formats the output data
585
        slot will always be big enough for the addend. Complex reloc
586
        types with addends were invented to solve just this problem.
587
        The @var{error_message} argument is set to an error message if
588
        this return @code{bfd_reloc_dangerous}.
589
 
590
*/
591
 
592
 
593
bfd_reloc_status_type
594
bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
595
                        error_message)
596
     bfd *abfd;
597
     arelent *reloc_entry;
598
     PTR data;
599
     asection *input_section;
600
     bfd *output_bfd;
601
     char **error_message;
602
{
603
  bfd_vma relocation;
604
  bfd_reloc_status_type flag = bfd_reloc_ok;
605
  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
606
  bfd_vma output_base = 0;
607
  reloc_howto_type *howto = reloc_entry->howto;
608
  asection *reloc_target_output_section;
609
  asymbol *symbol;
610
 
611
  symbol = *(reloc_entry->sym_ptr_ptr);
612
  if (bfd_is_abs_section (symbol->section)
613
      && output_bfd != (bfd *) NULL)
614
    {
615
      reloc_entry->address += input_section->output_offset;
616
      return bfd_reloc_ok;
617
    }
618
 
619
  /* If we are not producing relocateable output, return an error if
620
     the symbol is not defined.  An undefined weak symbol is
621
     considered to have a value of zero (SVR4 ABI, p. 4-27).  */
622
  if (bfd_is_und_section (symbol->section)
623
      && (symbol->flags & BSF_WEAK) == 0
624
      && output_bfd == (bfd *) NULL)
625
    flag = bfd_reloc_undefined;
626
 
627
  /* If there is a function supplied to handle this relocation type,
628
     call it.  It'll return `bfd_reloc_continue' if further processing
629
     can be done.  */
630
  if (howto->special_function)
631
    {
632
      bfd_reloc_status_type cont;
633
      cont = howto->special_function (abfd, reloc_entry, symbol, data,
634
                                      input_section, output_bfd,
635
                                      error_message);
636
      if (cont != bfd_reloc_continue)
637
        return cont;
638
    }
639
 
640
  /* Is the address of the relocation really within the section?  */
641
  if (reloc_entry->address > input_section->_cooked_size /
642
      bfd_octets_per_byte (abfd))
643
    return bfd_reloc_outofrange;
644
 
645
  /* Work out which section the relocation is targetted at and the
646
     initial relocation command value.  */
647
 
648
  /* Get symbol value.  (Common symbols are special.)  */
649
  if (bfd_is_com_section (symbol->section))
650
    relocation = 0;
651
  else
652
    relocation = symbol->value;
653
 
654
 
655
  reloc_target_output_section = symbol->section->output_section;
656
 
657
  /* Convert input-section-relative symbol value to absolute.  */
658
  if (output_bfd && howto->partial_inplace == false)
659
    output_base = 0;
660
  else
661
    output_base = reloc_target_output_section->vma;
662
 
663
  relocation += output_base + symbol->section->output_offset;
664
 
665
  /* Add in supplied addend.  */
666
  relocation += reloc_entry->addend;
667
 
668
  /* Here the variable relocation holds the final address of the
669
     symbol we are relocating against, plus any addend.  */
670
 
671
  if (howto->pc_relative == true)
672
    {
673
      /* This is a PC relative relocation.  We want to set RELOCATION
674
         to the distance between the address of the symbol and the
675
         location.  RELOCATION is already the address of the symbol.
676
 
677
         We start by subtracting the address of the section containing
678
         the location.
679
 
680
         If pcrel_offset is set, we must further subtract the position
681
         of the location within the section.  Some targets arrange for
682
         the addend to be the negative of the position of the location
683
         within the section; for example, i386-aout does this.  For
684
         i386-aout, pcrel_offset is false.  Some other targets do not
685
         include the position of the location; for example, m88kbcs,
686
         or ELF.  For those targets, pcrel_offset is true.
687
 
688
         If we are producing relocateable output, then we must ensure
689
         that this reloc will be correctly computed when the final
690
         relocation is done.  If pcrel_offset is false we want to wind
691
         up with the negative of the location within the section,
692
         which means we must adjust the existing addend by the change
693
         in the location within the section.  If pcrel_offset is true
694
         we do not want to adjust the existing addend at all.
695
 
696
         FIXME: This seems logical to me, but for the case of
697
         producing relocateable output it is not what the code
698
         actually does.  I don't want to change it, because it seems
699
         far too likely that something will break.  */
700
 
701
      relocation -=
702
        input_section->output_section->vma + input_section->output_offset;
703
 
704
      if (howto->pcrel_offset == true)
705
        relocation -= reloc_entry->address;
706
    }
707
 
708
  if (output_bfd != (bfd *) NULL)
709
    {
710
      if (howto->partial_inplace == false)
711
        {
712
          /* This is a partial relocation, and we want to apply the relocation
713
             to the reloc entry rather than the raw data. Modify the reloc
714
             inplace to reflect what we now know.  */
715
          reloc_entry->addend = relocation;
716
          reloc_entry->address += input_section->output_offset;
717
          return flag;
718
        }
719
      else
720
        {
721
          /* This is a partial relocation, but inplace, so modify the
722
             reloc record a bit.
723
 
724
             If we've relocated with a symbol with a section, change
725
             into a ref to the section belonging to the symbol.  */
726
 
727
          reloc_entry->address += input_section->output_offset;
728
 
729
          /* WTF?? */
730
          if (abfd->xvec->flavour == bfd_target_coff_flavour
731
              && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
732
              && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
733
              && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
734
              && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
735
            {
736
#if 1
737
              /* For m68k-coff, the addend was being subtracted twice during
738
                 relocation with -r.  Removing the line below this comment
739
                 fixes that problem; see PR 2953.
740
 
741
However, Ian wrote the following, regarding removing the line below,
742
which explains why it is still enabled:  --djm
743
 
744
If you put a patch like that into BFD you need to check all the COFF
745
linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
746
SCO); see coff_i386_reloc in coff-i386.c where I worked around the
747
problem in a different way.  There may very well be a reason that the
748
code works as it does.
749
 
750
Hmmm.  The first obvious point is that bfd_perform_relocation should
751
not have any tests that depend upon the flavour.  It's seem like
752
entirely the wrong place for such a thing.  The second obvious point
753
is that the current code ignores the reloc addend when producing
754
relocateable output for COFF.  That's peculiar.  In fact, I really
755
have no idea what the point of the line you want to remove is.
756
 
757
A typical COFF reloc subtracts the old value of the symbol and adds in
758
the new value to the location in the object file (if it's a pc
759
relative reloc it adds the difference between the symbol value and the
760
location).  When relocating we need to preserve that property.
761
 
762
BFD handles this by setting the addend to the negative of the old
763
value of the symbol.  Unfortunately it handles common symbols in a
764
non-standard way (it doesn't subtract the old value) but that's a
765
different story (we can't change it without losing backward
766
compatibility with old object files) (coff-i386 does subtract the old
767
value, to be compatible with existing coff-i386 targets, like SCO).
768
 
769
So everything works fine when not producing relocateable output.  When
770
we are producing relocateable output, logically we should do exactly
771
what we do when not producing relocateable output.  Therefore, your
772
patch is correct.  In fact, it should probably always just set
773
reloc_entry->addend to 0 for all cases, since it is, in fact, going to
774
add the value into the object file.  This won't hurt the COFF code,
775
which doesn't use the addend; I'm not sure what it will do to other
776
formats (the thing to check for would be whether any formats both use
777
the addend and set partial_inplace).
778
 
779
When I wanted to make coff-i386 produce relocateable output, I ran
780
into the problem that you are running into: I wanted to remove that
781
line.  Rather than risk it, I made the coff-i386 relocs use a special
782
function; it's coff_i386_reloc in coff-i386.c.  The function
783
specifically adds the addend field into the object file, knowing that
784
bfd_perform_relocation is not going to.  If you remove that line, then
785
coff-i386.c will wind up adding the addend field in twice.  It's
786
trivial to fix; it just needs to be done.
787
 
788
The problem with removing the line is just that it may break some
789
working code.  With BFD it's hard to be sure of anything.  The right
790
way to deal with this is simply to build and test at least all the
791
supported COFF targets.  It should be straightforward if time and disk
792
space consuming.  For each target:
793
    1) build the linker
794
    2) generate some executable, and link it using -r (I would
795
       probably use paranoia.o and link against newlib/libc.a, which
796
       for all the supported targets would be available in
797
       /usr/cygnus/progressive/H-host/target/lib/libc.a).
798
    3) make the change to reloc.c
799
    4) rebuild the linker
800
    5) repeat step 2
801
    6) if the resulting object files are the same, you have at least
802
       made it no worse
803
    7) if they are different you have to figure out which version is
804
       right
805
*/
806
              relocation -= reloc_entry->addend;
807
#endif
808
              reloc_entry->addend = 0;
809
            }
810
          else
811
            {
812
              reloc_entry->addend = relocation;
813
            }
814
        }
815
    }
816
  else
817
    {
818
      reloc_entry->addend = 0;
819
    }
820
 
821
  /* FIXME: This overflow checking is incomplete, because the value
822
     might have overflowed before we get here.  For a correct check we
823
     need to compute the value in a size larger than bitsize, but we
824
     can't reasonably do that for a reloc the same size as a host
825
     machine word.
826
     FIXME: We should also do overflow checking on the result after
827
     adding in the value contained in the object file.  */
828
  if (howto->complain_on_overflow != complain_overflow_dont
829
      && flag == bfd_reloc_ok)
830
    flag = bfd_check_overflow (howto->complain_on_overflow,
831
                               howto->bitsize,
832
                               howto->rightshift,
833
                               bfd_arch_bits_per_address (abfd),
834
                               relocation);
835
 
836
  /*
837
    Either we are relocating all the way, or we don't want to apply
838
    the relocation to the reloc entry (probably because there isn't
839
    any room in the output format to describe addends to relocs)
840
    */
841
 
842
  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
843
     (OSF version 1.3, compiler version 3.11).  It miscompiles the
844
     following program:
845
 
846
     struct str
847
     {
848
       unsigned int i0;
849
     } s = { 0 };
850
 
851
     int
852
     main ()
853
     {
854
       unsigned long x;
855
 
856
       x = 0x100000000;
857
       x <<= (unsigned long) s.i0;
858
       if (x == 0)
859
         printf ("failed\n");
860
       else
861
         printf ("succeeded (%lx)\n", x);
862
     }
863
     */
864
 
865
  relocation >>= (bfd_vma) howto->rightshift;
866
 
867
  /* Shift everything up to where it's going to be used */
868
 
869
  relocation <<= (bfd_vma) howto->bitpos;
870
 
871
  /* Wait for the day when all have the mask in them */
872
 
873
  /* What we do:
874
     i instruction to be left alone
875
     o offset within instruction
876
     r relocation offset to apply
877
     S src mask
878
     D dst mask
879
     N ~dst mask
880
     A part 1
881
     B part 2
882
     R result
883
 
884
     Do this:
885
     ((  i i i i i o o o o o  from bfd_get<size>
886
     and           S S S S S) to get the size offset we want
887
     +   r r r r r r r r r r) to get the final value to place
888
     and           D D D D D  to chop to right size
889
     -----------------------
890
     =             A A A A A
891
     And this:
892
     (   i i i i i o o o o o  from bfd_get<size>
893
     and N N N N N          ) get instruction
894
     -----------------------
895
     =   B B B B B
896
 
897
     And then:
898
     (   B B B B B
899
     or            A A A A A)
900
     -----------------------
901
     =   R R R R R R R R R R  put into bfd_put<size>
902
     */
903
 
904
#define DOIT(x) \
905
  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
906
 
907
  switch (howto->size)
908
    {
909
    case 0:
910
      {
911
        char x = bfd_get_8 (abfd, (char *) data + octets);
912
        DOIT (x);
913
        bfd_put_8 (abfd, x, (unsigned char *) data + octets);
914
      }
915
      break;
916
 
917
    case 1:
918
      {
919
        short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
920
        DOIT (x);
921
        bfd_put_16 (abfd, x, (unsigned char *) data + octets);
922
      }
923
      break;
924
    case 2:
925
      {
926
        long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
927
        DOIT (x);
928
        bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
929
      }
930
      break;
931
    case -2:
932
      {
933
        long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
934
        relocation = -relocation;
935
        DOIT (x);
936
        bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
937
      }
938
      break;
939
 
940
    case -1:
941
      {
942
        long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
943
        relocation = -relocation;
944
        DOIT (x);
945
        bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
946
      }
947
      break;
948
 
949
    case 3:
950
      /* Do nothing */
951
      break;
952
 
953
    case 4:
954
#ifdef BFD64
955
      {
956
        bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
957
        DOIT (x);
958
        bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
959
      }
960
#else
961
      abort ();
962
#endif
963
      break;
964
    default:
965
      return bfd_reloc_other;
966
    }
967
 
968
  return flag;
969
}
970
 
971
/*
972
FUNCTION
973
        bfd_install_relocation
974
 
975
SYNOPSIS
976
        bfd_reloc_status_type
977
                bfd_install_relocation
978
                        (bfd *abfd,
979
                         arelent *reloc_entry,
980
                         PTR data, bfd_vma data_start,
981
                         asection *input_section,
982
                         char **error_message);
983
 
984
DESCRIPTION
985
        This looks remarkably like <<bfd_perform_relocation>>, except it
986
        does not expect that the section contents have been filled in.
987
        I.e., it's suitable for use when creating, rather than applying
988
        a relocation.
989
 
990
        For now, this function should be considered reserved for the
991
        assembler.
992
 
993
*/
994
 
995
 
996
bfd_reloc_status_type
997
bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
998
                        input_section, error_message)
999
     bfd *abfd;
1000
     arelent *reloc_entry;
1001
     PTR data_start;
1002
     bfd_vma data_start_offset;
1003
     asection *input_section;
1004
     char **error_message;
1005
{
1006
  bfd_vma relocation;
1007
  bfd_reloc_status_type flag = bfd_reloc_ok;
1008
  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1009
  bfd_vma output_base = 0;
1010
  reloc_howto_type *howto = reloc_entry->howto;
1011
  asection *reloc_target_output_section;
1012
  asymbol *symbol;
1013
  bfd_byte *data;
1014
 
1015
  symbol = *(reloc_entry->sym_ptr_ptr);
1016
  if (bfd_is_abs_section (symbol->section))
1017
    {
1018
      reloc_entry->address += input_section->output_offset;
1019
      return bfd_reloc_ok;
1020
    }
1021
 
1022
  /* If there is a function supplied to handle this relocation type,
1023
     call it.  It'll return `bfd_reloc_continue' if further processing
1024
     can be done.  */
1025
  if (howto->special_function)
1026
    {
1027
      bfd_reloc_status_type cont;
1028
 
1029
      /* XXX - The special_function calls haven't been fixed up to deal
1030
         with creating new relocations and section contents.  */
1031
      cont = howto->special_function (abfd, reloc_entry, symbol,
1032
                                      /* XXX - Non-portable! */
1033
                                      ((bfd_byte *) data_start
1034
                                       - data_start_offset),
1035
                                      input_section, abfd, error_message);
1036
      if (cont != bfd_reloc_continue)
1037
        return cont;
1038
    }
1039
 
1040
  /* Is the address of the relocation really within the section?  */
1041
  if (reloc_entry->address > input_section->_cooked_size)
1042
    return bfd_reloc_outofrange;
1043
 
1044
  /* Work out which section the relocation is targetted at and the
1045
     initial relocation command value.  */
1046
 
1047
  /* Get symbol value.  (Common symbols are special.)  */
1048
  if (bfd_is_com_section (symbol->section))
1049
    relocation = 0;
1050
  else
1051
    relocation = symbol->value;
1052
 
1053
  reloc_target_output_section = symbol->section->output_section;
1054
 
1055
  /* Convert input-section-relative symbol value to absolute.  */
1056
  if (howto->partial_inplace == false)
1057
    output_base = 0;
1058
  else
1059
    output_base = reloc_target_output_section->vma;
1060
 
1061
  relocation += output_base + symbol->section->output_offset;
1062
 
1063
  /* Add in supplied addend.  */
1064
  relocation += reloc_entry->addend;
1065
 
1066
  /* Here the variable relocation holds the final address of the
1067
     symbol we are relocating against, plus any addend.  */
1068
 
1069
  if (howto->pc_relative == true)
1070
    {
1071
      /* This is a PC relative relocation.  We want to set RELOCATION
1072
         to the distance between the address of the symbol and the
1073
         location.  RELOCATION is already the address of the symbol.
1074
 
1075
         We start by subtracting the address of the section containing
1076
         the location.
1077
 
1078
         If pcrel_offset is set, we must further subtract the position
1079
         of the location within the section.  Some targets arrange for
1080
         the addend to be the negative of the position of the location
1081
         within the section; for example, i386-aout does this.  For
1082
         i386-aout, pcrel_offset is false.  Some other targets do not
1083
         include the position of the location; for example, m88kbcs,
1084
         or ELF.  For those targets, pcrel_offset is true.
1085
 
1086
         If we are producing relocateable output, then we must ensure
1087
         that this reloc will be correctly computed when the final
1088
         relocation is done.  If pcrel_offset is false we want to wind
1089
         up with the negative of the location within the section,
1090
         which means we must adjust the existing addend by the change
1091
         in the location within the section.  If pcrel_offset is true
1092
         we do not want to adjust the existing addend at all.
1093
 
1094
         FIXME: This seems logical to me, but for the case of
1095
         producing relocateable output it is not what the code
1096
         actually does.  I don't want to change it, because it seems
1097
         far too likely that something will break.  */
1098
 
1099
      relocation -=
1100
        input_section->output_section->vma + input_section->output_offset;
1101
 
1102
      if (howto->pcrel_offset == true && howto->partial_inplace == true)
1103
        relocation -= reloc_entry->address;
1104
    }
1105
 
1106
  if (howto->partial_inplace == false)
1107
    {
1108
      /* This is a partial relocation, and we want to apply the relocation
1109
         to the reloc entry rather than the raw data. Modify the reloc
1110
         inplace to reflect what we now know.  */
1111
      reloc_entry->addend = relocation;
1112
      reloc_entry->address += input_section->output_offset;
1113
      return flag;
1114
    }
1115
  else
1116
    {
1117
      /* This is a partial relocation, but inplace, so modify the
1118
         reloc record a bit.
1119
 
1120
         If we've relocated with a symbol with a section, change
1121
         into a ref to the section belonging to the symbol.  */
1122
 
1123
      reloc_entry->address += input_section->output_offset;
1124
 
1125
      /* WTF?? */
1126
      if (abfd->xvec->flavour == bfd_target_coff_flavour
1127
          && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
1128
          && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
1129
          && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1130
          && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1131
        {
1132
#if 1
1133
/* For m68k-coff, the addend was being subtracted twice during
1134
   relocation with -r.  Removing the line below this comment
1135
   fixes that problem; see PR 2953.
1136
 
1137
However, Ian wrote the following, regarding removing the line below,
1138
which explains why it is still enabled:  --djm
1139
 
1140
If you put a patch like that into BFD you need to check all the COFF
1141
linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
1142
SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1143
problem in a different way.  There may very well be a reason that the
1144
code works as it does.
1145
 
1146
Hmmm.  The first obvious point is that bfd_install_relocation should
1147
not have any tests that depend upon the flavour.  It's seem like
1148
entirely the wrong place for such a thing.  The second obvious point
1149
is that the current code ignores the reloc addend when producing
1150
relocateable output for COFF.  That's peculiar.  In fact, I really
1151
have no idea what the point of the line you want to remove is.
1152
 
1153
A typical COFF reloc subtracts the old value of the symbol and adds in
1154
the new value to the location in the object file (if it's a pc
1155
relative reloc it adds the difference between the symbol value and the
1156
location).  When relocating we need to preserve that property.
1157
 
1158
BFD handles this by setting the addend to the negative of the old
1159
value of the symbol.  Unfortunately it handles common symbols in a
1160
non-standard way (it doesn't subtract the old value) but that's a
1161
different story (we can't change it without losing backward
1162
compatibility with old object files) (coff-i386 does subtract the old
1163
value, to be compatible with existing coff-i386 targets, like SCO).
1164
 
1165
So everything works fine when not producing relocateable output.  When
1166
we are producing relocateable output, logically we should do exactly
1167
what we do when not producing relocateable output.  Therefore, your
1168
patch is correct.  In fact, it should probably always just set
1169
reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1170
add the value into the object file.  This won't hurt the COFF code,
1171
which doesn't use the addend; I'm not sure what it will do to other
1172
formats (the thing to check for would be whether any formats both use
1173
the addend and set partial_inplace).
1174
 
1175
When I wanted to make coff-i386 produce relocateable output, I ran
1176
into the problem that you are running into: I wanted to remove that
1177
line.  Rather than risk it, I made the coff-i386 relocs use a special
1178
function; it's coff_i386_reloc in coff-i386.c.  The function
1179
specifically adds the addend field into the object file, knowing that
1180
bfd_install_relocation is not going to.  If you remove that line, then
1181
coff-i386.c will wind up adding the addend field in twice.  It's
1182
trivial to fix; it just needs to be done.
1183
 
1184
The problem with removing the line is just that it may break some
1185
working code.  With BFD it's hard to be sure of anything.  The right
1186
way to deal with this is simply to build and test at least all the
1187
supported COFF targets.  It should be straightforward if time and disk
1188
space consuming.  For each target:
1189
    1) build the linker
1190
    2) generate some executable, and link it using -r (I would
1191
       probably use paranoia.o and link against newlib/libc.a, which
1192
       for all the supported targets would be available in
1193
       /usr/cygnus/progressive/H-host/target/lib/libc.a).
1194
    3) make the change to reloc.c
1195
    4) rebuild the linker
1196
    5) repeat step 2
1197
    6) if the resulting object files are the same, you have at least
1198
       made it no worse
1199
    7) if they are different you have to figure out which version is
1200
       right
1201
*/
1202
          relocation -= reloc_entry->addend;
1203
#endif
1204
          reloc_entry->addend = 0;
1205
        }
1206
      else
1207
        {
1208
          reloc_entry->addend = relocation;
1209
        }
1210
    }
1211
 
1212
  /* FIXME: This overflow checking is incomplete, because the value
1213
     might have overflowed before we get here.  For a correct check we
1214
     need to compute the value in a size larger than bitsize, but we
1215
     can't reasonably do that for a reloc the same size as a host
1216
     machine word.
1217
     FIXME: We should also do overflow checking on the result after
1218
     adding in the value contained in the object file.  */
1219
  if (howto->complain_on_overflow != complain_overflow_dont)
1220
    flag = bfd_check_overflow (howto->complain_on_overflow,
1221
                               howto->bitsize,
1222
                               howto->rightshift,
1223
                               bfd_arch_bits_per_address (abfd),
1224
                               relocation);
1225
 
1226
  /*
1227
    Either we are relocating all the way, or we don't want to apply
1228
    the relocation to the reloc entry (probably because there isn't
1229
    any room in the output format to describe addends to relocs)
1230
    */
1231
 
1232
  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1233
     (OSF version 1.3, compiler version 3.11).  It miscompiles the
1234
     following program:
1235
 
1236
     struct str
1237
     {
1238
       unsigned int i0;
1239
     } s = { 0 };
1240
 
1241
     int
1242
     main ()
1243
     {
1244
       unsigned long x;
1245
 
1246
       x = 0x100000000;
1247
       x <<= (unsigned long) s.i0;
1248
       if (x == 0)
1249
         printf ("failed\n");
1250
       else
1251
         printf ("succeeded (%lx)\n", x);
1252
     }
1253
     */
1254
 
1255
  relocation >>= (bfd_vma) howto->rightshift;
1256
 
1257
  /* Shift everything up to where it's going to be used */
1258
 
1259
  relocation <<= (bfd_vma) howto->bitpos;
1260
 
1261
  /* Wait for the day when all have the mask in them */
1262
 
1263
  /* What we do:
1264
     i instruction to be left alone
1265
     o offset within instruction
1266
     r relocation offset to apply
1267
     S src mask
1268
     D dst mask
1269
     N ~dst mask
1270
     A part 1
1271
     B part 2
1272
     R result
1273
 
1274
     Do this:
1275
     ((  i i i i i o o o o o  from bfd_get<size>
1276
     and           S S S S S) to get the size offset we want
1277
     +   r r r r r r r r r r) to get the final value to place
1278
     and           D D D D D  to chop to right size
1279
     -----------------------
1280
     =             A A A A A
1281
     And this:
1282
     (   i i i i i o o o o o  from bfd_get<size>
1283
     and N N N N N          ) get instruction
1284
     -----------------------
1285
     =   B B B B B
1286
 
1287
     And then:
1288
     (   B B B B B
1289
     or            A A A A A)
1290
     -----------------------
1291
     =   R R R R R R R R R R  put into bfd_put<size>
1292
     */
1293
 
1294
#define DOIT(x) \
1295
  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
1296
 
1297
  data = (bfd_byte *) data_start + (octets - data_start_offset);
1298
 
1299
  switch (howto->size)
1300
    {
1301
    case 0:
1302
      {
1303
        char x = bfd_get_8 (abfd, (char *) data);
1304
        DOIT (x);
1305
        bfd_put_8 (abfd, x, (unsigned char *) data);
1306
      }
1307
      break;
1308
 
1309
    case 1:
1310
      {
1311
        short x = bfd_get_16 (abfd, (bfd_byte *) data);
1312
        DOIT (x);
1313
        bfd_put_16 (abfd, x, (unsigned char *) data);
1314
      }
1315
      break;
1316
    case 2:
1317
      {
1318
        long x = bfd_get_32 (abfd, (bfd_byte *) data);
1319
        DOIT (x);
1320
        bfd_put_32 (abfd, x, (bfd_byte *) data);
1321
      }
1322
      break;
1323
    case -2:
1324
      {
1325
        long x = bfd_get_32 (abfd, (bfd_byte *) data);
1326
        relocation = -relocation;
1327
        DOIT (x);
1328
        bfd_put_32 (abfd, x, (bfd_byte *) data);
1329
      }
1330
      break;
1331
 
1332
    case 3:
1333
      /* Do nothing */
1334
      break;
1335
 
1336
    case 4:
1337
      {
1338
        bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1339
        DOIT (x);
1340
        bfd_put_64 (abfd, x, (bfd_byte *) data);
1341
      }
1342
      break;
1343
    default:
1344
      return bfd_reloc_other;
1345
    }
1346
 
1347
  return flag;
1348
}
1349
 
1350
/* This relocation routine is used by some of the backend linkers.
1351
   They do not construct asymbol or arelent structures, so there is no
1352
   reason for them to use bfd_perform_relocation.  Also,
1353
   bfd_perform_relocation is so hacked up it is easier to write a new
1354
   function than to try to deal with it.
1355
 
1356
   This routine does a final relocation.  Whether it is useful for a
1357
   relocateable link depends upon how the object format defines
1358
   relocations.
1359
 
1360
   FIXME: This routine ignores any special_function in the HOWTO,
1361
   since the existing special_function values have been written for
1362
   bfd_perform_relocation.
1363
 
1364
   HOWTO is the reloc howto information.
1365
   INPUT_BFD is the BFD which the reloc applies to.
1366
   INPUT_SECTION is the section which the reloc applies to.
1367
   CONTENTS is the contents of the section.
1368
   ADDRESS is the address of the reloc within INPUT_SECTION.
1369
   VALUE is the value of the symbol the reloc refers to.
1370
   ADDEND is the addend of the reloc.  */
1371
 
1372
bfd_reloc_status_type
1373
_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1374
                          value, addend)
1375
     reloc_howto_type *howto;
1376
     bfd *input_bfd;
1377
     asection *input_section;
1378
     bfd_byte *contents;
1379
     bfd_vma address;
1380
     bfd_vma value;
1381
     bfd_vma addend;
1382
{
1383
  bfd_vma relocation;
1384
 
1385
  /* Sanity check the address.  */
1386
  if (address > input_section->_raw_size)
1387
    return bfd_reloc_outofrange;
1388
 
1389
  /* This function assumes that we are dealing with a basic relocation
1390
     against a symbol.  We want to compute the value of the symbol to
1391
     relocate to.  This is just VALUE, the value of the symbol, plus
1392
     ADDEND, any addend associated with the reloc.  */
1393
  relocation = value + addend;
1394
 
1395
  /* If the relocation is PC relative, we want to set RELOCATION to
1396
     the distance between the symbol (currently in RELOCATION) and the
1397
     location we are relocating.  Some targets (e.g., i386-aout)
1398
     arrange for the contents of the section to be the negative of the
1399
     offset of the location within the section; for such targets
1400
     pcrel_offset is false.  Other targets (e.g., m88kbcs or ELF)
1401
     simply leave the contents of the section as zero; for such
1402
     targets pcrel_offset is true.  If pcrel_offset is false we do not
1403
     need to subtract out the offset of the location within the
1404
     section (which is just ADDRESS).  */
1405
  if (howto->pc_relative)
1406
    {
1407
      relocation -= (input_section->output_section->vma
1408
                     + input_section->output_offset);
1409
      if (howto->pcrel_offset)
1410
        relocation -= address;
1411
    }
1412
 
1413
  return _bfd_relocate_contents (howto, input_bfd, relocation,
1414
                                 contents + address);
1415
}
1416
 
1417
/* Relocate a given location using a given value and howto.  */
1418
 
1419
bfd_reloc_status_type
1420
_bfd_relocate_contents (howto, input_bfd, relocation, location)
1421
     reloc_howto_type *howto;
1422
     bfd *input_bfd;
1423
     bfd_vma relocation;
1424
     bfd_byte *location;
1425
{
1426
  int size;
1427
  bfd_vma x = 0;
1428
  bfd_reloc_status_type flag;
1429
  unsigned int rightshift = howto->rightshift;
1430
  unsigned int bitpos = howto->bitpos;
1431
 
1432
  /* If the size is negative, negate RELOCATION.  This isn't very
1433
     general.  */
1434
  if (howto->size < 0)
1435
    relocation = -relocation;
1436
 
1437
  /* Get the value we are going to relocate.  */
1438
  size = bfd_get_reloc_size (howto);
1439
  switch (size)
1440
    {
1441
    default:
1442
    case 0:
1443
      abort ();
1444
    case 1:
1445
      x = bfd_get_8 (input_bfd, location);
1446
      break;
1447
    case 2:
1448
      x = bfd_get_16 (input_bfd, location);
1449
      break;
1450
    case 4:
1451
      x = bfd_get_32 (input_bfd, location);
1452
      break;
1453
    case 8:
1454
#ifdef BFD64
1455
      x = bfd_get_64 (input_bfd, location);
1456
#else
1457
      abort ();
1458
#endif
1459
      break;
1460
    }
1461
 
1462
  /* Check for overflow.  FIXME: We may drop bits during the addition
1463
     which we don't check for.  We must either check at every single
1464
     operation, which would be tedious, or we must do the computations
1465
     in a type larger than bfd_vma, which would be inefficient.  */
1466
  flag = bfd_reloc_ok;
1467
  if (howto->complain_on_overflow != complain_overflow_dont)
1468
    {
1469
      bfd_vma addrmask, fieldmask, signmask, ss;
1470
      bfd_vma a, b, sum;
1471
 
1472
      /* Get the values to be added together.  For signed and unsigned
1473
         relocations, we assume that all values should be truncated to
1474
         the size of an address.  For bitfields, all the bits matter.
1475
         See also bfd_check_overflow.  */
1476
      fieldmask = N_ONES (howto->bitsize);
1477
      addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1478
      a = relocation;
1479
      b = x & howto->src_mask;
1480
 
1481
      switch (howto->complain_on_overflow)
1482
        {
1483
        case complain_overflow_signed:
1484
          a = (a & addrmask) >> rightshift;
1485
 
1486
          /* If any sign bits are set, all sign bits must be set.
1487
             That is, A must be a valid negative address after
1488
             shifting.  */
1489
          signmask = ~ (fieldmask >> 1);
1490
          ss = a & signmask;
1491
          if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1492
            flag = bfd_reloc_overflow;
1493
 
1494
          /* We only need this next bit of code if the sign bit of B
1495
             is below the sign bit of A.  This would only happen if
1496
             SRC_MASK had fewer bits than BITSIZE.  Note that if
1497
             SRC_MASK has more bits than BITSIZE, we can get into
1498
             trouble; we would need to verify that B is in range, as
1499
             we do for A above.  */
1500
          signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1501
          if ((b & signmask) != 0)
1502
            {
1503
              /* Set all the bits above the sign bit.  */
1504
              b -= signmask << 1;
1505
            }
1506
 
1507
          b = (b & addrmask) >> bitpos;
1508
 
1509
          /* Now we can do the addition.  */
1510
          sum = a + b;
1511
 
1512
          /* See if the result has the correct sign.  Bits above the
1513
             sign bit are junk now; ignore them.  If the sum is
1514
             positive, make sure we did not have all negative inputs;
1515
             if the sum is negative, make sure we did not have all
1516
             positive inputs.  The test below looks only at the sign
1517
             bits, and it really just
1518
                 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1519
             */
1520
          signmask = (fieldmask >> 1) + 1;
1521
          if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1522
            flag = bfd_reloc_overflow;
1523
 
1524
          break;
1525
 
1526
        case complain_overflow_unsigned:
1527
          /* Checking for an unsigned overflow is relatively easy:
1528
             trim the addresses and add, and trim the result as well.
1529
             Overflow is normally indicated when the result does not
1530
             fit in the field.  However, we also need to consider the
1531
             case when, e.g., fieldmask is 0x7fffffff or smaller, an
1532
             input is 0x80000000, and bfd_vma is only 32 bits; then we
1533
             will get sum == 0, but there is an overflow, since the
1534
             inputs did not fit in the field.  Instead of doing a
1535
             separate test, we can check for this by or-ing in the
1536
             operands when testing for the sum overflowing its final
1537
             field.  */
1538
          a = (a & addrmask) >> rightshift;
1539
          b = (b & addrmask) >> bitpos;
1540
          sum = (a + b) & addrmask;
1541
          if ((a | b | sum) & ~ fieldmask)
1542
            flag = bfd_reloc_overflow;
1543
 
1544
          break;
1545
 
1546
        case complain_overflow_bitfield:
1547
          /* Much like the signed check, but for a field one bit
1548
             wider, and no trimming with addrmask.  We allow a
1549
             bitfield to represent numbers in the range -2**n to
1550
             2**n-1, where n is the number of bits in the field.
1551
             Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1552
             overflow, which is exactly what we want.  */
1553
          a >>= rightshift;
1554
 
1555
          signmask = ~ fieldmask;
1556
          ss = a & signmask;
1557
          if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1558
            flag = bfd_reloc_overflow;
1559
 
1560
          signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1561
          if ((b & signmask) != 0)
1562
            b -= signmask << 1;
1563
 
1564
          b >>= bitpos;
1565
 
1566
          sum = a + b;
1567
 
1568
          signmask = fieldmask + 1;
1569
          if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1570
            flag = bfd_reloc_overflow;
1571
 
1572
          break;
1573
 
1574
        default:
1575
          abort ();
1576
        }
1577
    }
1578
 
1579
  /* Put RELOCATION in the right bits.  */
1580
  relocation >>= (bfd_vma) rightshift;
1581
  relocation <<= (bfd_vma) bitpos;
1582
 
1583
  /* Add RELOCATION to the right bits of X.  */
1584
  x = ((x & ~howto->dst_mask)
1585
       | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1586
 
1587
  /* Put the relocated value back in the object file.  */
1588
  switch (size)
1589
    {
1590
    default:
1591
    case 0:
1592
      abort ();
1593
    case 1:
1594
      bfd_put_8 (input_bfd, x, location);
1595
      break;
1596
    case 2:
1597
      bfd_put_16 (input_bfd, x, location);
1598
      break;
1599
    case 4:
1600
      bfd_put_32 (input_bfd, x, location);
1601
      break;
1602
    case 8:
1603
#ifdef BFD64
1604
      bfd_put_64 (input_bfd, x, location);
1605
#else
1606
      abort ();
1607
#endif
1608
      break;
1609
    }
1610
 
1611
  return flag;
1612
}
1613
 
1614
/*
1615
DOCDD
1616
INODE
1617
        howto manager,  , typedef arelent, Relocations
1618
 
1619
SECTION
1620
        The howto manager
1621
 
1622
        When an application wants to create a relocation, but doesn't
1623
        know what the target machine might call it, it can find out by
1624
        using this bit of code.
1625
 
1626
*/
1627
 
1628
/*
1629
TYPEDEF
1630
        bfd_reloc_code_type
1631
 
1632
DESCRIPTION
1633
        The insides of a reloc code.  The idea is that, eventually, there
1634
        will be one enumerator for every type of relocation we ever do.
1635
        Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1636
        return a howto pointer.
1637
 
1638
        This does mean that the application must determine the correct
1639
        enumerator value; you can't get a howto pointer from a random set
1640
        of attributes.
1641
 
1642
SENUM
1643
   bfd_reloc_code_real
1644
 
1645
ENUM
1646
  BFD_RELOC_64
1647
ENUMX
1648
  BFD_RELOC_32
1649
ENUMX
1650
  BFD_RELOC_26
1651
ENUMX
1652
  BFD_RELOC_24
1653
ENUMX
1654
  BFD_RELOC_16
1655
ENUMX
1656
  BFD_RELOC_14
1657
ENUMX
1658
  BFD_RELOC_8
1659
ENUMDOC
1660
  Basic absolute relocations of N bits.
1661
 
1662
ENUM
1663
  BFD_RELOC_64_PCREL
1664
ENUMX
1665
  BFD_RELOC_32_PCREL
1666
ENUMX
1667
  BFD_RELOC_24_PCREL
1668
ENUMX
1669
  BFD_RELOC_16_PCREL
1670
ENUMX
1671
  BFD_RELOC_12_PCREL
1672
ENUMX
1673
  BFD_RELOC_8_PCREL
1674
ENUMDOC
1675
  PC-relative relocations.  Sometimes these are relative to the address
1676
of the relocation itself; sometimes they are relative to the start of
1677
the section containing the relocation.  It depends on the specific target.
1678
 
1679
The 24-bit relocation is used in some Intel 960 configurations.
1680
 
1681
ENUM
1682
  BFD_RELOC_32_GOT_PCREL
1683
ENUMX
1684
  BFD_RELOC_16_GOT_PCREL
1685
ENUMX
1686
  BFD_RELOC_8_GOT_PCREL
1687
ENUMX
1688
  BFD_RELOC_32_GOTOFF
1689
ENUMX
1690
  BFD_RELOC_16_GOTOFF
1691
ENUMX
1692
  BFD_RELOC_LO16_GOTOFF
1693
ENUMX
1694
  BFD_RELOC_HI16_GOTOFF
1695
ENUMX
1696
  BFD_RELOC_HI16_S_GOTOFF
1697
ENUMX
1698
  BFD_RELOC_8_GOTOFF
1699
ENUMX
1700
  BFD_RELOC_32_PLT_PCREL
1701
ENUMX
1702
  BFD_RELOC_24_PLT_PCREL
1703
ENUMX
1704
  BFD_RELOC_16_PLT_PCREL
1705
ENUMX
1706
  BFD_RELOC_8_PLT_PCREL
1707
ENUMX
1708
  BFD_RELOC_32_PLTOFF
1709
ENUMX
1710
  BFD_RELOC_16_PLTOFF
1711
ENUMX
1712
  BFD_RELOC_LO16_PLTOFF
1713
ENUMX
1714
  BFD_RELOC_HI16_PLTOFF
1715
ENUMX
1716
  BFD_RELOC_HI16_S_PLTOFF
1717
ENUMX
1718
  BFD_RELOC_8_PLTOFF
1719
ENUMDOC
1720
  For ELF.
1721
 
1722
ENUM
1723
  BFD_RELOC_68K_GLOB_DAT
1724
ENUMX
1725
  BFD_RELOC_68K_JMP_SLOT
1726
ENUMX
1727
  BFD_RELOC_68K_RELATIVE
1728
ENUMDOC
1729
  Relocations used by 68K ELF.
1730
 
1731
ENUM
1732
  BFD_RELOC_32_BASEREL
1733
ENUMX
1734
  BFD_RELOC_16_BASEREL
1735
ENUMX
1736
  BFD_RELOC_LO16_BASEREL
1737
ENUMX
1738
  BFD_RELOC_HI16_BASEREL
1739
ENUMX
1740
  BFD_RELOC_HI16_S_BASEREL
1741
ENUMX
1742
  BFD_RELOC_8_BASEREL
1743
ENUMX
1744
  BFD_RELOC_RVA
1745
ENUMDOC
1746
  Linkage-table relative.
1747
 
1748
ENUM
1749
  BFD_RELOC_8_FFnn
1750
ENUMDOC
1751
  Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1752
 
1753
ENUM
1754
  BFD_RELOC_32_PCREL_S2
1755
ENUMX
1756
  BFD_RELOC_16_PCREL_S2
1757
ENUMX
1758
  BFD_RELOC_23_PCREL_S2
1759
ENUMDOC
1760
  These PC-relative relocations are stored as word displacements --
1761
i.e., byte displacements shifted right two bits.  The 30-bit word
1762
displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1763
SPARC.  (SPARC tools generally refer to this as <<WDISP30>>.)  The
1764
signed 16-bit displacement is used on the MIPS, and the 23-bit
1765
displacement is used on the Alpha.
1766
 
1767
ENUM
1768
  BFD_RELOC_HI22
1769
ENUMX
1770
  BFD_RELOC_LO10
1771
ENUMDOC
1772
  High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1773
the target word.  These are used on the SPARC.
1774
 
1775
ENUM
1776
  BFD_RELOC_GPREL16
1777
ENUMX
1778
  BFD_RELOC_GPREL32
1779
ENUMDOC
1780
  For systems that allocate a Global Pointer register, these are
1781
displacements off that register.  These relocation types are
1782
handled specially, because the value the register will have is
1783
decided relatively late.
1784
 
1785
 
1786
ENUM
1787
  BFD_RELOC_I960_CALLJ
1788
ENUMDOC
1789
  Reloc types used for i960/b.out.
1790
 
1791
ENUM
1792
  BFD_RELOC_NONE
1793
ENUMX
1794
  BFD_RELOC_SPARC_WDISP22
1795
ENUMX
1796
  BFD_RELOC_SPARC22
1797
ENUMX
1798
  BFD_RELOC_SPARC13
1799
ENUMX
1800
  BFD_RELOC_SPARC_GOT10
1801
ENUMX
1802
  BFD_RELOC_SPARC_GOT13
1803
ENUMX
1804
  BFD_RELOC_SPARC_GOT22
1805
ENUMX
1806
  BFD_RELOC_SPARC_PC10
1807
ENUMX
1808
  BFD_RELOC_SPARC_PC22
1809
ENUMX
1810
  BFD_RELOC_SPARC_WPLT30
1811
ENUMX
1812
  BFD_RELOC_SPARC_COPY
1813
ENUMX
1814
  BFD_RELOC_SPARC_GLOB_DAT
1815
ENUMX
1816
  BFD_RELOC_SPARC_JMP_SLOT
1817
ENUMX
1818
  BFD_RELOC_SPARC_RELATIVE
1819
ENUMX
1820
  BFD_RELOC_SPARC_UA32
1821
ENUMDOC
1822
  SPARC ELF relocations.  There is probably some overlap with other
1823
  relocation types already defined.
1824
 
1825
ENUM
1826
  BFD_RELOC_SPARC_BASE13
1827
ENUMX
1828
  BFD_RELOC_SPARC_BASE22
1829
ENUMDOC
1830
  I think these are specific to SPARC a.out (e.g., Sun 4).
1831
 
1832
ENUMEQ
1833
  BFD_RELOC_SPARC_64
1834
  BFD_RELOC_64
1835
ENUMX
1836
  BFD_RELOC_SPARC_10
1837
ENUMX
1838
  BFD_RELOC_SPARC_11
1839
ENUMX
1840
  BFD_RELOC_SPARC_OLO10
1841
ENUMX
1842
  BFD_RELOC_SPARC_HH22
1843
ENUMX
1844
  BFD_RELOC_SPARC_HM10
1845
ENUMX
1846
  BFD_RELOC_SPARC_LM22
1847
ENUMX
1848
  BFD_RELOC_SPARC_PC_HH22
1849
ENUMX
1850
  BFD_RELOC_SPARC_PC_HM10
1851
ENUMX
1852
  BFD_RELOC_SPARC_PC_LM22
1853
ENUMX
1854
  BFD_RELOC_SPARC_WDISP16
1855
ENUMX
1856
  BFD_RELOC_SPARC_WDISP19
1857
ENUMX
1858
  BFD_RELOC_SPARC_7
1859
ENUMX
1860
  BFD_RELOC_SPARC_6
1861
ENUMX
1862
  BFD_RELOC_SPARC_5
1863
ENUMEQX
1864
  BFD_RELOC_SPARC_DISP64
1865
  BFD_RELOC_64_PCREL
1866
ENUMX
1867
  BFD_RELOC_SPARC_PLT64
1868
ENUMX
1869
  BFD_RELOC_SPARC_HIX22
1870
ENUMX
1871
  BFD_RELOC_SPARC_LOX10
1872
ENUMX
1873
  BFD_RELOC_SPARC_H44
1874
ENUMX
1875
  BFD_RELOC_SPARC_M44
1876
ENUMX
1877
  BFD_RELOC_SPARC_L44
1878
ENUMX
1879
  BFD_RELOC_SPARC_REGISTER
1880
ENUMDOC
1881
  SPARC64 relocations
1882
 
1883
ENUM
1884
  BFD_RELOC_SPARC_REV32
1885
ENUMDOC
1886
  SPARC little endian relocation
1887
 
1888
ENUM
1889
  BFD_RELOC_ALPHA_GPDISP_HI16
1890
ENUMDOC
1891
  Alpha ECOFF and ELF relocations.  Some of these treat the symbol or
1892
     "addend" in some special way.
1893
  For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1894
     writing; when reading, it will be the absolute section symbol.  The
1895
     addend is the displacement in bytes of the "lda" instruction from
1896
     the "ldah" instruction (which is at the address of this reloc).
1897
ENUM
1898
  BFD_RELOC_ALPHA_GPDISP_LO16
1899
ENUMDOC
1900
  For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1901
     with GPDISP_HI16 relocs.  The addend is ignored when writing the
1902
     relocations out, and is filled in with the file's GP value on
1903
     reading, for convenience.
1904
 
1905
ENUM
1906
  BFD_RELOC_ALPHA_GPDISP
1907
ENUMDOC
1908
  The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1909
     relocation except that there is no accompanying GPDISP_LO16
1910
     relocation.
1911
 
1912
ENUM
1913
  BFD_RELOC_ALPHA_LITERAL
1914
ENUMX
1915
  BFD_RELOC_ALPHA_ELF_LITERAL
1916
ENUMX
1917
  BFD_RELOC_ALPHA_LITUSE
1918
ENUMDOC
1919
  The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1920
     the assembler turns it into a LDQ instruction to load the address of
1921
     the symbol, and then fills in a register in the real instruction.
1922
 
1923
     The LITERAL reloc, at the LDQ instruction, refers to the .lita
1924
     section symbol.  The addend is ignored when writing, but is filled
1925
     in with the file's GP value on reading, for convenience, as with the
1926
     GPDISP_LO16 reloc.
1927
 
1928
     The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1929
     It should refer to the symbol to be referenced, as with 16_GOTOFF,
1930
     but it generates output not based on the position within the .got
1931
     section, but relative to the GP value chosen for the file during the
1932
     final link stage.
1933
 
1934
     The LITUSE reloc, on the instruction using the loaded address, gives
1935
     information to the linker that it might be able to use to optimize
1936
     away some literal section references.  The symbol is ignored (read
1937
     as the absolute section symbol), and the "addend" indicates the type
1938
     of instruction using the register:
1939
              1 - "memory" fmt insn
1940
              2 - byte-manipulation (byte offset reg)
1941
              3 - jsr (target of branch)
1942
 
1943
     The GNU linker currently doesn't do any of this optimizing.
1944
 
1945
ENUM
1946
  BFD_RELOC_ALPHA_USER_LITERAL
1947
ENUMX
1948
  BFD_RELOC_ALPHA_USER_LITUSE_BASE
1949
ENUMX
1950
  BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF
1951
ENUMX
1952
  BFD_RELOC_ALPHA_USER_LITUSE_JSR
1953
ENUMX
1954
  BFD_RELOC_ALPHA_USER_GPDISP
1955
ENUMX
1956
  BFD_RELOC_ALPHA_USER_GPRELHIGH
1957
ENUMX
1958
  BFD_RELOC_ALPHA_USER_GPRELLOW
1959
ENUMDOC
1960
  The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to
1961
     process the explicit !<reloc>!sequence relocations, and are mapped
1962
     into the normal relocations at the end of processing.
1963
 
1964
ENUM
1965
  BFD_RELOC_ALPHA_HINT
1966
ENUMDOC
1967
  The HINT relocation indicates a value that should be filled into the
1968
     "hint" field of a jmp/jsr/ret instruction, for possible branch-
1969
     prediction logic which may be provided on some processors.
1970
 
1971
ENUM
1972
  BFD_RELOC_ALPHA_LINKAGE
1973
ENUMDOC
1974
  The LINKAGE relocation outputs a linkage pair in the object file,
1975
     which is filled by the linker.
1976
 
1977
ENUM
1978
  BFD_RELOC_ALPHA_CODEADDR
1979
ENUMDOC
1980
  The CODEADDR relocation outputs a STO_CA in the object file,
1981
     which is filled by the linker.
1982
 
1983
ENUM
1984
  BFD_RELOC_MIPS_JMP
1985
ENUMDOC
1986
  Bits 27..2 of the relocation address shifted right 2 bits;
1987
     simple reloc otherwise.
1988
 
1989
ENUM
1990
  BFD_RELOC_MIPS16_JMP
1991
ENUMDOC
1992
  The MIPS16 jump instruction.
1993
 
1994
ENUM
1995
  BFD_RELOC_MIPS16_GPREL
1996
ENUMDOC
1997
  MIPS16 GP relative reloc.
1998
 
1999
ENUM
2000
  BFD_RELOC_HI16
2001
ENUMDOC
2002
  High 16 bits of 32-bit value; simple reloc.
2003
ENUM
2004
  BFD_RELOC_HI16_S
2005
ENUMDOC
2006
  High 16 bits of 32-bit value but the low 16 bits will be sign
2007
     extended and added to form the final result.  If the low 16
2008
     bits form a negative number, we need to add one to the high value
2009
     to compensate for the borrow when the low bits are added.
2010
ENUM
2011
  BFD_RELOC_LO16
2012
ENUMDOC
2013
  Low 16 bits.
2014
ENUM
2015
  BFD_RELOC_PCREL_HI16_S
2016
ENUMDOC
2017
  Like BFD_RELOC_HI16_S, but PC relative.
2018
ENUM
2019
  BFD_RELOC_PCREL_LO16
2020
ENUMDOC
2021
  Like BFD_RELOC_LO16, but PC relative.
2022
 
2023
ENUMEQ
2024
  BFD_RELOC_MIPS_GPREL
2025
  BFD_RELOC_GPREL16
2026
ENUMDOC
2027
  Relocation relative to the global pointer.
2028
 
2029
ENUM
2030
  BFD_RELOC_MIPS_LITERAL
2031
ENUMDOC
2032
  Relocation against a MIPS literal section.
2033
 
2034
ENUM
2035
  BFD_RELOC_MIPS_GOT16
2036
ENUMX
2037
  BFD_RELOC_MIPS_CALL16
2038
ENUMEQX
2039
  BFD_RELOC_MIPS_GPREL32
2040
  BFD_RELOC_GPREL32
2041
ENUMX
2042
  BFD_RELOC_MIPS_GOT_HI16
2043
ENUMX
2044
  BFD_RELOC_MIPS_GOT_LO16
2045
ENUMX
2046
  BFD_RELOC_MIPS_CALL_HI16
2047
ENUMX
2048
  BFD_RELOC_MIPS_CALL_LO16
2049
ENUMX
2050
  BFD_RELOC_MIPS_SUB
2051
ENUMX
2052
  BFD_RELOC_MIPS_GOT_PAGE
2053
ENUMX
2054
  BFD_RELOC_MIPS_GOT_OFST
2055
ENUMX
2056
  BFD_RELOC_MIPS_GOT_DISP
2057
COMMENT
2058
ENUMDOC
2059
  MIPS ELF relocations.
2060
 
2061
COMMENT
2062
 
2063
ENUM
2064
  BFD_RELOC_386_GOT32
2065
ENUMX
2066
  BFD_RELOC_386_PLT32
2067
ENUMX
2068
  BFD_RELOC_386_COPY
2069
ENUMX
2070
  BFD_RELOC_386_GLOB_DAT
2071
ENUMX
2072
  BFD_RELOC_386_JUMP_SLOT
2073
ENUMX
2074
  BFD_RELOC_386_RELATIVE
2075
ENUMX
2076
  BFD_RELOC_386_GOTOFF
2077
ENUMX
2078
  BFD_RELOC_386_GOTPC
2079
ENUMDOC
2080
  i386/elf relocations
2081
 
2082
ENUM
2083
  BFD_RELOC_NS32K_IMM_8
2084
ENUMX
2085
  BFD_RELOC_NS32K_IMM_16
2086
ENUMX
2087
  BFD_RELOC_NS32K_IMM_32
2088
ENUMX
2089
  BFD_RELOC_NS32K_IMM_8_PCREL
2090
ENUMX
2091
  BFD_RELOC_NS32K_IMM_16_PCREL
2092
ENUMX
2093
  BFD_RELOC_NS32K_IMM_32_PCREL
2094
ENUMX
2095
  BFD_RELOC_NS32K_DISP_8
2096
ENUMX
2097
  BFD_RELOC_NS32K_DISP_16
2098
ENUMX
2099
  BFD_RELOC_NS32K_DISP_32
2100
ENUMX
2101
  BFD_RELOC_NS32K_DISP_8_PCREL
2102
ENUMX
2103
  BFD_RELOC_NS32K_DISP_16_PCREL
2104
ENUMX
2105
  BFD_RELOC_NS32K_DISP_32_PCREL
2106
ENUMDOC
2107
  ns32k relocations
2108
 
2109
ENUM
2110
  BFD_RELOC_PJ_CODE_HI16
2111
ENUMX
2112
  BFD_RELOC_PJ_CODE_LO16
2113
ENUMX
2114
  BFD_RELOC_PJ_CODE_DIR16
2115
ENUMX
2116
  BFD_RELOC_PJ_CODE_DIR32
2117
ENUMX
2118
  BFD_RELOC_PJ_CODE_REL16
2119
ENUMX
2120
  BFD_RELOC_PJ_CODE_REL32
2121
ENUMDOC
2122
  Picojava relocs.  Not all of these appear in object files.
2123
 
2124
ENUM
2125
  BFD_RELOC_PPC_B26
2126
ENUMX
2127
  BFD_RELOC_PPC_BA26
2128
ENUMX
2129
  BFD_RELOC_PPC_TOC16
2130
ENUMX
2131
  BFD_RELOC_PPC_B16
2132
ENUMX
2133
  BFD_RELOC_PPC_B16_BRTAKEN
2134
ENUMX
2135
  BFD_RELOC_PPC_B16_BRNTAKEN
2136
ENUMX
2137
  BFD_RELOC_PPC_BA16
2138
ENUMX
2139
  BFD_RELOC_PPC_BA16_BRTAKEN
2140
ENUMX
2141
  BFD_RELOC_PPC_BA16_BRNTAKEN
2142
ENUMX
2143
  BFD_RELOC_PPC_COPY
2144
ENUMX
2145
  BFD_RELOC_PPC_GLOB_DAT
2146
ENUMX
2147
  BFD_RELOC_PPC_JMP_SLOT
2148
ENUMX
2149
  BFD_RELOC_PPC_RELATIVE
2150
ENUMX
2151
  BFD_RELOC_PPC_LOCAL24PC
2152
ENUMX
2153
  BFD_RELOC_PPC_EMB_NADDR32
2154
ENUMX
2155
  BFD_RELOC_PPC_EMB_NADDR16
2156
ENUMX
2157
  BFD_RELOC_PPC_EMB_NADDR16_LO
2158
ENUMX
2159
  BFD_RELOC_PPC_EMB_NADDR16_HI
2160
ENUMX
2161
  BFD_RELOC_PPC_EMB_NADDR16_HA
2162
ENUMX
2163
  BFD_RELOC_PPC_EMB_SDAI16
2164
ENUMX
2165
  BFD_RELOC_PPC_EMB_SDA2I16
2166
ENUMX
2167
  BFD_RELOC_PPC_EMB_SDA2REL
2168
ENUMX
2169
  BFD_RELOC_PPC_EMB_SDA21
2170
ENUMX
2171
  BFD_RELOC_PPC_EMB_MRKREF
2172
ENUMX
2173
  BFD_RELOC_PPC_EMB_RELSEC16
2174
ENUMX
2175
  BFD_RELOC_PPC_EMB_RELST_LO
2176
ENUMX
2177
  BFD_RELOC_PPC_EMB_RELST_HI
2178
ENUMX
2179
  BFD_RELOC_PPC_EMB_RELST_HA
2180
ENUMX
2181
  BFD_RELOC_PPC_EMB_BIT_FLD
2182
ENUMX
2183
  BFD_RELOC_PPC_EMB_RELSDA
2184
ENUMDOC
2185
  Power(rs6000) and PowerPC relocations.
2186
 
2187
ENUM
2188
  BFD_RELOC_I370_D12
2189
ENUMDOC
2190
  IBM 370/390 relocations
2191
 
2192
ENUM
2193
  BFD_RELOC_CTOR
2194
ENUMDOC
2195
  The type of reloc used to build a contructor table - at the moment
2196
  probably a 32 bit wide absolute relocation, but the target can choose.
2197
  It generally does map to one of the other relocation types.
2198
 
2199
ENUM
2200
  BFD_RELOC_ARM_PCREL_BRANCH
2201
ENUMDOC
2202
  ARM 26 bit pc-relative branch.  The lowest two bits must be zero and are
2203
  not stored in the instruction.
2204
ENUM
2205
  BFD_RELOC_ARM_PCREL_BLX
2206
ENUMDOC
2207
  ARM 26 bit pc-relative branch.  The lowest bit must be zero and is
2208
  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
2209
  field in the instruction.
2210
ENUM
2211
  BFD_RELOC_THUMB_PCREL_BLX
2212
ENUMDOC
2213
  Thumb 22 bit pc-relative branch.  The lowest bit must be zero and is
2214
  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
2215
  field in the instruction.
2216
ENUM
2217
  BFD_RELOC_ARM_IMMEDIATE
2218
ENUMX
2219
  BFD_RELOC_ARM_ADRL_IMMEDIATE
2220
ENUMX
2221
  BFD_RELOC_ARM_OFFSET_IMM
2222
ENUMX
2223
  BFD_RELOC_ARM_SHIFT_IMM
2224
ENUMX
2225
  BFD_RELOC_ARM_SWI
2226
ENUMX
2227
  BFD_RELOC_ARM_MULTI
2228
ENUMX
2229
  BFD_RELOC_ARM_CP_OFF_IMM
2230
ENUMX
2231
  BFD_RELOC_ARM_ADR_IMM
2232
ENUMX
2233
  BFD_RELOC_ARM_LDR_IMM
2234
ENUMX
2235
  BFD_RELOC_ARM_LITERAL
2236
ENUMX
2237
  BFD_RELOC_ARM_IN_POOL
2238
ENUMX
2239
  BFD_RELOC_ARM_OFFSET_IMM8
2240
ENUMX
2241
  BFD_RELOC_ARM_HWLITERAL
2242
ENUMX
2243
  BFD_RELOC_ARM_THUMB_ADD
2244
ENUMX
2245
  BFD_RELOC_ARM_THUMB_IMM
2246
ENUMX
2247
  BFD_RELOC_ARM_THUMB_SHIFT
2248
ENUMX
2249
  BFD_RELOC_ARM_THUMB_OFFSET
2250
ENUMX
2251
  BFD_RELOC_ARM_GOT12
2252
ENUMX
2253
  BFD_RELOC_ARM_GOT32
2254
ENUMX
2255
  BFD_RELOC_ARM_JUMP_SLOT
2256
ENUMX
2257
  BFD_RELOC_ARM_COPY
2258
ENUMX
2259
  BFD_RELOC_ARM_GLOB_DAT
2260
ENUMX
2261
  BFD_RELOC_ARM_PLT32
2262
ENUMX
2263
  BFD_RELOC_ARM_RELATIVE
2264
ENUMX
2265
  BFD_RELOC_ARM_GOTOFF
2266
ENUMX
2267
  BFD_RELOC_ARM_GOTPC
2268
ENUMDOC
2269
  These relocs are only used within the ARM assembler.  They are not
2270
  (at present) written to any object files.
2271
 
2272
ENUM
2273
  BFD_RELOC_SH_PCDISP8BY2
2274
ENUMX
2275
  BFD_RELOC_SH_PCDISP12BY2
2276
ENUMX
2277
  BFD_RELOC_SH_IMM4
2278
ENUMX
2279
  BFD_RELOC_SH_IMM4BY2
2280
ENUMX
2281
  BFD_RELOC_SH_IMM4BY4
2282
ENUMX
2283
  BFD_RELOC_SH_IMM8
2284
ENUMX
2285
  BFD_RELOC_SH_IMM8BY2
2286
ENUMX
2287
  BFD_RELOC_SH_IMM8BY4
2288
ENUMX
2289
  BFD_RELOC_SH_PCRELIMM8BY2
2290
ENUMX
2291
  BFD_RELOC_SH_PCRELIMM8BY4
2292
ENUMX
2293
  BFD_RELOC_SH_SWITCH16
2294
ENUMX
2295
  BFD_RELOC_SH_SWITCH32
2296
ENUMX
2297
  BFD_RELOC_SH_USES
2298
ENUMX
2299
  BFD_RELOC_SH_COUNT
2300
ENUMX
2301
  BFD_RELOC_SH_ALIGN
2302
ENUMX
2303
  BFD_RELOC_SH_CODE
2304
ENUMX
2305
  BFD_RELOC_SH_DATA
2306
ENUMX
2307
  BFD_RELOC_SH_LABEL
2308
ENUMX
2309
  BFD_RELOC_SH_LOOP_START
2310
ENUMX
2311
  BFD_RELOC_SH_LOOP_END
2312
ENUMDOC
2313
  Hitachi SH relocs.  Not all of these appear in object files.
2314
 
2315
ENUM
2316
  BFD_RELOC_THUMB_PCREL_BRANCH9
2317
ENUMX
2318
  BFD_RELOC_THUMB_PCREL_BRANCH12
2319
ENUMX
2320
  BFD_RELOC_THUMB_PCREL_BRANCH23
2321
ENUMDOC
2322
  Thumb 23-, 12- and 9-bit pc-relative branches.  The lowest bit must
2323
  be zero and is not stored in the instruction.
2324
 
2325
ENUM
2326
  BFD_RELOC_ARC_B22_PCREL
2327
ENUMDOC
2328
  Argonaut RISC Core (ARC) relocs.
2329
  ARC 22 bit pc-relative branch.  The lowest two bits must be zero and are
2330
  not stored in the instruction.  The high 20 bits are installed in bits 26
2331
  through 7 of the instruction.
2332
ENUM
2333
  BFD_RELOC_ARC_B26
2334
ENUMDOC
2335
  ARC 26 bit absolute branch.  The lowest two bits must be zero and are not
2336
  stored in the instruction.  The high 24 bits are installed in bits 23
2337
  through 0.
2338
 
2339
ENUM
2340
  BFD_RELOC_D10V_10_PCREL_R
2341
ENUMDOC
2342
  Mitsubishi D10V relocs.
2343
  This is a 10-bit reloc with the right 2 bits
2344
  assumed to be 0.
2345
ENUM
2346
  BFD_RELOC_D10V_10_PCREL_L
2347
ENUMDOC
2348
  Mitsubishi D10V relocs.
2349
  This is a 10-bit reloc with the right 2 bits
2350
  assumed to be 0.  This is the same as the previous reloc
2351
  except it is in the left container, i.e.,
2352
  shifted left 15 bits.
2353
ENUM
2354
  BFD_RELOC_D10V_18
2355
ENUMDOC
2356
  This is an 18-bit reloc with the right 2 bits
2357
  assumed to be 0.
2358
ENUM
2359
  BFD_RELOC_D10V_18_PCREL
2360
ENUMDOC
2361
  This is an 18-bit reloc with the right 2 bits
2362
  assumed to be 0.
2363
 
2364
ENUM
2365
  BFD_RELOC_D30V_6
2366
ENUMDOC
2367
  Mitsubishi D30V relocs.
2368
  This is a 6-bit absolute reloc.
2369
ENUM
2370
  BFD_RELOC_D30V_9_PCREL
2371
ENUMDOC
2372
  This is a 6-bit pc-relative reloc with
2373
  the right 3 bits assumed to be 0.
2374
ENUM
2375
  BFD_RELOC_D30V_9_PCREL_R
2376
ENUMDOC
2377
  This is a 6-bit pc-relative reloc with
2378
  the right 3 bits assumed to be 0. Same
2379
  as the previous reloc but on the right side
2380
  of the container.
2381
ENUM
2382
  BFD_RELOC_D30V_15
2383
ENUMDOC
2384
  This is a 12-bit absolute reloc with the
2385
  right 3 bitsassumed to be 0.
2386
ENUM
2387
  BFD_RELOC_D30V_15_PCREL
2388
ENUMDOC
2389
  This is a 12-bit pc-relative reloc with
2390
  the right 3 bits assumed to be 0.
2391
ENUM
2392
  BFD_RELOC_D30V_15_PCREL_R
2393
ENUMDOC
2394
  This is a 12-bit pc-relative reloc with
2395
  the right 3 bits assumed to be 0. Same
2396
  as the previous reloc but on the right side
2397
  of the container.
2398
ENUM
2399
  BFD_RELOC_D30V_21
2400
ENUMDOC
2401
  This is an 18-bit absolute reloc with
2402
  the right 3 bits assumed to be 0.
2403
ENUM
2404
  BFD_RELOC_D30V_21_PCREL
2405
ENUMDOC
2406
  This is an 18-bit pc-relative reloc with
2407
  the right 3 bits assumed to be 0.
2408
ENUM
2409
  BFD_RELOC_D30V_21_PCREL_R
2410
ENUMDOC
2411
  This is an 18-bit pc-relative reloc with
2412
  the right 3 bits assumed to be 0. Same
2413
  as the previous reloc but on the right side
2414
  of the container.
2415
ENUM
2416
  BFD_RELOC_D30V_32
2417
ENUMDOC
2418
  This is a 32-bit absolute reloc.
2419
ENUM
2420
  BFD_RELOC_D30V_32_PCREL
2421
ENUMDOC
2422
  This is a 32-bit pc-relative reloc.
2423
 
2424
ENUM
2425
  BFD_RELOC_M32R_24
2426
ENUMDOC
2427
  Mitsubishi M32R relocs.
2428
  This is a 24 bit absolute address.
2429
ENUM
2430
  BFD_RELOC_M32R_10_PCREL
2431
ENUMDOC
2432
  This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2433
ENUM
2434
  BFD_RELOC_M32R_18_PCREL
2435
ENUMDOC
2436
  This is an 18-bit reloc with the right 2 bits assumed to be 0.
2437
ENUM
2438
  BFD_RELOC_M32R_26_PCREL
2439
ENUMDOC
2440
  This is a 26-bit reloc with the right 2 bits assumed to be 0.
2441
ENUM
2442
  BFD_RELOC_M32R_HI16_ULO
2443
ENUMDOC
2444
  This is a 16-bit reloc containing the high 16 bits of an address
2445
  used when the lower 16 bits are treated as unsigned.
2446
ENUM
2447
  BFD_RELOC_M32R_HI16_SLO
2448
ENUMDOC
2449
  This is a 16-bit reloc containing the high 16 bits of an address
2450
  used when the lower 16 bits are treated as signed.
2451
ENUM
2452
  BFD_RELOC_M32R_LO16
2453
ENUMDOC
2454
  This is a 16-bit reloc containing the lower 16 bits of an address.
2455
ENUM
2456
  BFD_RELOC_M32R_SDA16
2457
ENUMDOC
2458
  This is a 16-bit reloc containing the small data area offset for use in
2459
  add3, load, and store instructions.
2460
 
2461
ENUM
2462
  BFD_RELOC_V850_9_PCREL
2463
ENUMDOC
2464
  This is a 9-bit reloc
2465
ENUM
2466
  BFD_RELOC_V850_22_PCREL
2467
ENUMDOC
2468
  This is a 22-bit reloc
2469
 
2470
ENUM
2471
  BFD_RELOC_V850_SDA_16_16_OFFSET
2472
ENUMDOC
2473
  This is a 16 bit offset from the short data area pointer.
2474
ENUM
2475
  BFD_RELOC_V850_SDA_15_16_OFFSET
2476
ENUMDOC
2477
  This is a 16 bit offset (of which only 15 bits are used) from the
2478
  short data area pointer.
2479
ENUM
2480
  BFD_RELOC_V850_ZDA_16_16_OFFSET
2481
ENUMDOC
2482
  This is a 16 bit offset from the zero data area pointer.
2483
ENUM
2484
  BFD_RELOC_V850_ZDA_15_16_OFFSET
2485
ENUMDOC
2486
  This is a 16 bit offset (of which only 15 bits are used) from the
2487
  zero data area pointer.
2488
ENUM
2489
  BFD_RELOC_V850_TDA_6_8_OFFSET
2490
ENUMDOC
2491
  This is an 8 bit offset (of which only 6 bits are used) from the
2492
  tiny data area pointer.
2493
ENUM
2494
  BFD_RELOC_V850_TDA_7_8_OFFSET
2495
ENUMDOC
2496
  This is an 8bit offset (of which only 7 bits are used) from the tiny
2497
  data area pointer.
2498
ENUM
2499
  BFD_RELOC_V850_TDA_7_7_OFFSET
2500
ENUMDOC
2501
  This is a 7 bit offset from the tiny data area pointer.
2502
ENUM
2503
  BFD_RELOC_V850_TDA_16_16_OFFSET
2504
ENUMDOC
2505
  This is a 16 bit offset from the tiny data area pointer.
2506
COMMENT
2507
ENUM
2508
  BFD_RELOC_V850_TDA_4_5_OFFSET
2509
ENUMDOC
2510
  This is a 5 bit offset (of which only 4 bits are used) from the tiny
2511
  data area pointer.
2512
ENUM
2513
  BFD_RELOC_V850_TDA_4_4_OFFSET
2514
ENUMDOC
2515
  This is a 4 bit offset from the tiny data area pointer.
2516
ENUM
2517
  BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2518
ENUMDOC
2519
  This is a 16 bit offset from the short data area pointer, with the
2520
  bits placed non-contigously in the instruction.
2521
ENUM
2522
  BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2523
ENUMDOC
2524
  This is a 16 bit offset from the zero data area pointer, with the
2525
  bits placed non-contigously in the instruction.
2526
ENUM
2527
  BFD_RELOC_V850_CALLT_6_7_OFFSET
2528
ENUMDOC
2529
  This is a 6 bit offset from the call table base pointer.
2530
ENUM
2531
  BFD_RELOC_V850_CALLT_16_16_OFFSET
2532
ENUMDOC
2533
  This is a 16 bit offset from the call table base pointer.
2534
COMMENT
2535
 
2536
ENUM
2537
  BFD_RELOC_MN10300_32_PCREL
2538
ENUMDOC
2539
  This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2540
  instruction.
2541
ENUM
2542
  BFD_RELOC_MN10300_16_PCREL
2543
ENUMDOC
2544
  This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2545
  instruction.
2546
 
2547
ENUM
2548
  BFD_RELOC_TIC30_LDP
2549
ENUMDOC
2550
  This is a 8bit DP reloc for the tms320c30, where the most
2551
  significant 8 bits of a 24 bit word are placed into the least
2552
  significant 8 bits of the opcode.
2553
 
2554
ENUM
2555
  BFD_RELOC_TIC54X_PARTLS7
2556
ENUMDOC
2557
  This is a 7bit reloc for the tms320c54x, where the least
2558
  significant 7 bits of a 16 bit word are placed into the least
2559
  significant 7 bits of the opcode.
2560
 
2561
ENUM
2562
  BFD_RELOC_TIC54X_PARTMS9
2563
ENUMDOC
2564
  This is a 9bit DP reloc for the tms320c54x, where the most
2565
  significant 9 bits of a 16 bit word are placed into the least
2566
  significant 9 bits of the opcode.
2567
 
2568
ENUM
2569
  BFD_RELOC_TIC54X_23
2570
ENUMDOC
2571
  This is an extended address 23-bit reloc for the tms320c54x.
2572
 
2573
ENUM
2574
  BFD_RELOC_TIC54X_16_OF_23
2575
ENUMDOC
2576
  This is a 16-bit reloc for the tms320c54x, where the least
2577
  significant 16 bits of a 23-bit extended address are placed into
2578
  the opcode.
2579
 
2580
ENUM
2581
  BFD_RELOC_TIC54X_MS7_OF_23
2582
ENUMDOC
2583
  This is a reloc for the tms320c54x, where the most
2584
  significant 7 bits of a 23-bit extended address are placed into
2585
  the opcode.
2586
 
2587
ENUM
2588
  BFD_RELOC_FR30_48
2589
ENUMDOC
2590
  This is a 48 bit reloc for the FR30 that stores 32 bits.
2591
ENUM
2592
  BFD_RELOC_FR30_20
2593
ENUMDOC
2594
  This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2595
  two sections.
2596
ENUM
2597
  BFD_RELOC_FR30_6_IN_4
2598
ENUMDOC
2599
  This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2600
  4 bits.
2601
ENUM
2602
  BFD_RELOC_FR30_8_IN_8
2603
ENUMDOC
2604
  This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2605
  into 8 bits.
2606
ENUM
2607
  BFD_RELOC_FR30_9_IN_8
2608
ENUMDOC
2609
  This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2610
  into 8 bits.
2611
ENUM
2612
  BFD_RELOC_FR30_10_IN_8
2613
ENUMDOC
2614
  This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2615
  into 8 bits.
2616
ENUM
2617
  BFD_RELOC_FR30_9_PCREL
2618
ENUMDOC
2619
  This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2620
  short offset into 8 bits.
2621
ENUM
2622
  BFD_RELOC_FR30_12_PCREL
2623
ENUMDOC
2624
  This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2625
  short offset into 11 bits.
2626
 
2627
ENUM
2628
  BFD_RELOC_MCORE_PCREL_IMM8BY4
2629
ENUMX
2630
  BFD_RELOC_MCORE_PCREL_IMM11BY2
2631
ENUMX
2632
  BFD_RELOC_MCORE_PCREL_IMM4BY2
2633
ENUMX
2634
  BFD_RELOC_MCORE_PCREL_32
2635
ENUMX
2636
  BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2637
ENUMX
2638
  BFD_RELOC_MCORE_RVA
2639
ENUMDOC
2640
  Motorola Mcore relocations.
2641
 
2642
ENUM
2643
  BFD_RELOC_AVR_7_PCREL
2644
ENUMDOC
2645
  This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2646
  short offset into 7 bits.
2647
ENUM
2648
  BFD_RELOC_AVR_13_PCREL
2649
ENUMDOC
2650
  This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2651
  short offset into 12 bits.
2652
ENUM
2653
  BFD_RELOC_AVR_16_PM
2654
ENUMDOC
2655
  This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2656
  program memory address) into 16 bits.
2657
ENUM
2658
  BFD_RELOC_AVR_LO8_LDI
2659
ENUMDOC
2660
  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2661
  data memory address) into 8 bit immediate value of LDI insn.
2662
ENUM
2663
  BFD_RELOC_AVR_HI8_LDI
2664
ENUMDOC
2665
  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2666
  of data memory address) into 8 bit immediate value of LDI insn.
2667
ENUM
2668
  BFD_RELOC_AVR_HH8_LDI
2669
ENUMDOC
2670
  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2671
  of program memory address) into 8 bit immediate value of LDI insn.
2672
ENUM
2673
  BFD_RELOC_AVR_LO8_LDI_NEG
2674
ENUMDOC
2675
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2676
  (usually data memory address) into 8 bit immediate value of SUBI insn.
2677
ENUM
2678
  BFD_RELOC_AVR_HI8_LDI_NEG
2679
ENUMDOC
2680
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2681
  (high 8 bit of data memory address) into 8 bit immediate value of
2682
  SUBI insn.
2683
ENUM
2684
  BFD_RELOC_AVR_HH8_LDI_NEG
2685
ENUMDOC
2686
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2687
  (most high 8 bit of program memory address) into 8 bit immediate value
2688
  of LDI or SUBI insn.
2689
ENUM
2690
  BFD_RELOC_AVR_LO8_LDI_PM
2691
ENUMDOC
2692
  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2693
  command address) into 8 bit immediate value of LDI insn.
2694
ENUM
2695
  BFD_RELOC_AVR_HI8_LDI_PM
2696
ENUMDOC
2697
  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2698
  of command address) into 8 bit immediate value of LDI insn.
2699
ENUM
2700
  BFD_RELOC_AVR_HH8_LDI_PM
2701
ENUMDOC
2702
  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2703
  of command address) into 8 bit immediate value of LDI insn.
2704
ENUM
2705
  BFD_RELOC_AVR_LO8_LDI_PM_NEG
2706
ENUMDOC
2707
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2708
  (usually command address) into 8 bit immediate value of SUBI insn.
2709
ENUM
2710
  BFD_RELOC_AVR_HI8_LDI_PM_NEG
2711
ENUMDOC
2712
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2713
  (high 8 bit of 16 bit command address) into 8 bit immediate value
2714
  of SUBI insn.
2715
ENUM
2716
  BFD_RELOC_AVR_HH8_LDI_PM_NEG
2717
ENUMDOC
2718
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
2719
  (high 6 bit of 22 bit command address) into 8 bit immediate
2720
  value of SUBI insn.
2721
ENUM
2722
  BFD_RELOC_AVR_CALL
2723
ENUMDOC
2724
  This is a 32 bit reloc for the AVR that stores 23 bit value
2725
  into 22 bits.
2726
 
2727
ENUM
2728
  BFD_RELOC_VTABLE_INHERIT
2729
ENUMX
2730
  BFD_RELOC_VTABLE_ENTRY
2731
ENUMDOC
2732
  These two relocations are used by the linker to determine which of
2733
  the entries in a C++ virtual function table are actually used.  When
2734
  the --gc-sections option is given, the linker will zero out the entries
2735
  that are not used, so that the code for those functions need not be
2736
  included in the output.
2737
 
2738
  VTABLE_INHERIT is a zero-space relocation used to describe to the
2739
  linker the inheritence tree of a C++ virtual function table.  The
2740
  relocation's symbol should be the parent class' vtable, and the
2741
  relocation should be located at the child vtable.
2742
 
2743
  VTABLE_ENTRY is a zero-space relocation that describes the use of a
2744
  virtual function table entry.  The reloc's symbol should refer to the
2745
  table of the class mentioned in the code.  Off of that base, an offset
2746
  describes the entry that is being used.  For Rela hosts, this offset
2747
  is stored in the reloc's addend.  For Rel hosts, we are forced to put
2748
  this offset in the reloc's section offset.
2749
 
2750
ENDSENUM
2751
  BFD_RELOC_UNUSED
2752
CODE_FRAGMENT
2753
.
2754
.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
2755
*/
2756
 
2757
 
2758
/*
2759
FUNCTION
2760
        bfd_reloc_type_lookup
2761
 
2762
SYNOPSIS
2763
        reloc_howto_type *
2764
        bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
2765
 
2766
DESCRIPTION
2767
        Return a pointer to a howto structure which, when
2768
        invoked, will perform the relocation @var{code} on data from the
2769
        architecture noted.
2770
 
2771
*/
2772
 
2773
 
2774
reloc_howto_type *
2775
bfd_reloc_type_lookup (abfd, code)
2776
     bfd *abfd;
2777
     bfd_reloc_code_real_type code;
2778
{
2779
  return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
2780
}
2781
 
2782
static reloc_howto_type bfd_howto_32 =
2783
HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
2784
 
2785
 
2786
/*
2787
INTERNAL_FUNCTION
2788
        bfd_default_reloc_type_lookup
2789
 
2790
SYNOPSIS
2791
        reloc_howto_type *bfd_default_reloc_type_lookup
2792
        (bfd *abfd, bfd_reloc_code_real_type  code);
2793
 
2794
DESCRIPTION
2795
        Provides a default relocation lookup routine for any architecture.
2796
 
2797
 
2798
*/
2799
 
2800
reloc_howto_type *
2801
bfd_default_reloc_type_lookup (abfd, code)
2802
     bfd *abfd;
2803
     bfd_reloc_code_real_type code;
2804
{
2805
  switch (code)
2806
    {
2807
    case BFD_RELOC_CTOR:
2808
      /* The type of reloc used in a ctor, which will be as wide as the
2809
         address - so either a 64, 32, or 16 bitter.  */
2810
      switch (bfd_get_arch_info (abfd)->bits_per_address)
2811
        {
2812
        case 64:
2813
          BFD_FAIL ();
2814
        case 32:
2815
          return &bfd_howto_32;
2816
        case 16:
2817
          BFD_FAIL ();
2818
        default:
2819
          BFD_FAIL ();
2820
        }
2821
    default:
2822
      BFD_FAIL ();
2823
    }
2824
  return (reloc_howto_type *) NULL;
2825
}
2826
 
2827
/*
2828
FUNCTION
2829
        bfd_get_reloc_code_name
2830
 
2831
SYNOPSIS
2832
        const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
2833
 
2834
DESCRIPTION
2835
        Provides a printable name for the supplied relocation code.
2836
        Useful mainly for printing error messages.
2837
*/
2838
 
2839
const char *
2840
bfd_get_reloc_code_name (code)
2841
     bfd_reloc_code_real_type code;
2842
{
2843
  if (code > BFD_RELOC_UNUSED)
2844
    return 0;
2845
  return bfd_reloc_code_real_names[(int)code];
2846
}
2847
 
2848
/*
2849
INTERNAL_FUNCTION
2850
        bfd_generic_relax_section
2851
 
2852
SYNOPSIS
2853
        boolean bfd_generic_relax_section
2854
         (bfd *abfd,
2855
          asection *section,
2856
          struct bfd_link_info *,
2857
          boolean *);
2858
 
2859
DESCRIPTION
2860
        Provides default handling for relaxing for back ends which
2861
        don't do relaxing -- i.e., does nothing.
2862
*/
2863
 
2864
/*ARGSUSED*/
2865
boolean
2866
bfd_generic_relax_section (abfd, section, link_info, again)
2867
     bfd *abfd ATTRIBUTE_UNUSED;
2868
     asection *section ATTRIBUTE_UNUSED;
2869
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
2870
     boolean *again;
2871
{
2872
  *again = false;
2873
  return true;
2874
}
2875
 
2876
/*
2877
INTERNAL_FUNCTION
2878
        bfd_generic_gc_sections
2879
 
2880
SYNOPSIS
2881
        boolean bfd_generic_gc_sections
2882
         (bfd *, struct bfd_link_info *);
2883
 
2884
DESCRIPTION
2885
        Provides default handling for relaxing for back ends which
2886
        don't do section gc -- i.e., does nothing.
2887
*/
2888
 
2889
/*ARGSUSED*/
2890
boolean
2891
bfd_generic_gc_sections (abfd, link_info)
2892
     bfd *abfd ATTRIBUTE_UNUSED;
2893
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
2894
{
2895
  return true;
2896
}
2897
 
2898
/*
2899
INTERNAL_FUNCTION
2900
        bfd_generic_get_relocated_section_contents
2901
 
2902
SYNOPSIS
2903
        bfd_byte *
2904
           bfd_generic_get_relocated_section_contents (bfd *abfd,
2905
             struct bfd_link_info *link_info,
2906
             struct bfd_link_order *link_order,
2907
             bfd_byte *data,
2908
             boolean relocateable,
2909
             asymbol **symbols);
2910
 
2911
DESCRIPTION
2912
        Provides default handling of relocation effort for back ends
2913
        which can't be bothered to do it efficiently.
2914
 
2915
*/
2916
 
2917
bfd_byte *
2918
bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
2919
                                            relocateable, symbols)
2920
     bfd *abfd;
2921
     struct bfd_link_info *link_info;
2922
     struct bfd_link_order *link_order;
2923
     bfd_byte *data;
2924
     boolean relocateable;
2925
     asymbol **symbols;
2926
{
2927
  /* Get enough memory to hold the stuff */
2928
  bfd *input_bfd = link_order->u.indirect.section->owner;
2929
  asection *input_section = link_order->u.indirect.section;
2930
 
2931
  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
2932
  arelent **reloc_vector = NULL;
2933
  long reloc_count;
2934
 
2935
  if (reloc_size < 0)
2936
    goto error_return;
2937
 
2938
  reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
2939
  if (reloc_vector == NULL && reloc_size != 0)
2940
    goto error_return;
2941
 
2942
  /* read in the section */
2943
  if (!bfd_get_section_contents (input_bfd,
2944
                                 input_section,
2945
                                 (PTR) data,
2946
                                 0,
2947
                                 input_section->_raw_size))
2948
    goto error_return;
2949
 
2950
  /* We're not relaxing the section, so just copy the size info */
2951
  input_section->_cooked_size = input_section->_raw_size;
2952
  input_section->reloc_done = true;
2953
 
2954
  reloc_count = bfd_canonicalize_reloc (input_bfd,
2955
                                        input_section,
2956
                                        reloc_vector,
2957
                                        symbols);
2958
  if (reloc_count < 0)
2959
    goto error_return;
2960
 
2961
  if (reloc_count > 0)
2962
    {
2963
      arelent **parent;
2964
      for (parent = reloc_vector; *parent != (arelent *) NULL;
2965
           parent++)
2966
        {
2967
          char *error_message = (char *) NULL;
2968
          bfd_reloc_status_type r =
2969
            bfd_perform_relocation (input_bfd,
2970
                                    *parent,
2971
                                    (PTR) data,
2972
                                    input_section,
2973
                                    relocateable ? abfd : (bfd *) NULL,
2974
                                    &error_message);
2975
 
2976
          if (relocateable)
2977
            {
2978
              asection *os = input_section->output_section;
2979
 
2980
              /* A partial link, so keep the relocs */
2981
              os->orelocation[os->reloc_count] = *parent;
2982
              os->reloc_count++;
2983
            }
2984
 
2985
          if (r != bfd_reloc_ok)
2986
            {
2987
              switch (r)
2988
                {
2989
                case bfd_reloc_undefined:
2990
                  if (!((*link_info->callbacks->undefined_symbol)
2991
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
2992
                         input_bfd, input_section, (*parent)->address,
2993
                         true)))
2994
                    goto error_return;
2995
                  break;
2996
                case bfd_reloc_dangerous:
2997
                  BFD_ASSERT (error_message != (char *) NULL);
2998
                  if (!((*link_info->callbacks->reloc_dangerous)
2999
                        (link_info, error_message, input_bfd, input_section,
3000
                         (*parent)->address)))
3001
                    goto error_return;
3002
                  break;
3003
                case bfd_reloc_overflow:
3004
                  if (!((*link_info->callbacks->reloc_overflow)
3005
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3006
                         (*parent)->howto->name, (*parent)->addend,
3007
                         input_bfd, input_section, (*parent)->address)))
3008
                    goto error_return;
3009
                  break;
3010
                case bfd_reloc_outofrange:
3011
                default:
3012
                  abort ();
3013
                  break;
3014
                }
3015
 
3016
            }
3017
        }
3018
    }
3019
  if (reloc_vector != NULL)
3020
    free (reloc_vector);
3021
  return data;
3022
 
3023
error_return:
3024
  if (reloc_vector != NULL)
3025
    free (reloc_vector);
3026
  return NULL;
3027
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.